diff --git a/PPOCRLabel/README.md b/PPOCRLabel/README.md
index e8634ef8c06feae1f0adffb22c5694084dab78cd..9b882812f33a781a448a4f0a89fe15c349f587ae 100644
--- a/PPOCRLabel/README.md
+++ b/PPOCRLabel/README.md
@@ -196,18 +196,28 @@ For some data that are difficult to recognize, the recognition results will not
```
cd ./PPOCRLabel # Change the directory to the PPOCRLabel folder
- python gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --labelRootPath ../train_data/label --detRootPath ../train_data/det --recRootPath ../train_data/rec
+ python gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --datasetRootPath ../train_data
```
Parameter Description:
- `trainValTestRatio` is the division ratio of the number of images in the training set, validation set, and test set, set according to your actual situation, the default is `6:2:2`
- - `labelRootPath` is the storage path of the dataset labeled by PPOCRLabel, the default is `../train_data/label`
-
- - `detRootPath` is the path where the text detection dataset is divided according to the dataset marked by PPOCRLabel. The default is `../train_data/det`
-
- - `recRootPath` is the path where the character recognition dataset is divided according to the dataset marked by PPOCRLabel. The default is `../train_data/rec`
+ - `datasetRootPath` is the storage path of the complete dataset labeled by PPOCRLabel. The default path is `PaddleOCR/train_data` .
+ ```
+ |-train_data
+ |-crop_img
+ |- word_001_crop_0.png
+ |- word_002_crop_0.jpg
+ |- word_003_crop_0.jpg
+ | ...
+ | Label.txt
+ | rec_gt.txt
+ |- word_001.png
+ |- word_002.jpg
+ |- word_003.jpg
+ | ...
+ ```
### 3.6 Error message
@@ -231,4 +241,4 @@ For some data that are difficult to recognize, the recognition results will not
### 4. Related
-1.[Tzutalin. LabelImg. Git code (2015)](https://github.com/tzutalin/labelImg)
\ No newline at end of file
+1.[Tzutalin. LabelImg. Git code (2015)](https://github.com/tzutalin/labelImg)
diff --git a/PPOCRLabel/README_ch.md b/PPOCRLabel/README_ch.md
index e1c391bc8637baa4adfa8852d805ed0f4bf04d6d..bdeb78cd4727318dbc8f02dfb341bfa4d4d214f6 100644
--- a/PPOCRLabel/README_ch.md
+++ b/PPOCRLabel/README_ch.md
@@ -181,18 +181,28 @@ PPOCRLabel支持三种导出方式:
```
cd ./PPOCRLabel # 将目录切换到PPOCRLabel文件夹下
-python gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --labelRootPath ../train_data/label --detRootPath ../train_data/det --recRootPath ../train_data/rec
+python gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --datasetRootPath ../train_data
```
参数说明:
- `trainValTestRatio` 是训练集、验证集、测试集的图像数量划分比例,根据实际情况设定,默认是`6:2:2`
-- `labelRootPath` 是PPOCRLabel标注的数据集存放路径,默认是`../train_data/label`
-
-- `detRootPath` 是根据PPOCRLabel标注的数据集划分后的文本检测数据集存放的路径,默认是`../train_data/det `
-
-- `recRootPath` 是根据PPOCRLabel标注的数据集划分后的字符识别数据集存放的路径,默认是`../train_data/rec`
+- `datasetRootPath` 是PPOCRLabel标注的完整数据集存放路径。默认路径是 `PaddleOCR/train_data` 分割数据集前应有如下结构:
+ ```
+ |-train_data
+ |-crop_img
+ |- word_001_crop_0.png
+ |- word_002_crop_0.jpg
+ |- word_003_crop_0.jpg
+ | ...
+ | Label.txt
+ | rec_gt.txt
+ |- word_001.png
+ |- word_002.jpg
+ |- word_003.jpg
+ | ...
+ ```
### 3.6 错误提示
diff --git a/PPOCRLabel/gen_ocr_train_val_test.py b/PPOCRLabel/gen_ocr_train_val_test.py
index 64cba612ae267835dd47aedc2b0356c9df462038..03ae566c6ec64d7ade229fb9571b0cd89ec189d4 100644
--- a/PPOCRLabel/gen_ocr_train_val_test.py
+++ b/PPOCRLabel/gen_ocr_train_val_test.py
@@ -17,15 +17,14 @@ def isCreateOrDeleteFolder(path, flag):
return flagAbsPath
-def splitTrainVal(root, dir, absTrainRootPath, absValRootPath, absTestRootPath, trainTxt, valTxt, testTxt, flag):
+def splitTrainVal(root, absTrainRootPath, absValRootPath, absTestRootPath, trainTxt, valTxt, testTxt, flag):
# 按照指定的比例划分训练集、验证集、测试集
- labelPath = os.path.join(root, dir)
- labelAbsPath = os.path.abspath(labelPath)
+ dataAbsPath = os.path.abspath(root)
if flag == "det":
- labelFilePath = os.path.join(labelAbsPath, args.detLabelFileName)
+ labelFilePath = os.path.join(dataAbsPath, args.detLabelFileName)
elif flag == "rec":
- labelFilePath = os.path.join(labelAbsPath, args.recLabelFileName)
+ labelFilePath = os.path.join(dataAbsPath, args.recLabelFileName)
labelFileRead = open(labelFilePath, "r", encoding="UTF-8")
labelFileContent = labelFileRead.readlines()
@@ -38,9 +37,9 @@ def splitTrainVal(root, dir, absTrainRootPath, absValRootPath, absTestRootPath,
imageName = os.path.basename(imageRelativePath)
if flag == "det":
- imagePath = os.path.join(labelAbsPath, imageName)
+ imagePath = os.path.join(dataAbsPath, imageName)
elif flag == "rec":
- imagePath = os.path.join(labelAbsPath, "{}\\{}".format(args.recImageDirName, imageName))
+ imagePath = os.path.join(dataAbsPath, "{}\\{}".format(args.recImageDirName, imageName))
# 按预设的比例划分训练集、验证集、测试集
trainValTestRatio = args.trainValTestRatio.split(":")
@@ -90,15 +89,20 @@ def genDetRecTrainVal(args):
recValTxt = open(os.path.join(args.recRootPath, "val.txt"), "a", encoding="UTF-8")
recTestTxt = open(os.path.join(args.recRootPath, "test.txt"), "a", encoding="UTF-8")
- for root, dirs, files in os.walk(args.labelRootPath):
+ splitTrainVal(args.datasetRootPath, detAbsTrainRootPath, detAbsValRootPath, detAbsTestRootPath, detTrainTxt, detValTxt,
+ detTestTxt, "det")
+
+ for root, dirs, files in os.walk(args.datasetRootPath):
for dir in dirs:
- splitTrainVal(root, dir, detAbsTrainRootPath, detAbsValRootPath, detAbsTestRootPath, detTrainTxt, detValTxt,
- detTestTxt, "det")
- splitTrainVal(root, dir, recAbsTrainRootPath, recAbsValRootPath, recAbsTestRootPath, recTrainTxt, recValTxt,
- recTestTxt, "rec")
+ if dir == 'crop_img':
+ splitTrainVal(root, recAbsTrainRootPath, recAbsValRootPath, recAbsTestRootPath, recTrainTxt, recValTxt,
+ recTestTxt, "rec")
+ else:
+ continue
break
+
if __name__ == "__main__":
# 功能描述:分别划分检测和识别的训练集、验证集、测试集
# 说明:可以根据自己的路径和需求调整参数,图像数据往往多人合作分批标注,每一批图像数据放在一个文件夹内用PPOCRLabel进行标注,
@@ -110,9 +114,9 @@ if __name__ == "__main__":
default="6:2:2",
help="ratio of trainset:valset:testset")
parser.add_argument(
- "--labelRootPath",
+ "--datasetRootPath",
type=str,
- default="../train_data/label",
+ default="../train_data/",
help="path to the dataset marked by ppocrlabel, E.g, dataset folder named 1,2,3..."
