Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
dbaab10e
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dbaab10e
编写于
3月 25, 2022
作者:
L
LDOUBLEV
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add end2end
上级
44ea70d5
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
426 addition
and
1 deletion
+426
-1
tools/end2end/convert_ppocr_label.py
tools/end2end/convert_ppocr_label.py
+81
-0
tools/end2end/draw_html.py
tools/end2end/draw_html.py
+52
-0
tools/end2end/eval_end2end.py
tools/end2end/eval_end2end.py
+182
-0
tools/end2end/readme.md
tools/end2end/readme.md
+69
-0
tools/infer/predict_system.py
tools/infer/predict_system.py
+41
-1
tools/infer/utility.py
tools/infer/utility.py
+1
-0
未找到文件。
tools/end2end/convert_ppocr_label.py
0 → 100644
浏览文件 @
dbaab10e
import
numpy
as
np
import
json
import
os
def
poly_to_string
(
poly
):
if
len
(
poly
.
shape
)
>
1
:
poly
=
np
.
array
(
poly
).
flatten
()
string
=
"
\t
"
.
join
(
str
(
i
)
for
i
in
poly
)
return
string
def
convert_label
(
label_dir
,
mode
=
"gt"
,
save_dir
=
"./save_results/"
):
if
not
os
.
path
.
exists
(
label_dir
):
raise
ValueError
(
f
"The file
{
label_dir
}
does not exist!"
)
assert
label_dir
!=
save_dir
,
"hahahhaha"
label_file
=
open
(
label_dir
,
'r'
)
data
=
label_file
.
readlines
()
gt_dict
=
{}
for
line
in
data
:
try
:
tmp
=
line
.
split
(
'
\t
'
)
assert
len
(
tmp
)
==
2
,
""
except
:
tmp
=
line
.
strip
().
split
(
' '
)
gt_lists
=
[]
if
tmp
[
0
].
split
(
'/'
)[
0
]
is
not
None
:
img_path
=
tmp
[
0
]
anno
=
json
.
loads
(
tmp
[
1
])
gt_collect
=
[]
for
dic
in
anno
:
#txt = dic['transcription'].replace(' ', '') # ignore blank
txt
=
dic
[
'transcription'
]
if
'score'
in
dic
and
float
(
dic
[
'score'
])
<
0.5
:
continue
if
u
'
\u3000
'
in
txt
:
txt
=
txt
.
replace
(
u
'
\u3000
'
,
u
' '
)
#while ' ' in txt:
# txt = txt.replace(' ', '')
poly
=
np
.
array
(
dic
[
'points'
]).
flatten
()
if
txt
==
"###"
:
txt_tag
=
1
## ignore 1
else
:
txt_tag
=
0
if
mode
==
"gt"
:
gt_label
=
poly_to_string
(
poly
)
+
"
\t
"
+
str
(
txt_tag
)
+
"
\t
"
+
txt
+
"
\n
"
else
:
gt_label
=
poly_to_string
(
poly
)
+
"
\t
"
+
txt
+
"
\n
"
gt_lists
.
append
(
gt_label
)
gt_dict
[
img_path
]
=
gt_lists
else
:
continue
if
not
os
.
path
.
exists
(
save_dir
):
os
.
makedirs
(
save_dir
)
for
img_name
in
gt_dict
.
keys
():
save_name
=
img_name
.
split
(
"/"
)[
-
1
]
save_file
=
os
.
path
.
join
(
save_dir
,
save_name
+
".txt"
)
with
open
(
save_file
,
"w"
)
as
f
:
f
.
writelines
(
gt_dict
[
img_name
])
print
(
"The convert label saved in {}"
.
format
(
save_dir
))
if
__name__
==
"__main__"
:
ppocr_label_gt
=
"/paddle/Datasets/chinese/test_set/Label_refine_310_V2.txt"
convert_label
(
ppocr_label_gt
,
"gt"
,
"./save_gt_310_V2/"
)
ppocr_label_gt
=
"./infer_results/ch_PPOCRV2_infer.txt"
convert_label
(
ppocr_label_gt_en
,
"pred"
,
"./save_PPOCRV2_infer/"
)
tools/end2end/draw_html.py
0 → 100644
浏览文件 @
dbaab10e
import
os
def
draw_debug_img
(
html_path
):
err_cnt
=
0
with
open
(
html_path
,
'w'
)
as
html
:
html
.
