From c48e6ddfa97adab28005fcd50ef9e1227ea4e7cd Mon Sep 17 00:00:00 2001
From: huangjun12 <12272008@bjtu.edu.cn>
Date: Thu, 28 Apr 2022 06:36:40 +0000
Subject: [PATCH] add sast doc
---
doc/doc_en/algorithm_det_sast_en.md | 85 +++++++++++++++++++++++++++++
1 file changed, 85 insertions(+)
create mode 100644 doc/doc_en/algorithm_det_sast_en.md
diff --git a/doc/doc_en/algorithm_det_sast_en.md b/doc/doc_en/algorithm_det_sast_en.md
new file mode 100644
index 00000000..b302e329
--- /dev/null
+++ b/doc/doc_en/algorithm_det_sast_en.md
@@ -0,0 +1,85 @@
+# SAST
+
+- [1. Introduction](#1)
+- [2. Environment](#2)
+- [3. Model Training / Evaluation / Prediction](#3)
+ - [3.1 Training](#3-1)
+ - [3.2 Evaluation](#3-2)
+ - [3.3 Prediction](#3-3)
+- [4. Inference and Deployment](#4)
+ - [4.1 Python Inference](#4-1)
+ - [4.2 C++ Inference](#4-2)
+ - [4.3 Serving](#4-3)
+- [5. FAQ](#5)
+
+
+## 1. Introduction
+
+Paper:
+> [A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning](https://arxiv.org/abs/1908.05498)
+> Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming
+> ACM MM, 2019
+
+On the ICDAR2015 dataset, the text detection result is as follows:
+
+|Model|Backbone|Configuration|Precision|Recall|Hmean|Download|
+| --- | --- | --- | --- | --- | --- | --- |
+|SAST|ResNet50_vd|[configs/det/det_r50_vd_sast_icdar15.yml](../../configs/det/det_r50_vd_sast_icdar15.yml)|91.39%|83.77%|87.42%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
+
+
+On the Total-text dataset, the text detection result is as follows:
+
+|Model|Backbone|Configuration|Precision|Recall|Hmean|Download|
+| --- | --- | --- | --- | --- | --- | --- |
+|SAST|ResNet50_vd|[configs/det/det_r50_vd_sast_totaltext.yml](../../configs/det/det_r50_vd_sast_totaltext.yml)|89.63%|78.44%|83.66%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
+
+
+
+## 2. Environment
+Please prepare your environment referring to [prepare the environment](./environment_en.md) and [clone the repo](./clone_en.md).
+
+
+
+## 3. Model Training / Evaluation / Prediction
+
+Please refer to [text detection training tutorial](./detection_en.md). PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.
+
+
+## 4. Inference and Deployment
+
+
+### 4.1 Python Inference
+First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)), you can use the following command to convert:
+
+```shell
+python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_sast
+```
+
+SAST text detection model inference, you can execute the following command:
+
+```shell
+python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast/"
+```
+
+The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
+
+![](../imgs_results/det_res_img_10_sast.jpg)
+
+**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese text images.
+
+
+
+## 5. FAQ
+
+
+## Citation
+
+```bibtex
+@inproceedings{wang2019single,
+ title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
+ author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
+ booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
+ pages={1277--1285},
+ year={2019}
+}
+```
--
GitLab