)
parser.add_argument(
diff --git a/README.md b/README.md
index 17d6a076bf8fd6942d91d30e273a6d495e2f57e2..251d51c0080fe5f2cd9fec76479526d142de368f 100644
--- a/README.md
+++ b/README.md
@@ -152,7 +152,7 @@ For a new language request, please refer to [Guideline for new language_requests
[1] PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module (as shown in the green box above). The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941).
-[2] On the basis of PP-OCR, PP-OCRv2 is further optimized in five aspects. The detection model adopts CML(Collaborative Mutual Learning) knowledge distillation strategy and CopyPaste data expansion strategy. The recognition model adopts LCNet lightweight backbone network, U-DML knowledge distillation strategy and enhanced CTC loss function improvement (as shown in the red box above), which further improves the inference speed and prediction effect. For more details, please refer to the technical report of PP-OCRv2 (arXiv link is coming soon).
+[2] On the basis of PP-OCR, PP-OCRv2 is further optimized in five aspects. The detection model adopts CML(Collaborative Mutual Learning) knowledge distillation strategy and CopyPaste data expansion strategy. The recognition model adopts LCNet lightweight backbone network, U-DML knowledge distillation strategy and enhanced CTC loss function improvement (as shown in the red box above), which further improves the inference speed and prediction effect. For more details, please refer to the technical report of PP-OCRv2 (https://arxiv.org/abs/2109.03144).
diff --git a/doc/doc_ch/models_list.md b/doc/doc_ch/models_list.md
index 6843ffdc19d5bde205124c30f1d0a5fc2144ce99..8db7e174cc0cfdf55043a2e6a42b23c80d1ffe0f 100644
--- a/doc/doc_ch/models_list.md
+++ b/doc/doc_ch/models_list.md
@@ -50,7 +50,7 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
| --- | --- | --- | --- | --- |
|ch_PP-OCRv2_rec_slim|【最新】slim量化版超轻量模型,支持中英文、数字识别|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)| 9M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_train.tar) |
-|ch_PP-OCRv2_rec|【最新】原始超轻量模型,支持中英文、数字识别|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)|8.5M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
+|ch_PP-OCRv2_rec|【最新】原始超轻量模型,支持中英文、数字识别|[ch_PP-OCRv2_rec_distillation.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec_distillation.yml)|8.5M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| 6M |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|ch_ppocr_mobile_v2.0_rec|原始超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|5.2M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|ch_ppocr_server_v2.0_rec|通用模型,支持中英文、数字识别|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
diff --git a/doc/doc_ch/thirdparty.md b/doc/doc_ch/thirdparty.md
index a4f13af6e4677ffc4f827de1cc63ddcb8cafbe70..509fe06387d2dab6aeba9bd38313302a1a0df8e5 100644
--- a/doc/doc_ch/thirdparty.md
+++ b/doc/doc_ch/thirdparty.md
@@ -16,22 +16,31 @@ PaddleOCR希望可以通过AI的力量助力任何一位有梦想的开发者实
### 1.1 基于PaddleOCR的社区项目
-- 【最新】 [FastOCRLabel](https://gitee.com/BaoJianQiang/FastOCRLabel):完整的C#版本标注工具 (@ [包建强](https://gitee.com/BaoJianQiang) )
-
-#### 1.1.1 通用工具
-
-- [DangoOCR离线版](https://github.com/PantsuDango/DangoOCR):通用型桌面级即时翻译工具 (@ [PantsuDango](https://github.com/PantsuDango))
-- [scr2txt](https://github.com/lstwzd/scr2txt):截屏转文字工具 (@ [lstwzd](https://github.com/lstwzd))
-- [AI Studio项目](https://aistudio.baidu.com/aistudio/projectdetail/1054614?channelType=0&channel=0):英文视频自动生成字幕( @ [叶月水狐](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/322052))
-
-#### 1.1.2 垂类场景工具
-
-- [id_card_ocr](https://github.com/baseli/id_card_ocr):身份证复印件识别(@ [baseli](https://github.com/baseli))
-- [Paddle_Table_Image_Reader](https://github.com/thunder95/Paddle_Table_Image_Reader):能看懂表格图片的数据助手(@ [thunder95](https://github.com/thunder95]))
-
-#### 1.1.3 前后处理
-
-- [paddleOCRCorrectOutputs](https://github.com/yuranusduke/paddleOCRCorrectOutputs):获取OCR识别结果的key-value(@ [yuranusduke](https://github.com/yuranusduke))
+| 类别 | 项目 | 描述 | 开发者 |
+| -------- | ------------------------------------------------------------ | -------------------------- | ------------------------------------------------------------ |
+| 通用工具 | [FastOCRLabel](https://gitee.com/BaoJianQiang/FastOCRLabel) | 完整的C#版本标注GUI | [包建强](https://gitee.com/BaoJianQiang) |
+| 通用工具 | [DangoOCR离线版](https://github.com/PantsuDango/DangoOCR) | 通用型桌面级即时翻译GUI | [PantsuDango](https://github.com/PantsuDango) |
+| 通用工具 | [scr2txt](https://github.com/lstwzd/scr2txt) | 截屏转文字GUI | [lstwzd](https://github.com/lstwzd) |
+| 通用工具 | [ocr_sdk](https://github.com/mymagicpower/AIAS/blob/main/1_image_sdks/text_recognition/ocr_sdk) | OCR java SDK工具箱 | [Calvin](https://github.com/mymagicpower) |
+| 通用工具 | [iocr](https://github.com/mymagicpower/AIAS/blob/main/8_suite_hub/iocr) | IOCR 自定义模板识别(支持表格识别) | [Calvin](https://github.com/mymagicpower) |
+| 通用工具 | [Lmdb Dataset Format Conversion Tool](https://github.com/OneYearIsEnough/PaddleOCR-Recog-LmdbDataset-Conversion) | 文本识别任务中lmdb数据格式转换工具 | [OneYearIsEnough](https://github.com/OneYearIsEnough) |
+| 通用工具 | [用paddleocr打造一款“盗幕笔记”](https://github.com/kjf4096/paddleocr_dmbj) | 用PaddleOCR记笔记 | [kjf4096](https://github.com/kjf4096) |
+| 垂类工具 | [AI Studio项目](https://aistudio.baidu.com/aistudio/projectdetail/1054614?channelType=0&channel=0) | 英文视频自动生成字幕 | [叶月水狐](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/322052) |
+| 垂类工具 | [id_card_ocr](https://github.com/baseli/id_card_ocr) | 身份证复印件识别 | [baseli](https://github.com/baseli) |
+| 垂类工具 | [Paddle_Table_Image_Reader](https://github.com/thunder95/Paddle_Table_Image_Reader) | 能看懂表格图片的数据助手 | [thunder95](https://github.com/thunder95]) |
+| 垂类工具 | [AI Studio项目](https://aistudio.baidu.com/aistudio/projectdetail/3382897) | OCR流程中对手写体进行过滤 | [daassh](https://github.com/daassh) |
+| 垂类场景调优 | [AI Studio项目](https://aistudio.baidu.com/aistudio/projectdetail/2803693) | 电表读数和编号识别 | [深渊上的坑](https://github.com/edencfc) |
+| 垂类场景调优 | [AI Studio项目](https://aistudio.baidu.com/aistudio/projectdetail/3284199) | LCD液晶字符检测 | [Dream拒杰](https://github.com/zhangyingying520) |
+| 前后处理 | [paddleOCRCorrectOutputs](https://github.com/yuranusduke/paddleOCRCorrectOutputs) | 获取OCR识别结果的key-value | [yuranusduke](https://github.com/yuranusduke) |
+|前处理| [optlab](https://github.com/GreatV/optlab) |OCR前处理工具箱,基于Qt和Leptonica。|[GreatV](https://github.com/GreatV)|
+|应用部署| [PaddleOCRSharp](https://github.com/raoyutian/PaddleOCRSharp) |PaddleOCR的.NET封装与应用部署。|[raoyutian](https://github.com/raoyutian/PaddleOCRSharp)|
+|应用部署| [PaddleSharp](https://github.com/sdcb/PaddleSharp) |PaddleOCR的.NET封装与应用部署,支持跨平台、GPU|[sdcb](https://github.com/sdcb)|
+| 应用部署 | [PaddleOCR-Streamlit-Demo](https://github.com/Lovely-Pig/PaddleOCR-Streamlit-Demo) | 使用Streamlit部署PaddleOCR | [Lovely-Pig](https://github.com/Lovely-Pig) |
+| 应用部署 | [PaddleOCR-PyWebIO-Demo](https://github.com/Lovely-Pig/PaddleOCR-PyWebIO-Demo) | 使用PyWebIO部署PaddleOCR | [Lovely-Pig](https://github.com/Lovely-Pig) |
+| 应用部署 | [PaddleOCR-Paddlejs-Vue-Demo](https://github.com/Lovely-Pig/PaddleOCR-Paddlejs-Vue-Demo) | 使用Paddle.js和Vue部署PaddleOCR | [Lovely-Pig](https://github.com/Lovely-Pig) |
