提交 b9964c83 编写于 作者: L LDOUBLEV

Merge branch 'test_v11' of https://github.com/LDOUBLEV/PaddleOCR into test_v11

...@@ -20,6 +20,7 @@ import numpy as np ...@@ -20,6 +20,7 @@ import numpy as np
from .locality_aware_nms import nms_locality from .locality_aware_nms import nms_locality
import cv2 import cv2
import paddle import paddle
import lanms
import os import os
import sys import sys
...@@ -29,6 +30,7 @@ class EASTPostProcess(object): ...@@ -29,6 +30,7 @@ class EASTPostProcess(object):
""" """
The post process for EAST. The post process for EAST.
""" """
def __init__(self, def __init__(self,
score_thresh=0.8, score_thresh=0.8,
cover_thresh=0.1, cover_thresh=0.1,
...@@ -39,11 +41,6 @@ class EASTPostProcess(object): ...@@ -39,11 +41,6 @@ class EASTPostProcess(object):
self.cover_thresh = cover_thresh self.cover_thresh = cover_thresh
self.nms_thresh = nms_thresh self.nms_thresh = nms_thresh
# c++ la-nms is faster, but only support python 3.5
self.is_python35 = False
if sys.version_info.major == 3 and sys.version_info.minor == 5:
self.is_python35 = True
def restore_rectangle_quad(self, origin, geometry): def restore_rectangle_quad(self, origin, geometry):
""" """
Restore rectangle from quadrangle. Restore rectangle from quadrangle.
...@@ -79,11 +76,8 @@ class EASTPostProcess(object): ...@@ -79,11 +76,8 @@ class EASTPostProcess(object):
boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32) boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
boxes[:, :8] = text_box_restored.reshape((-1, 8)) boxes[:, :8] = text_box_restored.reshape((-1, 8))
boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]] boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
if self.is_python35:
import lanms
boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh) boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh)
else: # boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
if boxes.shape[0] == 0: if boxes.shape[0] == 0:
return [] return []
# Here we filter some low score boxes by the average score map, # Here we filter some low score boxes by the average score map,
......
...@@ -54,11 +54,28 @@ def load_model(config, model, optimizer=None): ...@@ -54,11 +54,28 @@ def load_model(config, model, optimizer=None):
pretrained_model = global_config.get('pretrained_model') pretrained_model = global_config.get('pretrained_model')
best_model_dict = {} best_model_dict = {}
if checkpoints: if checkpoints:
if checkpoints.endswith('pdparams'): if checkpoints.endswith('.pdparams'):
checkpoints = checkpoints.replace('.pdparams', '') checkpoints = checkpoints.replace('.pdparams', '')
assert os.path.exists(checkpoints + ".pdopt"), \ assert os.path.exists(checkpoints + ".pdparams"), \
f"The {checkpoints}.pdopt does not exists!" "The {}.pdparams does not exists!".format(checkpoints)
load_pretrained_params(model, checkpoints)
# load params from trained model
params = paddle.load(checkpoints + '.pdparams')
state_dict = model.state_dict()
new_state_dict = {}
for key, value in state_dict.items():
if key not in params:
logger.warning("{} not in loaded params {} !".format(
key, params.keys()))
pre_value = params[key]
if list(value.shape) == list(pre_value.shape):
new_state_dict[key] = pre_value
else:
logger.warning(
"The shape of model params {} {} not matched with loaded params shape {} !".