write
(
'<html>
\n
<body>
\n
'
)
html
.
write
(
'<table border="1">
\n
'
)
html
.
write
(
"<meta http-equiv=
\"
Content-Type
\"
content=
\"
text/html; charset=utf-8
\"
/>"
)
image_list
=
[]
path
=
"./det_results/310_gt/"
#path = "infer_results/"
for
i
,
filename
in
enumerate
(
sorted
(
os
.
listdir
(
path
))):
if
filename
.
endswith
(
"txt"
):
continue
print
(
filename
)
# The image path
base
=
"{}/{}"
.
format
(
path
,
filename
)
base_2
=
"../PaddleOCR/det_results/ch_PPOCRV2_infer/{}"
.
format
(
filename
)
base_3
=
"../PaddleOCR/det_results/ch_ppocr_mobile_infer/{}"
.
format
(
filename
)
if
True
:
html
.
write
(
"<tr>
\n
"
)
html
.
write
(
f
'<td>
{
filename
}
\n
GT'
)
html
.
write
(
'<td>GT
\n
<img src="%s" width=640></td>'
%
(
base
))
html
.
write
(
'<td>PPOCRV2
\n
<img src="%s" width=640></td>'
%
(
base_2
))
html
.
write
(
'<td>ppocr_mobile
\n
<img src="%s" width=640></td>'
%
(
base_3
))
html
.
write
(
"</tr>
\n
"
)
html
.
write
(
'<style>
\n
'
)
html
.
write
(
'span {
\n
'
)
html
.
write
(
' color: red;
\n
'
)
html
.
write
(
'}
\n
'
)
html
.
write
(
'</style>
\n
'
)
html
.
write
(
'</table>
\n
'
)
html
.
write
(
'</html>
\n
</body>
\n
'
)
print
(
"ok"
)
#print("all cnt: {}, err cnt: {}, acc: {}".format(len(imgs), err_cnt, 1.0 * (len(imgs) - err_cnt) / len(imgs)))
return
if
__name__
==
"__main__"
:
html_path
=
"sys_visual_iou_310.html"
draw_debug_img
()
tools/end2end/eval_end2end.py
0 → 100644
浏览文件 @
dbaab10e
#!/usr/bin/env python
import
os
import
re
import
sys
# import Polygon
import
shapely
from
shapely.geometry
import
Polygon
import
numpy
as
np
from
collections
import
defaultdict
import
operator
import
editdistance
# reload(sys)
# sys.setdefaultencoding('utf-8')
def
strQ2B
(
ustring
):
rstring
=
""
for
uchar
in
ustring
:
inside_code
=
ord
(
uchar
)
if
inside_code
==
12288
:
inside_code
=
32
elif
(
inside_code
>=
65281
and
inside_code
<=
65374
):
inside_code
-=
65248
rstring
+=
chr
(
inside_code
)
return
rstring
def
polygon_from_str
(
polygon_points
):
"""
Create a shapely polygon object from gt or dt line.
"""
polygon_points
=
np
.
array
(
polygon_points
).
reshape
(
4
,
2
)
polygon
=
Polygon
(
polygon_points
).
convex_hull
return
polygon
def
polygon_iou
(
poly1
,
poly2
):
"""
Intersection over union between two shapely polygons.
"""
if
not
poly1
.
intersects
(
poly2
):
# this test is fast and can accelerate calculation
iou
=
0
else
:
try
:
inter_area
=
poly1
.
intersection
(
poly2
).
area
union_area
=
poly1
.
area
+
poly2
.
area
-
inter_area
iou
=
float
(
inter_area
)
/
union_area
except
shapely
.
geos
.