+| 应用部署 | [PaddleOCR-Paddlejs-React-Demo](https://github.com/Lovely-Pig/PaddleOCR-Paddlejs-React-Demo) | 使用Paddle.js和React部署PaddleOCR | [Lovely-Pig](https://github.com/Lovely-Pig) |
+| 学术前沿模型训练与推理 | [AI Studio项目](https://aistudio.baidu.com/aistudio/projectdetail/3397137) | StarNet-MobileNetV3算法–中文训练 | [xiaoyangyang2](https://github.com/xiaoyangyang2) |
+| 学术前沿模型训练与推理 | [ABINet-paddle](https://github.com/Huntersdeng/abinet-paddle) | ABINet算法前向运算的paddle实现以及模型各部分的实现细节分析 | [Huntersdeng](https://github.com/Huntersdeng) |
### 1.2 为PaddleOCR新增功能
@@ -40,14 +49,20 @@ PaddleOCR希望可以通过AI的力量助力任何一位有梦想的开发者实
- 非常感谢 [lijinhan](https://github.com/lijinhan) 给PaddleOCR增加java SpringBoot 调用OCR Hubserving接口完成对OCR服务化部署的使用([#1027](https://github.com/PaddlePaddle/PaddleOCR/pull/1027))。
- 非常感谢 [Evezerest](https://github.com/Evezerest), [ninetailskim](https://github.com/ninetailskim), [edencfc](https://github.com/edencfc), [BeyondYourself](https://github.com/BeyondYourself), [1084667371](https://github.com/1084667371) 贡献了[PPOCRLabel](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/PPOCRLabel/README_ch.md) 的完整代码。
-### 1.3 代码与文档优化
+### 1.3 代码修复
- 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题([#210](https://github.com/PaddlePaddle/PaddleOCR/pull/210))。
- 非常感谢 [lyl120117](https://github.com/lyl120117) 贡献打印网络结构的代码([#304](https://github.com/PaddlePaddle/PaddleOCR/pull/304))。
- 非常感谢 [BeyondYourself](https://github.com/BeyondYourself) 给PaddleOCR提了很多非常棒的建议,并简化了PaddleOCR的部分代码风格([so many commits)](https://github.com/PaddlePaddle/PaddleOCR/commits?author=BeyondYourself)。
+
+### 1.4 文档优化与翻译
+
+- 非常感谢 **[RangeKing](https://github.com/RangeKing),[HustBestCat](https://github.com/HustBestCat),[v3fc](https://github.com/v3fc)** 贡献翻译《动手学OCR》notebook[电子书英文版](https://github.com/PaddlePaddle/PaddleOCR/tree/dygraph/notebook/notebook_en)。
+- 非常感谢 [thunderstudying](https://github.com/thunderstudying),[RangeKing](https://github.com/RangeKing),[livingbody](https://github.com/livingbody), [WZMIAOMIAO](https://github.com/WZMIAOMIAO),[haigang1975](https://github.com/haigang1975) 补充多个英文markdown文档。
+- 非常感谢 **[fanruinet](https://github.com/fanruinet)** 润色和修复35篇英文文档([#5205](https://github.com/PaddlePaddle/PaddleOCR/pull/5205))。
- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck) 和 [Karl Horky](https://github.com/karlhorky) 贡献修改英文文档。
-### 1.4 多语言语料
+### 1.5 多语言语料
- 非常感谢 [xiangyubo](https://github.com/xiangyubo) 贡献手写中文OCR数据集([#321](https://github.com/PaddlePaddle/PaddleOCR/pull/321))。
- 非常感谢 [Mejans](https://github.com/Mejans) 给PaddleOCR增加新语言奥克西坦语Occitan的字典和语料([#954](https://github.com/PaddlePaddle/PaddleOCR/pull/954))。
diff --git a/doc/doc_en/enhanced_ctc_loss_en.md b/doc/doc_en/enhanced_ctc_loss_en.md
new file mode 100644
index 0000000000000000000000000000000000000000..908f79e412e2a00e4fec027befc8a1430c077e27
--- /dev/null
+++ b/doc/doc_en/enhanced_ctc_loss_en.md
@@ -0,0 +1,110 @@
+# Enhanced CTC Loss
+
+In OCR recognition, CRNN is a text recognition algorithm widely applied in the industry. In the training phase, it uses CTCLoss to calculate the network loss. In the inference phase, it uses CTCDecode to obtain the decoding result. Although the CRNN algorithm has been proven to achieve reliable recognition results in actual business, users have endless requirements for recognition accuracy. So how to improve the accuracy of text recognition? Taking CTCLoss as the starting point, this paper explores the improved fusion scheme of CTCLoss from three different perspectives: Hard Example Mining, Multi-task Learning, and Metric Learning. Based on the exploration, we propose EnhancedCTCLoss, which includes the following 3 components: Focal-CTC Loss, A-CTC Loss, C-CTC Loss.
+
+## 1. Focal-CTC Loss
+
+Focal Loss was proposed by the paper, "[Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002)". When the loss was first proposed, it was mainly to solve the problem of a serious imbalance in the ratio of positive and negative samples in one-stage target detection. This loss function reduces the weight of a large number of simple negative samples in training and also can be understood as a kind of difficult sample mining.
+The form of the loss function is as follows:
+
+
+
+
+
+Among them, y' is the output of the activation function, and the value is between 0-1. It adds a modulation factor (1-y’)^γ and a balance factor α on the basis of the original cross-entropy loss. When α = 1, y = 1, the comparison between the loss function and the cross-entropy loss is shown in the following figure:
+
+
+
+
+
+
+
+As can be seen from the above figure, when γ > 0, the adjustment coefficient (1-y’)^γ gives smaller weight to the easy-to-classify sample loss, making the network pay more attention to the difficult and misclassified samples. The adjustment factor γ is used to adjust the rate at which the weight of simple samples decreases. When γ = 0, it is the cross-entropy loss function. When γ increases, the influence of the adjustment factor will also increase. Experiments revealed that 2 is the optimal value of γ. The balance factor α is used to balance the uneven proportions of the positive and negative samples. In the text, α is taken as 0.25.
+
+For the classic CTC algorithm, suppose a certain feature sequence (f1, f2, ......ft), after CTC decoding, the probability that the result is equal to label is y', then the probability that the CTC decoding result is not equal to label is (1-y'); it is not difficult to find that the CTCLoss value and y' have the following relationship:
+
+
+
+
+
+
+
+Combining the idea of Focal Loss, assigning larger weights to difficult samples and smaller weights to simple samples can make the network focus more on the mining of difficult samples and further improve the accuracy of recognition. Therefore, we propose Focal-CTC Loss. Its definition is as follows:
+
+
+
+
+
+
+
+In the experiment, the value of γ is 2, α = 1, see this for specific implementation: [rec_ctc_loss.py](../../ppocr/losses/rec_ctc_loss.py)
+
+
+
+## 2. A-CTC Loss
+
+A-CTC Loss is short for CTC Loss + ACE Loss. Among them, ACE Loss was proposed by the paper, “[Aggregation Cross-Entropy for Sequence Recognition](https://arxiv.org/abs/1904.08364)”. Compared with CTCLoss, ACE Loss has the following two advantages:
++ ACE Loss can solve the recognition problem of 2-D text, while CTCLoss can only process 1-D text
++ ACE Loss is better than CTC loss in time complexity and space complexity
+
+The advantages and disadvantages of the OCR recognition algorithm summarized by the predecessors are shown in the following figure:
+
+
+
+
+
+
+Although ACELoss does handle 2D predictions, as shown in the figure above, and has advantages in memory usage and inference speed, in practice, we found that using ACELoss alone, the recognition effect is not as good as CTCLoss. Consequently, we tried to combine CTCLoss and ACELoss, and CTCLoss is the mainstay while ACELoss acts as an auxiliary supervision loss. This attempt has achieved better results. On our internal experimental data set, compared to using CTCLoss alone, the recognition accuracy can be improved by about 1%.