format(key, value.shape, pre_value.shape))
model.set_state_dict(new_state_dict)
optim_dict = paddle.load(checkpoints + '.pdopt') optim_dict = paddle.load(checkpoints + '.pdopt')
if optimizer is not None: if optimizer is not None:
optimizer.set_state_dict(optim_dict) optimizer.set_state_dict(optim_dict)
...@@ -80,10 +97,10 @@ def load_model(config, model, optimizer=None): ...@@ -80,10 +97,10 @@ def load_model(config, model, optimizer=None):
def load_pretrained_params(model, path): def load_pretrained_params(model, path):
logger = get_logger() logger = get_logger()
if path.endswith('pdparams'): if path.endswith('.pdparams'):
path = path.replace('.pdparams', '') path = path.replace('.pdparams', '')
assert os.path.exists(path + ".pdparams"), \ assert os.path.exists(path + ".pdparams"), \
f"The {path}.pdparams does not exists!" "The {}.pdparams does not exists!".format(path)
params = paddle.load(path + '.pdparams') params = paddle.load(path + '.pdparams')
state_dict = model.state_dict() state_dict = model.state_dict()
...@@ -92,11 +109,11 @@ def load_pretrained_params(model, path): ...@@ -92,11 +109,11 @@ def load_pretrained_params(model, path):
if list(state_dict[k1].shape) == list(params[k2].shape): if list(state_dict[k1].shape) == list(params[k2].shape):
new_state_dict[k1] = params[k2] new_state_dict[k1] = params[k2]
else: else:
logger.info( logger.warning(
f"The shape of model params {k1} {state_dict[k1].shape} not matched with loaded params {k2} {params[k2].shape} !" "The shape of model params {} {} not matched with loaded params {} {} !".
) format(k1, state_dict[k1].shape, k2, params[k2].shape))
model.set_state_dict(new_state_dict) model.set_state_dict(new_state_dict)
logger.info(f"load pretrain successful from {path}") logger.info("load pretrain successful from {}".format(path))
return model return model
......
...@@ -13,3 +13,4 @@ lxml ...@@ -13,3 +13,4 @@ lxml
premailer premailer
openpyxl openpyxl
fasttext==0.9.1 fasttext==0.9.1
lanms-nova
\ No newline at end of file
===========================lite_params===========================
inference:./ocr_db_crnn det
runtime_device:ARM_GPU_OPENCL
det_infer_model:ch_PP-OCRv2_det_infer|ch_PP-OCRv2_det_slim_quant_infer
null:null
null:null
--cpu_threads:1|4
--det_batch_size:1
null:null
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/
--config_dir:./config.txt
null:null
--benchmark:True
===========================lite_params===========================
inference:./ocr_db_crnn system
runtime_device:ARM_CPU
det_infer_model:ch_ppocr_mobile_v2.0_det_infer|ch_ppocr_db_mobile_v2.0_det_quant_infer
rec_infer_model:ch_ppocr_mobile_v2.0_rec_infer|ch_ppocr_mobile_v2.0_rec_slim_infer
cls_infer_model:ch_ppocr_mobile_v2.0_cls_infer|ch_ppocr_mobile_v2.0_cls_slim_infer
--cpu_threads:1|4
--det_batch_size:1
--rec_batch_size:1
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/
--config_dir:./config.txt
--rec_dict_dir:./ppocr_keys_v1.txt
--benchmark:True
===========================lite_params===========================
inference:./ocr_db_crnn system
runtime_device:ARM_GPU_OPENCL
det_infer_model:ch_ppocr_mobile_v2.0_det_infer|ch_ppocr_db_mobile_v2.0_det_quant_infer
rec_infer_model:ch_ppocr_mobile_v2.0_rec_infer|ch_ppocr_mobile_v2.0_rec_slim_infer
cls_infer_model:ch_ppocr_mobile_v2.0_cls_infer|ch_ppocr_mobile_v2.0_cls_slim_infer
--cpu_threads:1|4
--det_batch_size:1
--rec_batch_size:1
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/
--config_dir:./config.txt
--rec_dict_dir:./ppocr_keys_v1.txt
--benchmark:True
===========================lite_params=========================== ===========================lite_params===========================
inference:./ocr_db_crnn det inference:./ocr_db_crnn det
infer_model:ch_PP-OCRv2_det_infer|ch_PP-OCRv2_det_slim_quant_infer
runtime_device:ARM_CPU runtime_device:ARM_CPU
det_infer_model:ch_ppocr_mobile_v2.0_det_infer|ch_ppocr_db_mobile_v2.0_det_quant_infer
null:null
null:null
--cpu_threads:1|4 --cpu_threads:1|4
--det_batch_size:1 --det_batch_size:1
--rec_batch_size:1 null:null
--system_batch_size:1
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/ --image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/
--config_dir:./config.txt --config_dir:./config.txt
--rec_dict_dir:./ppocr_keys_v1.txt null:null
--benchmark:True --benchmark:True
===========================lite_params=========================== ===========================lite_params===========================
inference:./ocr_db_crnn det inference:./ocr_db_crnn det
runtime_device:ARM_GPU_OPENCL runtime_device:ARM_GPU_OPENCL
det_infer_model:ch_PP-OCRv2_det_infer|ch_PP-OCRv2_det_slim_quant_infer det_infer_model:ch_ppocr_mobile_v2.0_det_infer|ch_ppocr_db_mobile_v2.0_det_quant_infer
null:null null:null
null:null null:null
--cpu_threads:1|4 --cpu_threads:1|4
......
