diff --git a/doc/doc_ch/customize.md b/doc/doc_ch/customize.md index 6e471c1c4831f0d98f00b811f18ef12b377ecffa..5944bf08e4c4fac0da5a8e939936719e0385f4e1 100644 --- a/doc/doc_ch/customize.md +++ b/doc/doc_ch/customize.md @@ -6,7 +6,7 @@ PaddleOCR提供了EAST、DB两种文本检测算法,均支持MobileNetV3、ResNet50_vd两种骨干网络,根据需要选择相应的配置文件,启动训练。例如,训练使用MobileNetV3作为骨干网络的DB检测模型(即超轻量模型使用的配置): ``` -python3 tools/train.py -c configs/det/det_mv3_db.yml +python3 tools/train.py -c configs/det/det_mv3_db.yml 2>&1 | tee det_db.log ``` 更详细的数据准备和训练教程参考文档教程中[文本检测模型训练/评估/预测](./detection.md)。 @@ -14,7 +14,7 @@ python3 tools/train.py -c configs/det/det_mv3_db.yml PaddleOCR提供了CRNN、Rosetta、STAR-Net、RARE四种文本识别算法,均支持MobileNetV3、ResNet34_vd两种骨干网络,根据需要选择相应的配置文件,启动训练。例如,训练使用MobileNetV3作为骨干网络的CRNN识别模型(即超轻量模型使用的配置): ``` -python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml +python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml 2>&1 | tee rec_ch_lite.log ``` 更详细的数据准备和训练教程参考文档教程中[文本识别模型训练/评估/预测](./recognition.md)。 diff --git a/doc/doc_ch/detection.md b/doc/doc_ch/detection.md index 84c90d18a4ac5e1133a8202d574b789848060855..84ffeb5d7f1008bfdb1eef269f050fbf4e6fb72e 100644 --- a/doc/doc_ch/detection.md +++ b/doc/doc_ch/detection.md @@ -62,7 +62,10 @@ tar -xf ./pretrain_models/MobileNetV3_large_x0_5_pretrained.tar ./pretrain_model *如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false* ```shell -python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./pretrain_models/MobileNetV3_large_x0_5_pretrained/ +# 训练 mv3_db 模型,并将训练日志保存为 tain_det.log +python3 tools/train.py -c configs/det/det_mv3_db.yml \ + -o Global.pretrain_weights=./pretrain_models/MobileNetV3_large_x0_5_pretrained/ \ + 2>&1 | tee train_det.log ``` 上述指令中,通过-c 选择训练使用configs/det/det_db_mv3.yml配置文件。 diff --git a/doc/doc_ch/recognition.md b/doc/doc_ch/recognition.md index 1dc52efa8e6f65ef74c8e138f4f388027fe33f28..1920be56d1a05bb2f7ade944fd225e690fb484a4 100644 --- a/doc/doc_ch/recognition.md +++ b/doc/doc_ch/recognition.md @@ -128,8 +128,8 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar export PYTHONPATH=$PYTHONPATH:. # GPU训练 支持单卡,多卡训练,通过CUDA_VISIBLE_DEVICES指定卡号 export CUDA_VISIBLE_DEVICES=0,1,2,3 -# 训练icdar15英文数据 -python3 tools/train.py -c configs/rec/rec_icdar15_train.yml +# 训练icdar15英文数据 并将训练日志保存为 tain_rec.log +python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log ``` - 数据增强 diff --git a/doc/doc_en/customize_en.md b/doc/doc_en/customize_en.md index b63de67c6226abbb5b4fb8d0ed57c19142307203..fb47c14f3346e918f32950c8eec5ada76345ce59 100644 --- a/doc/doc_en/customize_en.md +++ b/doc/doc_en/customize_en.md @@ -6,7 +6,7 @@ The process of making a customized ultra-lightweight OCR models can be divided i PaddleOCR provides two text detection algorithms: EAST and DB. Both support MobileNetV3 and ResNet50_vd backbone networks, select the corresponding configuration file as needed and start training. For example, to train with MobileNetV3 as the backbone network for DB detection model : ``` -python3 tools/train.py -c configs/det/det_mv3_db.yml +python3 tools/train.py -c configs/det/det_mv3_db.yml 2>&1 | tee det_db.log ``` For more details about data preparation and training tutorials, refer to the documentation [Text detection model training/evaluation/prediction](./detection_en.md) @@ -14,7 +14,7 @@ For more details about data preparation and training tutorials, refer to the doc PaddleOCR provides four text recognition algorithms: CRNN, Rosetta, STAR-Net, and RARE. They all support two backbone networks: MobileNetV3 and ResNet34_vd, select the corresponding configuration files as needed to start training. For example, to train a CRNN recognition model that uses MobileNetV3 as the backbone network: ``` -python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml +python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml 2>&1 | tee rec_ch_lite.log ``` For more details about data preparation and training tutorials, refer to the documentation [Text recognition model training/evaluation/prediction](./recognition_en.md) diff --git a/doc/doc_en/detection_en.md b/doc/doc_en/detection_en.md index 08e6b63bb77ad1cb5ec4c741d6cad1d099f6c070..9f37ca8d24c75ba80a143233cdc0a3321fee6a4f 100644 --- a/doc/doc_en/detection_en.md +++ b/doc/doc_en/detection_en.md @@ -62,7 +62,7 @@ tar -xf ./pretrain_models/MobileNetV3_large_x0_5_pretrained.tar ./pretrain_model #### START TRAINING *If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.* ```shell -python3 tools/train.py -c configs/det/det_mv3_db.yml +python3 tools/train.py -c configs/det/det_mv3_db.yml 2>&1 | tee train_det.log ``` In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file. diff --git a/doc/doc_en/recognition_en.md b/doc/doc_en/recognition_en.md index b9c42afada05950539d4dbfb45e133af946b1aae..088138bade20beddc5be7d9cc5bbe7e38b0982d0 100644 --- a/doc/doc_en/recognition_en.md +++ b/doc/doc_en/recognition_en.md @@ -130,8 +130,8 @@ Start training: export PYTHONPATH=$PYTHONPATH:. # GPU training Support single card and multi-card training, specify the card number through CUDA_VISIBLE_DEVICES export CUDA_VISIBLE_DEVICES=0,1,2,3 -# Training icdar15 English data -python3 tools/train.py -c configs/rec/rec_icdar15_train.yml +# Training icdar15 English data and saving the log as train_rec.log +python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log ``` - Data Augmentation