+A_CTC Loss is defined as follows:
+
+
+
+
+
+
+
+In the experiment, λ = 0.1. See the ACE loss implementation code: [ace_loss.py](../../ppocr/losses/ace_loss.py)
+
+
+
+## 3. C-CTC Loss
+
+C-CTC Loss is short for CTC Loss + Center Loss. Among them, Center Loss was proposed by the paper, “[A Discriminative Feature Learning Approach for Deep Face Recognition](https://link.springer.com/chapter/10.1007/978-3-319-46478-7_31)“. It was first used in face recognition tasks to increase the distance between classes and reduce the distance within classes. It is an earlier and also widely used algorithm.
+
+In the task of Chinese OCR recognition, through the analysis of bad cases, we found that a major difficulty in Chinese recognition is that there are many similar characters, which are easy to misunderstand. From this, we thought about whether we can learn from the idea of n to increase the class spacing of similar characters, to improve recognition accuracy. However, Metric Learning is mainly used in the field of image recognition, and the label of the training data is a fixed value; for OCR recognition, it is a sequence recognition task essentially, and there is no explicit alignment between features and labels. Therefore, how to combine the two is still a direction worth exploring.
+
+By trying Arcmargin, Cosmargin and other methods, we finally found that Centerloss can help further improve the accuracy of recognition. C_CTC Loss is defined as follows:
+
+
+
+
+
+In the experiment, we set λ=0.25. See the center_loss implementation code: [center_loss.py](../../ppocr/losses/center_loss.py)
+
+It is worth mentioning that in C-CTC Loss, choosing to initialize the Center randomly does not bring significant improvement. Our Center initialization method is as follows:
++ Based on the original CTCLoss, a network N is obtained by training
++ Select the training set, identify the completely correct part, and form the set G
++ Send each sample in G to the network, perform forward calculation, and extract the correspondence between the input of the last FC layer (ie feature) and the result of argmax calculation (ie index)
++ Aggregate features with the same index, calculate the average, and get the initial center of each character.
+
+Taking the configuration file `configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml` as an example, the center extraction command is as follows:
+
+```
+python tools/export_center.py -c configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml -o Global.pretrained_model="./output/rec_mobile_pp-OCRv2/best_accuracy"
+```
+
+After running, `train_center.pkl` will be generated in the main directory of PaddleOCR.
+
+
+
+## 4. Experiment
+
+For the above three solutions, we conducted training and evaluation based on Baidu's internal data set. The experimental conditions are shown in the following table:
+
+| algorithm | Focal_CTC | A_CTC | C-CTC |
+| :-------- | :-------- | ----: | :---: |
+| gain | +0.3% | +0.7% | +1.7% |
+
+Based on the above experimental conclusions, we adopted the C-CTC strategy in PP-OCRv2. It is worth mentioning that, because PP-OCRv2 deals with the recognition task of 6625 Chinese characters, the character set is relatively large and there are many similar characters, so the C-CTC solution brings a significant improvement on this task. But if you switch to other OCR recognition tasks, the conclusion may be different. You can try Focal-CTC, A-CTC, C-CTC, and the combined solution EnhancedCTC. We believe it will bring different degrees of improvement.
+
+The unified combined plan is shown in the following file: [rec_enhanced_ctc_loss.py](../../ppocr/losses/rec_enhanced_ctc_loss.py)
\ No newline at end of file
diff --git a/doc/doc_en/models_and_config_en.md b/doc/doc_en/models_and_config_en.md
index 414d844d63d51a2b53feea035c1f735594d73fe0..c47fb5597eb56c823dff4c6d52cf3b114f3d9c0e 100644
--- a/doc/doc_en/models_and_config_en.md
+++ b/doc/doc_en/models_and_config_en.md
@@ -1,7 +1,7 @@
# PP-OCR Model and Configuration
The chapter on PP-OCR model and configuration file mainly adds some basic concepts of OCR model and the content and role of configuration file to have a better experience in the subsequent parameter adjustment and training of the model.
-This chapter contains three parts. Firstly, [PP-OCR Model Download](. /models_list_en.md) explains the concept of PP-OCR model types and provides links to download all models. Then in [Yml Configuration](. /config_en.md) details the parameters needed to fine-tune the PP-OCR models. The final [Python Inference for PP-OCR Model Library](. /inference_ppocr_en.md) is an introduction to the use of the PP-OCR model library in the first section, which can quickly utilize the rich model library models to obtain test results through the Python inference engine.
+This chapter contains three parts. Firstly, [PP-OCR Model Download](./models_list_en.md) explains the concept of PP-OCR model types and provides links to download all models. Then in [Yml Configuration](./config_en.md) details the parameters needed to fine-tune the PP-OCR models. The final [Python Inference for PP-OCR Model Library](./inference_ppocr_en.md) is an introduction to the use of the PP-OCR model library in the first section, which can quickly utilize the rich model library models to obtain test results through the Python inference engine.
------
diff --git a/doc/doc_en/models_list_en.md b/doc/doc_en/models_list_en.md
index b07d5f0a9471a1bdff7a93328d63e874fed60e19..157b4fe31c6b55e4bffc8fb9abe1d067b9a60e51 100644
--- a/doc/doc_en/models_list_en.md
+++ b/doc/doc_en/models_list_en.md
@@ -43,8 +43,8 @@ Relationship of the above models is as follows.
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
-|ch_PP-OCRv2_rec_slim|[New] Slim qunatization with distillation lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)| 9M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_train.tar) |
-|ch_PP-OCRv2_rec|[New] Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)|8.5M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
+|ch_PP-OCRv2_rec_slim|[New] Slim qunatization with distillation lightweight model, supporting Chinese, English, multilingual text recognition|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)| 9M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_train.tar) |
+|ch_PP-OCRv2_rec|[New] Original lightweight model, supporting Chinese, English, multilingual text recognition|[ch_PP-OCRv2_rec_distillation.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec_distillation.yml)|8.5M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| 6M | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|ch_ppocr_mobile_v2.0_rec|Original lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|5.2M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|ch_ppocr_server_v2.0_rec|General model, supporting Chinese, English and number recognition|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
diff --git a/ppstructure/docs/kie_en.md b/ppstructure/docs/kie_en.md
new file mode 100644
index 0000000000000000000000000000000000000000..a424968a9b5a33132afe52a4850cfe541919ae1c
--- /dev/null
+++ b/ppstructure/docs/kie_en.md
@@ -0,0 +1,77 @@
+
+
+# Key Information Extraction(KIE)
+
+This section provides a tutorial example on how to quickly use, train, and evaluate a key information extraction(KIE) model, [SDMGR](https://arxiv.org/abs/2103.14470), in PaddleOCR.
+
+[SDMGR(Spatial Dual-Modality Graph Reasoning)](https://arxiv.org/abs/2103.14470) is a KIE algorithm that classifies each detected text region into predefined categories, such as order ID, invoice number, amount, and etc.
+
+
+* [1. Quick Use](#1-----)
+* [2. Model Training](#2-----)
+* [3. Model Evaluation](#3-----)
+
+
+
+## 1. Quick Use
+
+[Wildreceipt dataset](https://paperswithcode.com/dataset/wildreceipt) is used for this tutorial. It contains 1765 photos, with 25 classes, and 50000 text boxes, which can be downloaded by wget:
+
+```shell
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/wildreceipt.tar && tar xf wildreceipt.tar
+```
+
+Download the pretrained model and predict the result:
+
+```shell
+cd PaddleOCR/
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/kie_vgg16.tar && tar xf kie_vgg16.tar
+python3.7 tools/infer_kie.py -c configs/kie/kie_unet_sdmgr.yml -o Global.checkpoints=kie_vgg16/best_accuracy Global.infer_img=../wildreceipt/1.txt
+```
+
+The prediction result is saved as `./output/sdmgr_kie/predicts_kie.txt`, and the visualization results are saved in the folder`/output/sdmgr_kie/kie_results/`.