Global:
use_gpu: true
epoch_num: 10000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/east_mv3/
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
save_res_path: ./output/det_east/predicts_east.txt
Architecture:
model_type: det
algorithm: EAST
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
Neck:
name: EASTFPN
model_name: small
Head:
name: EASTHead
model_name: small
Loss:
name: EASTLoss
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
# name: Cosine
learning_rate: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: EASTPostProcess
score_thresh: 0.8
cover_thresh: 0.1
nms_thresh: 0.2
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- EASTProcessTrain:
image_shape: [512, 512]
background_ratio: 0.125
min_crop_side_ratio: 0.1
min_text_size: 10
- KeepKeys:
keep_keys: ['image', 'score_map', 'geo_map', 'training_mask'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 16
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
limit_side_len: 2400
limit_type: max
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2
\ No newline at end of file
===========================train_params===========================
model_name:det_mv3_east_v2.0
python:python3.7
gpu_list:0
Global.use_gpu:True|True
Global.auto_cast:fp32
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=500
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/det_mv3_east_v2.0/det_mv3_east.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_mv3_east_v2.0/det_mv3_east.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
train_model:./inference/det_mv3_east/best_accuracy
infer_export:tools/export_model.py -c test_tipc/cconfigs/det_mv3_east_v2.0/det_mv3_east.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
--det_algorithm:EAST
Global:
use_gpu: true
epoch_num: 10000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/east_r50_vd/
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
cal_metric_during_train: False
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
save_res_path: ./output/det_east/predicts_east.txt
Architecture:
model_type: det
algorithm: EAST
Transform:
Backbone:
name: ResNet
layers: 50
Neck:
name: EASTFPN
model_name: large
Head:
name: EASTHead
model_name: large
Loss:
name: EASTLoss
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
# name: Cosine
learning_rate: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: EASTPostProcess
score_thresh: 0.8
cover_thresh: 0.1
nms_thresh: 0.2
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- EASTProcessTrain:
image_shape: [512, 512]
background_ratio: 0.125
min_crop_side_ratio: 0.1
min_text_size: 10
- KeepKeys:
keep_keys: ['image', 'score_map', 'geo_map', 'training_mask'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
Fa: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
limit_side_len: 2400
limit_type: max
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2
\ No newline at end of file
===========================train_params===========================
model_name:det_r50_vd_east_v2.0
python:python3.7
gpu_list:0
Global.use_gpu:True|True
Global.auto_cast:fp32
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=500
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/det_r50_vd_east_v2.0/det_r50_vd_east.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_r50_vd_east_v2.0/det_r50_vd_east.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
train_model:./inference/det_mv3_east/best_accuracy
infer_export:tools/export_model.py -c test_tipc/cconfigs/det_r50_vd_east_v2.0/det_r50_vd_east.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
--det_algorithm:EAST
...@@ -16,7 +16,7 @@ Lite\_arm\_cpp预测功能测试的主程序为`test_lite_arm_cpp.sh`,可以 ...@@ -16,7 +16,7 @@ Lite\_arm\_cpp预测功能测试的主程序为`test_lite_arm_cpp.sh`,可以
| 模型类型 | batch-size | threads | predictor数量 | 预测库来源 | 测试硬件 | | 模型类型 | batch-size | threads | predictor数量 | 预测库来源 | 测试硬件 |
| :----: | :----: | :----: | :----: | :----: | :----: | | :----: | :----: | :----: | :----: | :----: | :----: |
