Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
b6f0a903
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b6f0a903
编写于
8月 16, 2021
作者:
T
Topdu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add rec_nrtr
上级
6127aad9
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
1338 addition
and
4 deletion
+1338
-4
configs/rec/rec_mtb_nrtr.yml
configs/rec/rec_mtb_nrtr.yml
+100
-0
ppocr/data/imaug/label_ops.py
ppocr/data/imaug/label_ops.py
+28
-0
ppocr/modeling/heads/__init__.py
ppocr/modeling/heads/__init__.py
+3
-2
ppocr/modeling/heads/multiheadAttention.py
ppocr/modeling/heads/multiheadAttention.py
+365
-0
ppocr/modeling/heads/rec_nrtr_optim_head.py
ppocr/modeling/heads/rec_nrtr_optim_head.py
+779
-0
ppocr/postprocess/rec_postprocess.py
ppocr/postprocess/rec_postprocess.py
+63
-0
tools/eval.py
tools/eval.py
+0
-2
未找到文件。
configs/rec/rec_mtb_nrtr.yml
0 → 100644
浏览文件 @
b6f0a903
Global
:
use_gpu
:
True
epoch_num
:
21
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/nrtr_final/
save_epoch_step
:
1
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
character_type
:
EN_symbol
max_text_length
:
25
infer_mode
:
False
use_space_char
:
True
save_res_path
:
./output/rec/predicts_nrtr.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.99
clip_norm
:
5.0
lr
:
name
:
Cosine
learning_rate
:
0.0005
warmup_epoch
:
2
regularizer
:
name
:
'
L2'
factor
:
0.
Architecture
:
model_type
:
rec
algorithm
:
NRTR
in_channels
:
1
Transform
:
Backbone
:
name
:
MTB
cnn_num
:
2
Head
:
name
:
TransformerOptim
d_model
:
512
num_encoder_layers
:
6
beam_size
:
-1
# When Beam size is greater than 0, it means to use beam search when evaluation.
Loss
:
name
:
NRTRLoss
smoothing
:
True
PostProcess
:
name
:
NRTRLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
LMDBDataSet
data_dir
:
/paddle/data/ocr_data/training/
transforms
:
-
NRTRDecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
NRTRLabelEncode
:
# Class handling label
-
PILResize
:
image_shape
:
[
100
,
32
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
512
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
LMDBDataSet
data_dir
:
/paddle/data/ocr_data/evaluation/
transforms
:
-
NRTRDecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
NRTRLabelEncode
:
# Class handling label
-
PILResize
:
image_shape
:
[
100
,
32
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
1
use_shared_memory
:
False
ppocr/data/imaug/label_ops.py
浏览文件 @
b6f0a903
...
@@ -159,6 +159,34 @@ class BaseRecLabelEncode(object):
...
@@ -159,6 +159,34 @@ class BaseRecLabelEncode(object):
return
text_list
return
text_list
class
NRTRLabelEncode
(
BaseRecLabelEncode
):
""" Convert between text-label and text-index """
def
__init__
(
self
,
max_text_length
,
character_dict_path
=
None
,
character_type
=
'EN_symbol'
,
use_space_char
=
False
,
**
kwargs
):
super
(
NRTRLabelEncode
,
self
).
__init__
(
max_text_length
,
character_dict_path
,
character_type
,
use_space_char
)
def
__call__
(
self
,
data
):
text
=
data
[
'label'
]
text
=
self
.
encode
(
text
)
if
text
is
None
:
return
None
data
[
'length'
]
=
np
.
array
(
len
(
text
))
text
.
insert
(
0
,
2
)
text
.
append
(
3
)
text
=
text
+
[
0
]
*
(
self
.
max_text_len
-
len
(
text
))
data
[
'label'
]
=
np
.
array
(
text
)
return
data
def
add_special_char
(
self
,
dict_character
):
dict_character
=
[
'blank'
,
'<unk>'
,
'<s>'
,
'</s>'
]
+
dict_character
return
dict_character
class
CTCLabelEncode
(
BaseRecLabelEncode
):
class
CTCLabelEncode
(
BaseRecLabelEncode
):
""" Convert between text-label and text-index """
""" Convert between text-label and text-index """
...