+
+The visualization results are shown in the figure below:
+
+
+
+
+
+
+## 2. Model Training
+
+Create a softlink to the folder, `PaddleOCR/train_data`:
+```shell
+cd PaddleOCR/ && mkdir train_data && cd train_data
+
+ln -s ../../wildreceipt ./
+```
+
+The configuration file used for training is `configs/kie/kie_unet_sdmgr.yml`. The default training data path in the configuration file is `train_data/wildreceipt`. After preparing the data, you can execute the model training with the following command:
+```shell
+python3.7 tools/train.py -c configs/kie/kie_unet_sdmgr.yml -o Global.save_model_dir=./output/kie/
+```
+
+
+## 3. Model Evaluation
+
+After training, you can execute the model evaluation with the following command:
+
+```shell
+python3.7 tools/eval.py -c configs/kie/kie_unet_sdmgr.yml -o Global.checkpoints=./output/kie/best_accuracy
+```
+
+**Reference:**
+
+
+
+```bibtex
+@misc{sun2021spatial,
+ title={Spatial Dual-Modality Graph Reasoning for Key Information Extraction},
+ author={Hongbin Sun and Zhanghui Kuang and Xiaoyu Yue and Chenhao Lin and Wayne Zhang},
+ year={2021},
+ eprint={2103.14470},
+ archivePrefix={arXiv},
+ primaryClass={cs.CV}
+}
+```
diff --git a/ppstructure/docs/quickstart.md b/ppstructure/docs/quickstart.md
index 6f21f07fd47b92e41e9ac14fef630f7169d789d4..ccbe95270e35bc8ca1a0f0c6cb7f8a70f0dea9e3 100644
--- a/ppstructure/docs/quickstart.md
+++ b/ppstructure/docs/quickstart.md
@@ -1,13 +1,13 @@
# PP-Structure 快速开始
-* [1. 安装PaddleOCR whl包](#1)
-* [2. 便捷使用](#2)
- + [2.1 命令行使用](#21)
- + [2.2 Python脚本使用](#22)
- + [2.3 返回结果说明](#23)
- + [2.4 参数说明](#24)
-* [3. Python脚本使用](#3)
-
+- [PP-Structure 快速开始](#pp-structure-快速开始)
+ - [1. 安装依赖包](#1-安装依赖包)
+ - [2. 便捷使用](#2-便捷使用)
+ - [2.1 命令行使用](#21-命令行使用)
+ - [2.2 Python脚本使用](#22-python脚本使用)
+ - [2.3 返回结果说明](#23-返回结果说明)
+ - [2.4 参数说明](#24-参数说明)
+ - [3. Python脚本使用](#3-python脚本使用)
@@ -33,6 +33,7 @@ pip3 install -e .
### 2.1 命令行使用
* 版面分析+表格识别
+
```bash
paddleocr --image_dir=../doc/table/1.png --type=structure
```
@@ -46,6 +47,7 @@ paddleocr --image_dir=../doc/table/1.png --type=structure
### 2.2 Python脚本使用
* 版面分析+表格识别
+
```python
import os
import cv2
@@ -79,9 +81,11 @@ im_show.save('result.jpg')
### 2.3 返回结果说明
+
PP-Structure的返回结果为一个dict组成的list,示例如下
* 版面分析+表格识别
+
```shell
[
{ 'type': 'Text',
@@ -91,13 +95,14 @@ PP-Structure的返回结果为一个dict组成的list,示例如下
}
]
```
+
dict 里各个字段说明如下
-| 字段 | 说明 |
-| --------------- | -------------|
-|type|图片区域的类型|
-|bbox|图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y]|
-|res|图片区域的OCR或表格识别结果。
表格: 表格的HTML字符串;
OCR: 一个包含各个单行文字的检测坐标和识别结果的元组|
+| 字段 | 说明 |
+| ---- | -------------------------------------------------------------------------------------------------------------------------- |
+| type | 图片区域的类型 |
+| bbox | 图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y] |
+| res | 图片区域的OCR或表格识别结果。`
` 表格: 表格的HTML字符串; `
` OCR: 一个包含各个单行文字的检测坐标和识别结果的元组 |
* VQA
@@ -107,6 +112,7 @@ dict 里各个字段说明如下
### 2.4 参数说明
+
| 字段 | 说明 | 默认值 |
| --------------- | ---------------------------------------- | ------------------------------------------- |
| output | excel和识别结果保存的地址 | ./output/table |
@@ -118,9 +124,10 @@ dict 里各个字段说明如下
| label_map_path | VQA SER 标签文件地址 | ./vqa/labels/labels_ser.txt |
| mode | pipeline预测模式,structure: 版面分析+表格识别; VQA: SER文档信息抽取 | structure |
+
大部分参数和PaddleOCR whl包保持一致,见 [whl包文档](../../doc/doc_ch/whl.md)
-运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
+运行完成后,每张图片会在 `output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
@@ -133,16 +140,16 @@ cd ppstructure
# 下载模型
mkdir inference && cd inference
-# 下载超轻量级中文OCR模型的检测模型并解压
-wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
-# 下载超轻量级中文OCR模型的识别模型并解压
-wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
-# 下载超轻量级英文表格英寸模型并解压
+# 下载PP-OCRv2文本检测模型并解压
+wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar && tar xf ch_PP-OCRv2_det_slim_quant_infer.tar
+# 下载PP-OCRv2文本识别模型并解压
+wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar && tar xf ch_PP-OCRv2_rec_slim_quant_infer.tar
+# 下载超轻量级英文表格预测模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd ..
-python3 predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
- --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
+python3 predict_system.py --det_model_dir=inference/ch_PP-OCRv2_det_slim_quant_infer \
+ --rec_model_dir=inference/ch_PP-OCRv2_rec_slim_quant_infer \
--table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer \
--image_dir=../doc/table/1.png \
--rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
@@ -150,7 +157,8 @@ python3 predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_inf
--output=../output/table \
--vis_font_path=../doc/fonts/simfang.ttf
```
-运行完成后,每张图片会在`output`字段指定的目录下的`talbe`目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
+
+运行完成后,每张图片会在 `output`字段指定的目录下的 `talbe`目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
* VQA
@@ -168,4 +176,5 @@ python3 predict_system.py --model_name_or_path=vqa/PP-Layout_v1.0_ser_pretrained
--image_dir=vqa/images/input/zh_val_0.jpg \
--vis_font_path=../doc/fonts/simfang.ttf
```
-运行完成后,每张图片会在`output`字段指定的目录下的`vqa`目录下存放可视化之后的图片,图片名和输入图片名一致。
+
+运行完成后,每张图片会在 `output`字段指定的目录下的 `vqa`目录下存放可视化之后的图片,图片名和输入图片名一致。
diff --git a/ppstructure/table/README.md b/ppstructure/table/README.md
index 30a11a20e5de90500d1408f671ba914f336a0b43..150ed34ebdbc375a918542eae883c070069b998b 100644
--- a/ppstructure/table/README.md
+++ b/ppstructure/table/README.md
@@ -1,7 +1,9 @@
# Table Recognition
## 1. pipeline
+
The table recognition mainly contains three models
+
1. Single line text detection-DB
2. Single line text recognition-CRNN
3. Table structure and cell coordinate prediction-RARE
@@ -16,13 +18,13 @@ The table recognition flow chart is as follows
4. The cell recognition result and the table structure together construct the html string of the table.
## 2. Performance
-We evaluated the algorithm on the PubTabNet[1] eval dataset, and the performance is as follows:
+We evaluated the algorithm on the PubTabNet``[1]`` eval dataset, and the performance is as follows:
-|Method|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|
-| --- | --- |
-| EDD[2] | 88.3 |
-| Ours | 93.32 |
+| Method | [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) |
+| ------------------------- | -------------------------------------------------------------------------------------------------- |
+| EDD``[2]`` | 88.3 |
+| Ours | 93.32 |
## 3. How to use
@@ -41,8 +43,9 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_tab
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd ..
