diff --git a/doc/doc_ch/angle_class.md b/doc/doc_ch/angle_class.md index d6a36b86b476f15b7b34f67e888ceb781b2ed7a0..857ca514f94ce10886e9ba38092ed97d330a64bc 100644 --- a/doc/doc_ch/angle_class.md +++ b/doc/doc_ch/angle_class.md @@ -62,9 +62,9 @@ PaddleOCR提供了训练脚本、评估脚本和预测脚本。 *如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false* ``` -# GPU训练 支持单卡,多卡训练,通过selected_gpus指定卡号 +# GPU训练 支持单卡,多卡训练,通过 gpus 指定卡号 # 启动训练,下面的命令已经写入train.sh文件中,只需修改文件里的配置文件路径即可 -python3 -m paddle.distributed.launch --selected_gpus '0,1,2,3,4,5,6,7' tools/train.py -c configs/cls/cls_mv3.yml +python3 -m paddle.distributed.launch --gpus '0,1,2,3,4,5,6,7' tools/train.py -c configs/cls/cls_mv3.yml ``` - 数据增强 @@ -74,7 +74,7 @@ PaddleOCR提供了多种数据增强方式,如果您希望在训练时加入 默认的扰动方式有:颜色空间转换(cvtColor)、模糊(blur)、抖动(jitter)、噪声(Gasuss noise)、随机切割(random crop)、透视(perspective)、颜色反转(reverse),随机数据增强(RandAugment)。 训练过程中除随机数据增强外每种扰动方式以50%的概率被选择,具体代码实现请参考: -[rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py) +[rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py) [randaugment.py](../../ppocr/data/imaug/randaugment.py) *由于OpenCV的兼容性问题,扰动操作暂时只支持linux* diff --git a/doc/doc_en/angle_class_en.md b/doc/doc_en/angle_class_en.md index defdff3ccbbad9d0201305529073bdc80abd5d29..8bc261af43cee982d82d73f39afedad5d52fbe4f 100644 --- a/doc/doc_en/angle_class_en.md +++ b/doc/doc_en/angle_class_en.md @@ -65,9 +65,9 @@ Start training: ``` # Set PYTHONPATH path export PYTHONPATH=$PYTHONPATH:. -# GPU training Support single card and multi-card training, specify the card number through selected_gpus +# GPU training Support single card and multi-card training, specify the card number through gpus # Start training, the following command has been written into the train.sh file, just modify the configuration file path in the file -python3 -m paddle.distributed.launch --selected_gpus '0,1,2,3,4,5,6,7' tools/train.py -c configs/cls/cls_mv3.yml +python3 -m paddle.distributed.launch --gpus '0,1,2,3,4,5,6,7' tools/train.py -c configs/cls/cls_mv3.yml ``` - Data Augmentation @@ -77,7 +77,7 @@ PaddleOCR provides a variety of data augmentation methods. If you want to add di The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, RandAugment. Except for RandAugment, each disturbance method is selected with a 50% probability during the training process. For specific code implementation, please refer to: -[rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py) +[rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py) [randaugment.py](../../ppocr/data/imaug/randaugment.py)