| 正常模型/量化模型 | 1 | 1/4 | 单/多 | 下载方式 | ARM\_CPU/ARM\_GPU_OPENCL | | 正常模型/量化模型 | 1 | 1/4 | 单/多 | 下载方式/编译方式 | ARM\_CPU/ARM\_GPU_OPENCL |
## 2. 测试流程 ## 2. 测试流程
...@@ -30,8 +30,11 @@ Lite\_arm\_cpp预测功能测试的主程序为`test_lite_arm_cpp.sh`,可以 ...@@ -30,8 +30,11 @@ Lite\_arm\_cpp预测功能测试的主程序为`test_lite_arm_cpp.sh`,可以
```shell ```shell
# 数据和模型准备 # 数据、模型、Paddle-Lite预测库准备
bash test_tipc/prepare_lite_cpp.sh ./test_tipc/configs/ppocr_det_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt #预测库为下载方式
bash test_tipc/prepare_lite_cpp.sh ./test_tipc/configs/ch_PP-OCRv2_det/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt download
#预测库为编译方式
bash test_tipc/prepare_lite_cpp.sh ./test_tipc/configs/ch_PP-OCRv2_det/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt compile
# 手机端测试: # 手机端测试:
bash test_lite_arm_cpp.sh model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt bash test_lite_arm_cpp.sh model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
...@@ -42,8 +45,11 @@ bash test_lite_arm_cpp.sh model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt ...@@ -42,8 +45,11 @@ bash test_lite_arm_cpp.sh model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
```shell ```shell
# 数据和模型准备 # 数据、模型、Paddle-Lite预测库准备
bash test_tipc/prepare_lite_cpp.sh ./test_tipc/configs/ppocr_det_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.txt #预测库下载方式
bash test_tipc/prepare_lite_cpp.sh ./test_tipc/configs/ch_PP-OCRv2_det/model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.txt download
#预测库编译方式
bash test_tipc/prepare_lite_cpp.sh ./test_tipc/configs/ch_PP-OCRv2_det/model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.txt compile
# 手机端测试: # 手机端测试:
bash test_lite_arm_cpp.sh model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.txt bash test_lite_arm_cpp.sh model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.txt
...@@ -53,9 +59,7 @@ bash test_lite_arm_cpp.sh model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl. ...@@ -53,9 +59,7 @@ bash test_lite_arm_cpp.sh model_linux_gpu_normal_normal_lite_cpp_arm_gpu_opencl.
**注意** **注意**
1.由于运行该项目需要bash等命令,传统的adb方式不能很好的安装。所以此处推荐通在手机上开启虚拟终端的方式连接电脑,连接方式可以参考[安卓手机termux连接电脑](./termux_for_android.md) 由于运行该项目需要bash等命令,传统的adb方式不能很好的安装。所以此处推荐通在手机上开启虚拟终端的方式连接电脑,连接方式可以参考[安卓手机termux连接电脑](./termux_for_android.md)
2.如果测试文本检测和识别完整的pipeline,在执行`prepare_lite_cpp.sh`时,配置文件需替换为`test_tipc/configs/ppocr_system_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt`。在手机端测试阶段,配置文件同样修改为该文件。
### 2.2 运行结果 ### 2.2 运行结果
......
...@@ -6,6 +6,7 @@ dataline=$(cat ${FILENAME}) ...@@ -6,6 +6,7 @@ dataline=$(cat ${FILENAME})
IFS=$'\n' IFS=$'\n'
lines=(${dataline}) lines=(${dataline})
IFS=$'\n' IFS=$'\n'
paddlelite_library_source=$2
inference_cmd=$(func_parser_value "${lines[1]}") inference_cmd=$(func_parser_value "${lines[1]}")
DEVICE=$(func_parser_value "${lines[2]}") DEVICE=$(func_parser_value "${lines[2]}")
...@@ -13,40 +14,42 @@ det_lite_model_list=$(func_parser_value "${lines[3]}") ...@@ -13,40 +14,42 @@ det_lite_model_list=$(func_parser_value "${lines[3]}")
rec_lite_model_list=$(func_parser_value "${lines[4]}") rec_lite_model_list=$(func_parser_value "${lines[4]}")
cls_lite_model_list=$(func_parser_value "${lines[5]}") cls_lite_model_list=$(func_parser_value "${lines[5]}")
if [[ $inference_cmd =~ "det" ]];then if [[ $inference_cmd =~ "det" ]]; then
lite_model_list=${det_lite_model_list} lite_model_list=${det_lite_model_list}
elif [[ $inference_cmd =~ "rec" ]];then elif [[ $inference_cmd =~ "rec" ]]; then
lite_model_list=(${rec_lite_model_list[*]} ${cls_lite_model_list[*]}) lite_model_list=(${rec_lite_model_list[*]} ${cls_lite_model_list[*]})
elif [[ $inference_cmd =~ "system" ]];then elif [[ $inference_cmd =~ "system" ]]; then
lite_model_list=(${det_lite_model_list[*]} ${rec_lite_model_list[*]} ${cls_lite_model_list[*]}) lite_model_list=(${det_lite_model_list[*]} ${rec_lite_model_list[*]} ${cls_lite_model_list[*]})
else else
echo "inference_cmd is wrong, please check." echo "inference_cmd is wrong, please check."