TopologicalError
:
# except Exception as e:
# print(e)
print
(
'shapely.geos.TopologicalError occured, iou set to 0'
)
iou
=
0
return
iou
def
ed
(
str1
,
str2
):
return
editdistance
.
eval
(
str1
,
str2
)
def
e2e_eval
(
gt_dir
,
res_dir
):
print
(
'start testing...'
)
iou_thresh
=
0.5
val_names
=
os
.
listdir
(
gt_dir
)
num_gt_chars
=
0
gt_count
=
0
dt_count
=
0
hit
=
0
ed_sum
=
0
for
i
,
val_name
in
enumerate
(
val_names
):
with
open
(
os
.
path
.
join
(
gt_dir
,
val_name
),
encoding
=
'utf-8'
)
as
f
:
gt_lines
=
[
o
.
strip
()
for
o
in
f
.
readlines
()]
gts
=
[]
ignore_masks
=
[]
for
line
in
gt_lines
:
parts
=
line
.
strip
().
split
(
'
\t
'
)
# ignore illegal data
if
len
(
parts
)
<
9
:
continue
assert
(
len
(
parts
)
<
11
)
if
len
(
parts
)
==
9
:
gts
.
append
(
parts
[:
8
]
+
[
''
])
else
:
gts
.
append
(
parts
[:
8
]
+
[
parts
[
-
1
]])
ignore_masks
.
append
(
parts
[
8
])
val_path
=
os
.
path
.
join
(
res_dir
,
val_name
)
if
not
os
.
path
.
exists
(
val_path
):
dt_lines
=
[]
else
:
with
open
(
val_path
,
encoding
=
'utf-8'
)
as
f
:
dt_lines
=
[
o
.
strip
()
for
o
in
f
.
readlines
()]
dts
=
[]
for
line
in
dt_lines
:
# print(line)
parts
=
line
.
strip
().
split
(
"
\t
"
)
assert
(
len
(
parts
)
<
10
),
"line error: {}"
.
format
(
line
)
if
len
(
parts
)
==
8
:
dts
.
append
(
parts
+
[
''
])
else
:
dts
.
append
(
parts
)
dt_match
=
[
False
]
*
len
(
dts
)
gt_match
=
[
False
]
*
len
(
gts
)
all_ious
=
defaultdict
(
tuple
)
for
index_gt
,
gt
in
enumerate
(
gts
):
gt_coors
=
[
float
(
gt_coor
)
for
gt_coor
in
gt
[
0
:
8
]]
gt_poly
=
polygon_from_str
(
gt_coors
)
for
index_dt
,
dt
in
enumerate
(
dts
):
dt_coors
=
[
float
(
dt_coor
)
for
dt_coor
in
dt
[
0
:
8
]]
dt_poly
=
polygon_from_str
(
dt_coors
)
iou
=
polygon_iou
(
dt_poly
,
gt_poly
)
if
iou
>=
iou_thresh
:
all_ious
[(
index_gt
,
index_dt
)]
=
iou
sorted_ious
=
sorted
(
all_ious
.
items
(),
key
=
operator
.