# run
-python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_dict_path=../ppocr/utils/dict/en_dict.txt --det_limit_side_len=736 --det_limit_type=min --output ../output/table
+python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --det_limit_side_len=736 --det_limit_type=min --output ../output/table
```
+
Note: The above model is trained on the PubLayNet dataset and only supports English scanning scenarios. If you need to identify other scenarios, you need to train the model yourself and replace the three fields `det_model_dir`, `rec_model_dir`, `table_model_dir`.
After running, the excel sheet of each picture will be saved in the directory specified by the output field
@@ -51,11 +54,14 @@ After running, the excel sheet of each picture will be saved in the directory sp
In this chapter, we only introduce the training of the table structure model, For model training of [text detection](../../doc/doc_en/detection_en.md) and [text recognition](../../doc/doc_en/recognition_en.md), please refer to the corresponding documents
-#### data preparation
-The training data uses public data set [PubTabNet](https://arxiv.org/abs/1911.10683 ), Can be downloaded from the official [website](https://github.com/ibm-aur-nlp/PubTabNet) 。The PubTabNet data set contains about 500,000 images, as well as annotations in html format。
+#### data preparation
+
+The training data uses public data set [PubTabNet](https://arxiv.org/abs/1911.10683), Can be downloaded from the official [website](https://github.com/ibm-aur-nlp/PubTabNet) 。The PubTabNet data set contains about 500,000 images, as well as annotations in html format。
+
+#### Start training
-#### Start training
*If you are installing the cpu version of paddle, please modify the `use_gpu` field in the configuration file to false*
+
```shell
# single GPU training
python3 tools/train.py -c configs/table/table_mv3.yml
@@ -80,6 +86,7 @@ python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./yo
### 3.3 Eval
The table uses [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows:
+
```json
{"PMC4289340_004_00.png": [
["", "", "", "", "", "", " | ", "", " | ", "", " | ", "
", "", "", "", "", " | ", "", " | ", "", " | ", "
", "", "
", "", ""],
@@ -87,18 +94,22 @@ The table uses [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ib
[["", "F", "e", "a", "t", "u", "r", "e", ""], ["", "G", "b", "3", " ", "+", ""], ["", "G", "b", "3", " ", "-", ""], ["", "P", "a", "t", "i", "e", "n", "t", "s", ""], ["6", "2"], ["4", "5"]]
]}
```
+
In gt json, the key is the image name, the value is the corresponding gt, and gt is a list composed of four items, and each item is
+
1. HTML string list of table structure
2. The coordinates of each cell (not including the empty text in the cell)
3. The text information in each cell (not including the empty text in the cell)
Use the following command to evaluate. After the evaluation is completed, the teds indicator will be output.
+
```python
cd PaddleOCR/ppstructure
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
```
If the PubLatNet eval dataset is used, it will be output
+
```bash
teds: 93.32
```
@@ -109,8 +120,10 @@ teds: 93.32
cd PaddleOCR/ppstructure
python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
```
+
After running, the excel sheet of each picture will be saved in the directory specified by the output field
Reference
+
1. https://github.com/ibm-aur-nlp/PubTabNet
2. https://arxiv.org/pdf/1911.10683
diff --git a/ppstructure/table/README_ch.md b/ppstructure/table/README_ch.md
index 33276b36e4973e83d7efa673b90013cf5727dfe2..d0fae97dc462555a155bb645dc1a7f559e069f11 100644
--- a/ppstructure/table/README_ch.md
+++ b/ppstructure/table/README_ch.md
@@ -1,17 +1,23 @@
# 表格识别
-* [1. 表格识别 pipeline](#1)
-* [2. 性能](#2)
-* [3. 使用](#3)
- + [3.1 快速开始](#31)
- + [3.2 训练](#32)
- + [3.3 评估](#33)
- + [3.4 预测](#34)
+- [表格识别](#表格识别)
+ - [1. 表格识别 pipeline](#1-表格识别-pipeline)
+ - [2. 性能](#2-性能)
+ - [3. 使用](#3-使用)
+ - [3.1 快速开始](#31-快速开始)
+ - [3.2 训练](#32-训练)
+ - [数据准备](#数据准备)
+ - [启动训练](#启动训练)
+ - [断点训练](#断点训练)
+ - [3.3 评估](#33-评估)
+ - [3.4 预测](#34-预测)
+
## 1. 表格识别 pipeline
表格识别主要包含三个模型
+
1. 单行文本检测-DB
2. 单行文本识别-CRNN
3. 表格结构和cell坐标预测-RARE
@@ -27,20 +33,23 @@
3. 由单行文字的坐标、识别结果和单元格的坐标一起组合出单元格的识别结果。
4. 单元格的识别结果和表格结构一起构造表格的html字符串。
-
+
## 2. 性能
-我们在 PubTabNet[1] 评估数据集上对算法进行了评估,性能如下
+我们在 PubTabNet``[1]`` 评估数据集上对算法进行了评估,性能如下
-|算法|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|
-| --- | --- |
-| EDD[2] | 88.3 |
-| Ours | 93.32 |
+| 算法 | [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) |
+| ------------------------- | -------------------------------------------------------------------------------------------------- |
+| EDD``[2]`` | 88.3 |
+| Ours | 93.32 |
+
## 3. 使用
+
+
### 3.1 快速开始
```python
@@ -56,20 +65,27 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_tab
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd ..
# 执行预测
-python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_dict_path=../ppocr/utils/dict/en_dict.txt --det_limit_side_len=736 --det_limit_type=min --output ../output/table
+python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --det_limit_side_len=736 --det_limit_type=min --output ../output/table
```
+
运行完成后,每张图片的excel表格会保存到output字段指定的目录下
note: 上述模型是在 PubLayNet 数据集上训练的表格识别模型,仅支持英文扫描场景,如需识别其他场景需要自己训练模型后替换 `det_model_dir`,`rec_model_dir`,`table_model_dir`三个字段即可。
+
+
### 3.2 训练
+
在这一章节中,我们仅介绍表格结构模型的训练,[文字检测](../../doc/doc_ch/detection.md)和[文字识别](../../doc/doc_ch/recognition.md)的模型训练请参考对应的文档。
-#### 数据准备
+#### 数据准备
+
训练数据使用公开数据集PubTabNet ([论文](https://arxiv.org/abs/1911.10683),[下载地址](https://github.com/ibm-aur-nlp/PubTabNet))。PubTabNet数据集包含约50万张表格数据的图像,以及图像对应的html格式的注释。
-#### 启动训练
+#### 启动训练
+
*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false*
+
```shell
# 单机单卡训练
python3 tools/train.py -c configs/table/table_mv3.yml
@@ -82,16 +98,19 @@ python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/
#### 断点训练
如果训练程序中断,如果希望加载训练中断的模型从而恢复训练,可以通过指定Global.checkpoints指定要加载的模型路径:
+
```shell
python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./your/trained/model
```
-**注意**:`Global.checkpoints`的优先级高于`Global.pretrain_weights`的优先级,即同时指定两个参数时,优先加载`Global.checkpoints`指定的模型,如果`Global.checkpoints`指定的模型路径有误,会加载`Global.pretrain_weights`指定的模型。
+**注意**:`Global.checkpoints`的优先级高于 `Global.pretrain_weights`的优先级,即同时指定两个参数时,优先加载 `Global.checkpoints`指定的模型,如果 `Global.checkpoints`指定的模型路径有误,会加载 `Global.pretrain_weights`指定的模型。
+
### 3.3 评估
表格使用 [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) 作为模型的评估指标。在进行模型评估之前,需要将pipeline中的三个模型分别导出为inference模型(我们已经提供好),还需要准备评估的gt, gt示例如下:
+
```json
{"PMC4289340_004_00.png": [
["", "", "", "", "", "", " | ", "", " | ", "", " | ", "
", "", "", "", "", " | ", "", " | ", "", " | ", "
", "", "
", "", ""],
@@ -99,21 +118,28 @@ python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./yo
[["", "F", "e", "a", "t", "u", "r", "e", ""], ["", "G", "b", "3", " ", "+", ""], ["", "G", "b", "3", " ", "-", ""], ["", "P", "a", "t", "i", "e", "n", "t", "s", ""], ["6", "2"], ["4", "5"]]
]}
```
+
json 中,key为图片名,value为对应的gt,gt是一个由三个item组成的list,每个item分别为
+
1. 表格结构的html字符串list
2. 每个cell的坐标 (不包括cell里文字为空的)
3. 每个cell里的文字信息 (不包括cell里文字为空的)
准备完成后使用如下命令进行评估,评估完成后会输出teds指标。
+
```python
cd PaddleOCR/ppstructure
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
```
+
如使用PubLatNet评估数据集,将会输出
+
```bash
teds: 93.32
```
+
+
### 3.4 预测
```python
@@ -122,5 +148,6 @@ python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model
```
Reference
+
1. https://github.com/ibm-aur-nlp/PubTabNet
2. https://arxiv.org/pdf/1911.10683
diff --git a/ppstructure/vqa/README-en.md b/ppstructure/vqa/README-en.md
new file mode 100644
index 0000000000000000000000000000000000000000..168640874aa5e2339e81d7dc467e515d5aa9101e
--- /dev/null
+++ b/ppstructure/vqa/README-en.md
@@ -0,0 +1,331 @@
+# Document Visual Q&A(DOC-VQA)
+
+Document Visual Q&A, mainly for the image content of the question and answer, DOC-VQA is a type of VQA task, DOC-VQA mainly asks questions about the textual content of text images.