exit 1 exit 1
fi fi
if [ ${DEVICE} = "ARM_CPU" ];then if [ ${DEVICE} = "ARM_CPU" ]; then
valid_targets="arm" valid_targets="arm"
paddlelite_url="https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz" paddlelite_library_url="https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz"
end_index="66" end_index="66"
elif [ ${DEVICE} = "ARM_GPU_OPENCL" ];then compile_with_opencl="OFF"
elif [ ${DEVICE} = "ARM_GPU_OPENCL" ]; then
valid_targets="opencl" valid_targets="opencl"
paddlelite_url="https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.armv8.clang.with_exception.with_extra.with_cv.opencl.tar.gz" paddlelite_library_url="https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.armv8.clang.with_exception.with_extra.with_cv.opencl.tar.gz"
end_index="71" end_index="71"
compile_with_opencl="ON"
else else
echo "DEVICE only suport ARM_CPU, ARM_GPU_OPENCL." echo "DEVICE only support ARM_CPU, ARM_GPU_OPENCL."
exit 2 exit 2
fi fi
# prepare lite .nb model # prepare paddlelite model
pip install paddlelite==2.10-rc pip install paddlelite==2.10-rc
current_dir=${PWD} current_dir=${PWD}
IFS="|" IFS="|"
model_path=./inference_models model_path=./inference_models
for model in ${lite_model_list[*]}; do for model in ${lite_model_list[*]}; do
if [[ $model =~ "PP-OCRv2" ]];then if [[ $model =~ "PP-OCRv2" ]]; then
inference_model_url=https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/${model}.tar inference_model_url=https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/${model}.tar
elif [[ $model =~ "v2.0" ]];then elif [[ $model =~ "v2.0" ]]; then
inference_model_url=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/${model}.tar inference_model_url=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/${model}.tar
else else
echo "Model is wrong, please check." echo "Model is wrong, please check."
...@@ -63,31 +66,42 @@ done ...@@ -63,31 +66,42 @@ done
# prepare test data # prepare test data
data_url=https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar data_url=https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
model_path=./inference_models
inference_model=${inference_model_url##*/}
data_file=${data_url##*/} data_file=${data_url##*/}
wget -nc -P ./inference_models ${inference_model_url}
wget -nc -P ./test_data ${data_url} wget -nc -P ./test_data ${data_url}
cd ./inference_models && tar -xf ${inference_model} && cd ../
cd ./test_data && tar -xf ${data_file} && rm ${data_file} && cd ../ cd ./test_data && tar -xf ${data_file} && rm ${data_file} && cd ../
# prepare lite env # prepare paddlelite predict library
paddlelite_zipfile=$(echo $paddlelite_url | awk -F "/" '{print $NF}') if [[ ${paddlelite_library_source} = "download" ]]; then
paddlelite_file=${paddlelite_zipfile:0:${end_index}} paddlelite_library_zipfile=$(echo $paddlelite_library_url | awk -F "/" '{print $NF}')
wget ${paddlelite_url} && tar -xf ${paddlelite_zipfile} paddlelite_library_file=${paddlelite_library_zipfile:0:${end_index}}
mkdir -p ${paddlelite_file}/demo/cxx/ocr/test_lite wget ${paddlelite_library_url} && tar -xf ${paddlelite_library_zipfile}
cp -r ${model_path}/*_opt.nb test_data ${paddlelite_file}/demo/cxx/ocr/test_lite cd ${paddlelite_library_zipfile}
cp ppocr/utils/ppocr_keys_v1.txt deploy/lite/config.txt ${paddlelite_file}/demo/cxx/ocr/test_lite elif [[ ${paddlelite_library_source} = "compile" ]]; then
cp -r ./deploy/lite/* ${paddlelite_file}/demo/cxx/ocr/ git clone -b release/v2.10 https://github.com/PaddlePaddle/Paddle-Lite.git
cp ${paddlelite_file}/cxx/lib/libpaddle_light_api_shared.so ${paddlelite_file}/demo/cxx/ocr/test_lite cd Paddle-Lite
cp ${FILENAME} test_tipc/test_lite_arm_cpp.sh test_tipc/common_func.sh ${paddlelite_file}/demo/cxx/ocr/test_lite ./lite/tools/build_android.sh --arch=armv8 --with_cv=ON --with_extra=ON --toolchain=clang --with_opencl=${compile_with_opencl}
cd ${paddlelite_file}/demo/cxx/ocr/ cd ../
cp -r Paddle-Lite/build.lite.android.armv8.clang/inference_lite_lib.android.armv8/ .