itemgetter
(
1
),
reverse
=
True
)
sorted_gt_dt_pairs
=
[
item
[
0
]
for
item
in
sorted_ious
]
# matched gt and dt
for
gt_dt_pair
in
sorted_gt_dt_pairs
:
index_gt
,
index_dt
=
gt_dt_pair
if
gt_match
[
index_gt
]
==
False
and
dt_match
[
index_dt
]
==
False
:
gt_match
[
index_gt
]
=
True
dt_match
[
index_dt
]
=
True
# gt_str = strQ2B(gts[index_gt][8]).replace(" ", "")
# dt_str = strQ2B(dts[index_dt][8]).replace(" ", "")
gt_str
=
strQ2B
(
gts
[
index_gt
][
8
])
dt_str
=
strQ2B
(
dts
[
index_dt
][
8
])
if
ignore_masks
[
index_gt
]
==
'0'
:
ed_sum
+=
ed
(
gt_str
,
dt_str
)
num_gt_chars
+=
len
(
gt_str
)
if
gt_str
==
dt_str
:
hit
+=
1
gt_count
+=
1
dt_count
+=
1
# unmatched dt
for
tindex
,
dt_match_flag
in
enumerate
(
dt_match
):
if
dt_match_flag
==
False
:
dt_str
=
dts
[
tindex
][
8
]
gt_str
=
''
ed_sum
+=
ed
(
dt_str
,
gt_str
)
dt_count
+=
1
# unmatched gt
for
tindex
,
gt_match_flag
in
enumerate
(
gt_match
):
if
gt_match_flag
==
False
and
ignore_masks
[
tindex
]
==
'0'
:
dt_str
=
''
gt_str
=
gts
[
tindex
][
8
]
ed_sum
+=
ed
(
gt_str
,
dt_str
)
num_gt_chars
+=
len
(
gt_str
)
gt_count
+=
1
eps
=
1e-9
print
(
'hit, dt_count, gt_count'
,
hit
,
dt_count
,
gt_count
)
precision
=
hit
/
(
dt_count
+
eps
)
recall
=
hit
/
(
gt_count
+
eps
)
fmeasure
=
2.0
*
precision
*
recall
/
(
precision
+
recall
+
eps
)
avg_edit_dist_img
=
ed_sum
/
len
(
val_names
)
avg_edit_dist_field
=
ed_sum
/
(
gt_count
+
eps
)
character_acc
=
1
-
ed_sum
/
(
num_gt_chars
+
eps
)
print
(
'character_acc: %.2f'
%
(
character_acc
*
100
)
+
"%"
)
print
(
'avg_edit_dist_field: %.2f'
%
(
avg_edit_dist_field
))
print
(
'avg_edit_dist_img: %.2f'
%
(
avg_edit_dist_img
))
print
(
'precision: %.2f'
%
(
precision
*
100
)
+
"%"
)
print
(
'recall: %.2f'
%
(
recall
*
100
)
+
"%"
)
print
(
'fmeasure: %.2f'
%
(
fmeasure
*
100
)
+
"%"
)
if
__name__
==
'__main__'
:
# if len(sys.argv) != 3:
# print("python3 ocr_e2e_eval.py gt_dir res_dir")
# exit(-1)
# gt_folder = sys.argv[1]
# pred_folder = sys.argv[2]
gt_folder
=
sys
.
argv
[
1
]
pred_folder
=
sys
.
argv
[
2
]
e2e_eval
(
gt_folder
,
pred_folder
)
tools/end2end/readme.md
0 → 100644
浏览文件 @
dbaab10e
# 简介
`tools/end2end`
目录下存放了文本检测+文本识别pipeline串联预测的指标评测代码以及可视化工具。本节介绍文本检测+文本识别的端对端指标评估方式。
## 端对端评测步骤
**步骤一:**
运行
`tools/infer/predict_system.py`
,得到保存的结果:
```
python3 tools/infer/predict_system.py --det_model_dir=./ch_PP-OCRv2_det_infer/ --rec_model_dir=./ch_PP-OCRv2_rec_infer/ --image_dir=./datasets/img_dir/ --draw_img_save_dir=./ch_PP-OCRv2_results/ --is_visualize=True
```
文本检测识别可视化图默认保存在
`./ch_PP-OCRv2_results/`
目录下,预测结果默认保存在
`./ch_PP-OCRv2_results/results.txt`
中,格式如下:
```
all-sum-510/00224225.jpg [{"transcription": "超赞", "points": [[8.0, 48.0], [157.0, 44.0], [159.0, 115.0], [10.0, 119.0]], "score": "0.99396634"}, {"transcription": "中", "points": [[202.0, 152.0], [230.0, 152.0], [230.0, 163.0], [202.0, 163.0]], "score": "0.09310734"}, {"transcription": "58.0m", "points": [[196.0, 192.0], [444.0, 192.0], [444.0, 240.0], [196.0, 240.0]], "score": "0.44041982"}, {"transcription": "汽配", "points": [[55.0, 263.0], [95.0, 263.0], [95.0, 281.0], [55.0, 281.0]], "score": "0.9986651"}, {"transcription": "成总店", "points": [[120.0, 262.0], [176.0, 262.0], [176.0, 283.0], [120.0, 283.0]], "score": "0.9929402"}, {"transcription": "K", "points": [[237.0, 286.0], [311.0, 286.0], [311.0, 345.0], [237.0, 345.0]], "score": "0.6074794"}, {"transcription": "88:-8", "points": [[203.0, 405.0], [477.0, 414.0], [475.0, 459.0], [201.0, 450.0]], "score": "0.7106863"}]