+
+The DOC-VQA algorithm in PP-Structure is developed based on PaddleNLP natural language processing algorithm library.
+
+The main features are as follows:
+
+- Integrated LayoutXLM model and PP-OCR prediction engine.
+- Support Semantic Entity Recognition (SER) and Relation Extraction (RE) tasks based on multi-modal methods. Based on SER task, text recognition and classification in images can be completed. Based on THE RE task, we can extract the relation of the text content in the image, such as judge the problem pair.
+
+- Support custom training for SER and RE tasks.
+
+- Support OCR+SER end-to-end system prediction and evaluation.
+
+- Support OCR+SER+RE end-to-end system prediction.
+
+**Note**: This project is based on the open source implementation of [LayoutXLM](https://arxiv.org/pdf/2104.08836.pdf) on Paddle 2.2, and at the same time, after in-depth polishing by the flying Paddle team and the Industrial and **Commercial Bank of China** in the scene of real estate certificate, jointly open source.
+
+
+## 1.Performance
+
+We evaluated the algorithm on [XFUN](https://github.com/doc-analysis/XFUND) 's Chinese data set, and the performance is as follows
+
+| Model | Task | F1 | Model Download Link |
+|:---:|:---:|:---:| :---:|
+| LayoutXLM | RE | 0.7113 | [Link](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_re_pretrained.tar) |
+| LayoutXLM | SER | 0.9056 | [Link](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar) |
+| LayoutLM | SER | 0.78 | [Link](https://paddleocr.bj.bcebos.com/pplayout/LayoutLM_ser_pretrained.tar) |
+
+
+
+## 2.Demonstration
+
+**Note**: the test images are from the xfun dataset.
+
+### 2.1 SER
+
+![](./images/result_ser/zh_val_0_ser.jpg) | ![](./images/result_ser/zh_val_42_ser.jpg)
+---|---
+
+Different colored boxes in the figure represent different categories. For xfun dataset, there are three categories: query, answer and header:
+
+* Dark purple: header
+* Light purple: query
+* Army green: answer
+
+The corresponding category and OCR recognition results are also marked at the top left of the OCR detection box.
+
+
+### 2.2 RE
+
+![](./images/result_re/zh_val_21_re.jpg) | ![](./images/result_re/zh_val_40_re.jpg)
+---|---
+
+
+In the figure, the red box represents the question, the blue box represents the answer, and the question and answer are connected by green lines. The corresponding category and OCR recognition results are also marked at the top left of the OCR detection box.
+
+
+## 3. Setup
+
+### 3.1 Installation dependency
+
+- **(1) Install PaddlePaddle**
+
+```bash
+pip3 install --upgrade pip
+
+# GPU PaddlePaddle Install
+python3 -m pip install paddlepaddle-gpu==2.2 -i https://mirror.baidu.com/pypi/simple
+
+# CPU PaddlePaddle Install
+python3 -m pip install paddlepaddle==2.2 -i https://mirror.baidu.com/pypi/simple
+
+```
+For more requirements, please refer to the [instructions](https://www.paddlepaddle.org.cn/install/quick) in the installation document.
+
+
+### 3.2 Install PaddleOCR (including pp-ocr and VQA)
+
+- **(1) PIP quick install paddleocr WHL package (forecast only)**
+
+```bash
+pip install paddleocr
+```
+
+- **(2) Download VQA source code (prediction + training)**
+
+```bash
+[recommended] git clone https://github.com/PaddlePaddle/PaddleOCR
+
+# If you cannot pull successfully because of network problems, you can also choose to use the hosting on the code cloud:
+git clone https://gitee.com/paddlepaddle/PaddleOCR
+
+# Note: the code cloud hosting code may not be able to synchronize the update of this GitHub project in real time, with a delay of 3 ~ 5 days. Please give priority to the recommended method.
+```
+
+- **(3) Install PaddleNLP**
+
+```bash
+# You need to use the latest code version of paddlenlp for installation
+git clone https://github.com/PaddlePaddle/PaddleNLP -b develop
+cd PaddleNLP
+pip3 install -e .
+```
+
+
+- **(4) Install requirements for VQA**
+
+```bash
+cd ppstructure/vqa
+pip install -r requirements.txt
+```
+
+## 4.Usage
+
+
+### 4.1 Data and pre training model preparation
+
+Download address of processed xfun Chinese dataset: [https://paddleocr.bj.bcebos.com/dataset/XFUND.tar](https://paddleocr.bj.bcebos.com/dataset/XFUND.tar)。
+
+
+Download and unzip the dataset, and then place the dataset in the current directory.
+
+```shell
+wget https://paddleocr.bj.bcebos.com/dataset/XFUND.tar
+```
+
+If you want to convert data sets in other languages in xfun, you can refer to [xfun data conversion script.](helper/trans_xfun_data.py))
+
+If you want to experience the prediction process directly, you can download the pre training model provided by us, skip the training process and predict directly.
+
+
+### 4.2 SER Task
+
+* Start training
+
+```shell
+python3.7 train_ser.py \
+ --model_name_or_path "layoutxlm-base-uncased" \
+ --ser_model_type "LayoutXLM" \
+ --train_data_dir "XFUND/zh_train/image" \
+ --train_label_path "XFUND/zh_train/xfun_normalize_train.json" \
+ --eval_data_dir "XFUND/zh_val/image" \
+ --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
+ --num_train_epochs 200 \
+ --eval_steps 10 \
+ --output_dir "./output/ser/" \
+ --learning_rate 5e-5 \
+ --warmup_steps 50 \
+ --evaluate_during_training \
+ --seed 2048
+```
+
+Finally, Precision, Recall, F1 and other indicators will be printed, and the model and training log will be saved in/ In the output/Ser/ folder.