paddlelite_library_file=inference_lite_lib.android.armv8
else
echo "paddlelite_library_source only support 'download' and 'compile'"
exit 3
fi
# organize the required files
mkdir -p ${paddlelite_library_file}/demo/cxx/ocr/test_lite
cp -r ${model_path}/*_opt.nb test_data ${paddlelite_library_file}/demo/cxx/ocr/test_lite
cp ppocr/utils/ppocr_keys_v1.txt deploy/lite/config.txt ${paddlelite_library_file}/demo/cxx/ocr/test_lite
cp -r ./deploy/lite/* ${paddlelite_library_file}/demo/cxx/ocr/
cp ${paddlelite_library_file}/cxx/lib/libpaddle_light_api_shared.so ${paddlelite_library_file}/demo/cxx/ocr/test_lite
cp ${FILENAME} test_tipc/test_lite_arm_cpp.sh test_tipc/common_func.sh ${paddlelite_library_file}/demo/cxx/ocr/test_lite
cd ${paddlelite_library_file}/demo/cxx/ocr/
git clone https://github.com/cuicheng01/AutoLog.git git clone https://github.com/cuicheng01/AutoLog.git
# make # compile and do some postprocess
make -j make -j
sleep 1 sleep 1
make -j make -j
cp ocr_db_crnn test_lite && cp test_lite/libpaddle_light_api_shared.so test_lite/libc++_shared.so cp ocr_db_crnn test_lite && cp test_lite/libpaddle_light_api_shared.so test_lite/libc++_shared.so
tar -cf test_lite.tar ./test_lite && cp test_lite.tar ${current_dir} && cd ${current_dir} tar -cf test_lite.tar ./test_lite && cp test_lite.tar ${current_dir} && cd ${current_dir}
rm -rf ${paddlelite_file}* && rm -rf ${model_path} rm -rf ${paddlelite_library_file}* && rm -rf ${model_path}
...@@ -190,6 +190,7 @@ def create_predictor(args, mode, logger): ...@@ -190,6 +190,7 @@ def create_predictor(args, mode, logger):
config.enable_use_gpu(args.gpu_mem, 0) config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt: if args.use_tensorrt:
config.enable_tensorrt_engine( config.enable_tensorrt_engine(
workspace_size=1 << 30,
precision_mode=precision, precision_mode=precision,
max_batch_size=args.max_batch_size, max_batch_size=args.max_batch_size,
min_subgraph_size=args.min_subgraph_size) min_subgraph_size=args.min_subgraph_size)
...@@ -310,10 +311,6 @@ def create_predictor(args, mode, logger): ...@@ -310,10 +311,6 @@ def create_predictor(args, mode, logger):
def get_infer_gpuid(): def get_infer_gpuid():
cmd = "nvidia-smi"
res = os.popen(cmd).readlines()
if len(res) == 0:
return None
cmd = "env | grep CUDA_VISIBLE_DEVICES" cmd = "env | grep CUDA_VISIBLE_DEVICES"
env_cuda = os.popen(cmd).readlines() env_cuda = os.popen(cmd).readlines()
if len(env_cuda) == 0: if len(env_cuda) == 0:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册