```
**步骤二:**
将步骤一保存的数据转换为端对端评测需要的数据格式:
修改
`tools/convert_ppocr_label.py`
中的代码,convert_label函数中设置输入标签路径,Mode,保存标签路径等,对预测数据的GTlabel和预测结果的label格式进行转换。
```
ppocr_label_gt = "gt_label.txt"
convert_label(ppocr_label_gt, "gt", "./save_gt_label/")
ppocr_label_gt = "./infer_results/ch_PPOCRV2_infer.txt"
convert_label(ppocr_label_gt_en, "pred", "./save_PPOCRV2_infer/")
```
运行
`convert_ppocr_label.py`
:
```
python3 tools/convert_ppocr_label.py
```
得到如下结果:
```
├── ./save_gt_label/
├── ./save_PPOCRV2_infer/
```
**步骤三:**
执行端对端评测,运行
`tools/eval_end2end.py`
计算端对端指标,运行方式如下:
```
python3 tools/eval_end2end.py "gt_label_dir" "predict_label_dir"
```
比如:
```
python3 tools/eval_end2end.py ./save_gt_label/ ./save_PPOCRV2_infer/
```
将得到如下结果,fmeasure为主要关注的指标:
```
hit, dt_count, gt_count 1557 2693 3283
character_acc: 61.77%
avg_edit_dist_field: 3.08
avg_edit_dist_img: 51.82
precision: 57.82%
recall: 47.43%
fmeasure: 52.11%
```
tools/infer/predict_system.py
浏览文件 @
dbaab10e
...
@@ -27,6 +27,7 @@ import numpy as np
...
@@ -27,6 +27,7 @@ import numpy as np
import
time
import
time
import
logging
import
logging
from
PIL
import
Image
from
PIL
import
Image
import
json
import
tools.infer.utility
as
utility
import
tools.infer.utility
as
utility
import
tools.infer.predict_rec
as
predict_rec
import
tools.infer.predict_rec
as
predict_rec
import
tools.infer.predict_det
as
predict_det
import
tools.infer.predict_det
as
predict_det
...
@@ -121,11 +122,31 @@ def sorted_boxes(dt_boxes):
...
@@ -121,11 +122,31 @@ def sorted_boxes(dt_boxes):
return
_boxes
return
_boxes
def
save_results_to_txt
(
results
,
path
):
if
os
.
path
.
isdir
(
path
):
if
not
os
.
path
.
exists
(
path
):
os
.
makedirs
(
path
)
with
open
(
os
.
path
.
join
(
path
,
"results.txt"
),
'w'
)
as
f
:
f
.
writelines
(
results
)
f
.
close
()
logger
.
info
(
"The results will be saved in {}"
.
format
(
os
.
path
.
join
(
path
,
"results.txt"
)))
else
:
draw_img_save
=
os
.
path
.
dirname
(
path
)
if
not
os
.
path
.
exists
(
draw_img_save
):
os
.
makedirs
(
draw_img_save
)
with
open
(
path
,
'w'
)
as
f
:
f
.
writelines
(
results
)
f
.
close
()
logger
.
info
(
"The results will be saved in {}"
.
format
(
path
))
def
main
(
args
):
def
main
(
args
):
image_file_list
=
get_image_file_list
(
args
.
image_dir
)
image_file_list
=
get_image_file_list
(
args
.
image_dir
)
image_file_list
=
image_file_list
[
args
.
process_id
::
args
.
total_process_num
]
image_file_list
=
image_file_list
[
args
.
process_id
::
args
.
total_process_num
]
text_sys
=
TextSystem
(
args
)
text_sys
=
TextSystem
(
args
)
is_visualize
=
Tru
e
is_visualize
=
args
.
is_visualiz
e
font_path
=
args
.
vis_font_path
font_path
=
args
.
vis_font_path
drop_score
=
args
.
drop_score
drop_score
=
args
.
drop_score
...