+
+* Recovery training
+
+```shell
+python3.7 train_ser.py \
+ --model_name_or_path "model_path" \
+ --ser_model_type "LayoutXLM" \
+ --train_data_dir "XFUND/zh_train/image" \
+ --train_label_path "XFUND/zh_train/xfun_normalize_train.json" \
+ --eval_data_dir "XFUND/zh_val/image" \
+ --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
+ --num_train_epochs 200 \
+ --eval_steps 10 \
+ --output_dir "./output/ser/" \
+ --learning_rate 5e-5 \
+ --warmup_steps 50 \
+ --evaluate_during_training \
+ --num_workers 8 \
+ --seed 2048 \
+ --resume
+```
+
+* Evaluation
+```shell
+export CUDA_VISIBLE_DEVICES=0
+python3 eval_ser.py \
+ --model_name_or_path "PP-Layout_v1.0_ser_pretrained/" \
+ --ser_model_type "LayoutXLM" \
+ --eval_data_dir "XFUND/zh_val/image" \
+ --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
+ --per_gpu_eval_batch_size 8 \
+ --num_workers 8 \
+ --output_dir "output/ser/" \
+ --seed 2048
+```
+Finally, Precision, Recall, F1 and other indicators will be printed
+
+* The OCR recognition results provided in the evaluation set are used for prediction
+
+```shell
+export CUDA_VISIBLE_DEVICES=0
+python3.7 infer_ser.py \
+ --model_name_or_path "PP-Layout_v1.0_ser_pretrained/" \
+ --ser_model_type "LayoutXLM" \
+ --output_dir "output/ser/" \
+ --infer_imgs "XFUND/zh_val/image/" \
+ --ocr_json_path "XFUND/zh_val/xfun_normalize_val.json"
+```
+
+It will end up in output_res The visual image of the prediction result and the text file of the prediction result are saved in the res directory. The file name is infer_ results.txt.
+
+* Using OCR engine + SER concatenation results
+
+```shell
+export CUDA_VISIBLE_DEVICES=0
+python3.7 infer_ser_e2e.py \
+ --model_name_or_path "PP-Layout_v1.0_ser_pretrained/" \
+ --ser_model_type "LayoutXLM" \
+ --max_seq_length 512 \
+ --output_dir "output/ser_e2e/" \
+ --infer_imgs "images/input/zh_val_0.jpg"
+```
+
+* End-to-end evaluation of OCR engine + SER prediction system
+
+```shell
+export CUDA_VISIBLE_DEVICES=0
+python3.7 helper/eval_with_label_end2end.py --gt_json_path XFUND/zh_val/xfun_normalize_val.json --pred_json_path output_res/infer_results.txt
+```
+
+
+### 4.3 RE Task
+
+* Start training
+
+```shell
+export CUDA_VISIBLE_DEVICES=0
+python3 train_re.py \
+ --model_name_or_path "layoutxlm-base-uncased" \
+ --train_data_dir "XFUND/zh_train/image" \
+ --train_label_path "XFUND/zh_train/xfun_normalize_train.json" \
+ --eval_data_dir "XFUND/zh_val/image" \
+ --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
+ --label_map_path "labels/labels_ser.txt" \
+ --num_train_epochs 200 \
+ --eval_steps 10 \
+ --output_dir "output/re/" \
+ --learning_rate 5e-5 \
+ --warmup_steps 50 \
+ --per_gpu_train_batch_size 8 \
+ --per_gpu_eval_batch_size 8 \
+ --num_workers 8 \
+ --evaluate_during_training \
+ --seed 2048
+
+```
+
+* Resume training
+
+```shell
+export CUDA_VISIBLE_DEVICES=0
+python3 train_re.py \
+ --model_name_or_path "model_path" \
+ --train_data_dir "XFUND/zh_train/image" \
+ --train_label_path "XFUND/zh_train/xfun_normalize_train.json" \
+ --eval_data_dir "XFUND/zh_val/image" \
+ --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
+ --label_map_path "labels/labels_ser.txt" \
+ --num_train_epochs 2 \
+ --eval_steps 10 \
+ --output_dir "output/re/" \
+ --learning_rate 5e-5 \
+ --warmup_steps 50 \
+ --per_gpu_train_batch_size 8 \
+ --per_gpu_eval_batch_size 8 \
+ --num_workers 8 \
+ --evaluate_during_training \
+ --seed 2048 \
+ --resume
+
+```
+
+Finally, Precision, Recall, F1 and other indicators will be printed, and the model and training log will be saved in the output/RE file folder.
+
+* Evaluation
+```shell
+export CUDA_VISIBLE_DEVICES=0
+python3 eval_re.py \
+ --model_name_or_path "PP-Layout_v1.0_re_pretrained/" \
+ --max_seq_length 512 \
+ --eval_data_dir "XFUND/zh_val/image" \
+ --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
+ --label_map_path "labels/labels_ser.txt" \
+ --output_dir "output/re/" \
+ --per_gpu_eval_batch_size 8 \
+ --num_workers 8 \
+ --seed 2048
+```
+Finally, Precision, Recall, F1 and other indicators will be printed
+
+
+* The OCR recognition results provided in the evaluation set are used for prediction
+
+```shell
+export CUDA_VISIBLE_DEVICES=0
+python3 infer_re.py \
+ --model_name_or_path "PP-Layout_v1.0_re_pretrained/" \
+ --max_seq_length 512 \
+ --eval_data_dir "XFUND/zh_val/image" \
+ --eval_label_path "XFUND/zh_val/xfun_normalize_val.json" \
+ --label_map_path "labels/labels_ser.txt" \
+ --output_dir "output/re/" \
+ --per_gpu_eval_batch_size 1 \
+ --seed 2048
+```
+
+The visual image of the prediction result and the text file of the prediction result are saved in the output_res file folder, the file name is`infer_results.txt`。
+
+* Concatenation results using OCR engine + SER+ RE
+
+```shell
+export CUDA_VISIBLE_DEVICES=0
+python3.7 infer_ser_re_e2e.py \
+ --model_name_or_path "PP-Layout_v1.0_ser_pretrained/" \
+ --re_model_name_or_path "PP-Layout_v1.0_re_pretrained/" \
+ --ser_model_type "LayoutXLM" \
+ --max_seq_length 512 \
+ --output_dir "output/ser_re_e2e/" \
+ --infer_imgs "images/input/zh_val_21.jpg"
+```
+
+## Reference
+
+- LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding, https://arxiv.org/pdf/2104.08836.pdf
+- microsoft/unilm/layoutxlm, https://github.com/microsoft/unilm/tree/master/layoutxlm
+- XFUND dataset, https://github.com/doc-analysis/XFUND
diff --git a/ppstructure/vqa/README.md b/ppstructure/vqa/README.md
index b5e95fd219961363d6c1c09330ea795e11725a4e..619ada71a82eacd88abd39199d0b220dc6c64c9b 100644
--- a/ppstructure/vqa/README.md
+++ b/ppstructure/vqa/README.md
@@ -15,7 +15,7 @@ PP-Structure 里的 DOC-VQA算法基于PaddleNLP自然语言处理算法库进
**Note**:本项目基于 [LayoutXLM](https://arxiv.org/pdf/2104.08836.pdf) 在Paddle 2.2上的开源实现,同时经过飞桨团队与**中国工商银行**在不动产证场景深入打磨,联合开源。
-## 1 性能
+## 1.性能
我们在 [XFUN](https://github.com/doc-analysis/XFUND) 的中文数据集上对算法进行了评估,性能如下
@@ -27,7 +27,7 @@ PP-Structure 里的 DOC-VQA算法基于PaddleNLP自然语言处理算法库进
-## 2. 效果演示
+## 2.效果演示
**注意:** 测试图片来源于XFUN数据集。
@@ -54,7 +54,7 @@ PP-Structure 里的 DOC-VQA算法基于PaddleNLP自然语言处理算法库进
图中红色框表示问题,蓝色框表示答案,问题和答案之间使用绿色线连接。在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
-## 3. 安装
+## 3.安装
### 3.1 安装依赖
@@ -211,7 +211,7 @@ python3 helper/eval_with_label_end2end.py --gt_json_path XFUND/zh_val/xfun_norma
```
-### 3.3 RE任务
+### 4.3 RE任务
* 启动训练
diff --git a/tools/infer_rec.py b/tools/infer_rec.py
index adc3c1c3c49dcaad5ec8657f5d32b2eca8e10a40..b0c836ff3bcee5b9009b62c60483697db8091bde 100755
--- a/tools/infer_rec.py
+++ b/tools/infer_rec.py
@@ -137,7 +137,7 @@ def main():
if info is not None:
logger.info("\t result: {}".format(info))
- fout.write(file + "\t" + info)
+ fout.write(os.path.basename(file) + "\t" + info + "\n")
logger.info("success!")