@@ -139,6 +160,7 @@ def main(args):
...
@@ -139,6 +160,7 @@ def main(args):
cpu_mem
,
gpu_mem
,
gpu_util
=
0
,
0
,
0
cpu_mem
,
gpu_mem
,
gpu_util
=
0
,
0
,
0
_st
=
time
.
time
()
_st
=
time
.
time
()
count
=
0
count
=
0
save_res
=
[]
for
idx
,
image_file
in
enumerate
(
image_file_list
):
for
idx
,
image_file
in
enumerate
(
image_file_list
):
img
,
flag
=
check_and_read_gif
(
image_file
)
img
,
flag
=
check_and_read_gif
(
image_file
)
...
@@ -152,6 +174,21 @@ def main(args):
...
@@ -152,6 +174,21 @@ def main(args):
elapse
=
time
.
time
()
-
starttime
elapse
=
time
.
time
()
-
starttime
total_time
+=
elapse
total_time
+=
elapse
# save results
preds
=
[]
dt_num
=
len
(
dt_boxes
)
for
dno
in
range
(
dt_num
):
text
,
score
=
rec_res
[
dno
]
if
score
>=
drop_score
:
preds
.
append
({
"transcription"
:
text
,
"points"
:
np
.
array
(
dt_boxes
[
dno
]).
tolist
()
})
text_str
=
"%s, %.3f"
%
(
text
,
score
)
save_res
.
append
(
image_file
+
'
\t
'
+
json
.
dumps
(
preds
,
ensure_ascii
=
False
)
+
'
\n
'
)
# print predicted results
logger
.
debug
(
logger
.
debug
(
str
(
idx
)
+
" Predict time of %s: %.3fs"
%
(
image_file
,
elapse
))
str
(
idx
)
+
" Predict time of %s: %.3fs"
%
(
image_file
,
elapse
))
for
text
,
score
in
rec_res
:
for
text
,
score
in
rec_res
:
...
@@ -180,6 +217,9 @@ def main(args):
...
@@ -180,6 +217,9 @@ def main(args):
logger
.
debug
(
"The visualized image saved in {}"
.
format
(
logger
.
debug
(
"The visualized image saved in {}"
.
format
(
os
.
path
.
join
(
draw_img_save_dir
,
os
.
path
.
basename
(
image_file
))))
os
.
path
.
join
(
draw_img_save_dir
,
os
.
path
.
basename
(
image_file
))))
# The predicted results will be saved in os.path.join(os.draw_img_save_dir, "results.txt")
save_results_to_txt
(
save_res
,
args
.
draw_img_save_dir
)
logger
.
info
(
"The predict total time is {}"
.
format
(
time
.
time
()
-
_st
))
logger
.
info
(
"The predict total time is {}"
.
format
(
time
.
time
()
-
_st
))
if
args
.
benchmark
:
if
args
.
benchmark
:
text_sys
.
text_detector
.
autolog
.
report
()
text_sys
.
text_detector
.
autolog
.
report
()
...
...
tools/infer/utility.py
浏览文件 @
dbaab10e
...
@@ -114,6 +114,7 @@ def init_args():
...
@@ -114,6 +114,7 @@ def init_args():
#
#
parser
.
add_argument
(
parser
.
add_argument
(
"--draw_img_save_dir"
,
type
=
str
,
default
=
"./inference_results"
)
"--draw_img_save_dir"
,
type
=
str
,
default
=
"./inference_results"
)
parser
.
add_argument
(
"--is_visualize"
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
"--save_crop_res"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--save_crop_res"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--crop_res_save_dir"
,
type
=
str
,
default
=
"./output"
)
parser
.
add_argument
(
"--crop_res_save_dir"
,
type
=
str
,
default
=
"./output"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录