...
ppocr/modeling/heads/__init__.py
浏览文件 @
b6f0a903
...
@@ -26,12 +26,13 @@ def build_head(config):
...
@@ -26,12 +26,13 @@ def build_head(config):
from
.rec_ctc_head
import
CTCHead
from
.rec_ctc_head
import
CTCHead
from
.rec_att_head
import
AttentionHead
from
.rec_att_head
import
AttentionHead
from
.rec_srn_head
import
SRNHead
from
.rec_srn_head
import
SRNHead
from
.rec_nrtr_optim_head
import
TransformerOptim
# cls head
# cls head
from
.cls_head
import
ClsHead
from
.cls_head
import
ClsHead
support_dict
=
[
support_dict
=
[
'DBHead'
,
'EASTHead'
,
'SASTHead'
,
'CTCHead'
,
'ClsHead'
,
'AttentionHead'
,
'DBHead'
,
'EASTHead'
,
'SASTHead'
,
'CTCHead'
,
'ClsHead'
,
'AttentionHead'
,
'SRNHead'
,
'PGHead'
]
'SRNHead'
,
'PGHead'
,
'TransformerOptim'
]
module_name
=
config
.
pop
(
'name'
)
module_name
=
config
.
pop
(
'name'
)
...
...
ppocr/modeling/heads/multiheadAttention.py
0 → 100755
浏览文件 @
b6f0a903
import
paddle
from
paddle
import
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
Linear
from
paddle.nn.initializer
import
XavierUniform
as
xavier_uniform_
from
paddle.nn.initializer
import
Constant
as
constant_
from
paddle.nn.initializer
import
XavierNormal
as
xavier_normal_
zeros_
=
constant_
(
value
=
0.
)
ones_
=
constant_
(
value
=
1.
)
class
MultiheadAttention
(
nn
.
Layer
):
r
"""Allows the model to jointly attend to information
from different representation subspaces.
See reference: Attention Is All You Need
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
Args:
embed_dim: total dimension of the model
num_heads: parallel attention layers, or heads
Examples::
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
"""
def
__init__
(
self
,
embed_dim
,
num_heads
,
dropout
=
0.
,
bias
=
True
,
add_bias_kv
=
False
,
add_zero_attn
=
False
):
super
(
MultiheadAttention
,
self
).
__init__
()
self
.
embed_dim
=
embed_dim
self
.
num_heads
=
num_heads
self
.
dropout
=
dropout
self
.
head_dim
=
embed_dim
//
num_heads
assert
self
.
head_dim
*
num_heads
==
self
.
embed_dim
,
"embed_dim must be divisible by num_heads"
self
.
scaling
=
self
.
head_dim
**
-
0.5
self
.
out_proj
=
Linear
(
embed_dim
,
embed_dim
,
bias_attr
=
bias
)
if
add_bias_kv
:
self
.
bias_k
=
self
.
create_parameter
(
shape
=
(
1
,
1
,
embed_dim
),
default_initializer
=
zeros_
)
self
.
add_parameter
(
"bias_k"
,
self
.
bias_k
)
self
.
bias_v
=
self
.
create_parameter
(
shape
=
(
1
,
1
,
embed_dim
),
default_initializer
=
zeros_
)
self
.
add_parameter
(
"bias_v"
,
self
.
bias_v
)
else
:
self
.
bias_k
=
self
.
bias_v
=
None
self
.
add_zero_attn
=
add_zero_attn
self
.
_reset_parameters
()
self
.
conv1
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
self
.
conv2
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
*
2
,
kernel_size
=
(
1
,
1
))
self
.
conv3
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
*
3
,
kernel_size
=
(
1
,
1
))
def
_reset_parameters
(
self
):
xavier_uniform_
(
self
.
out_proj
.
weight
)
if
self
.
bias_k
is
not
None
:
xavier_normal_
(
self
.
bias_k
)
if
self
.
bias_v
is
not
None
:
xavier_normal_
(
self
.
bias_v
)
def
forward
(
self
,
query
,
key
,
value
,
key_padding_mask
=
None
,
incremental_state
=
None
,
need_weights
=
True
,
static_kv
=
False
,
attn_mask
=
None
,
qkv_
=
[
False
,
False
,
False
]):
"""
Inputs of forward function
query: [target length, batch size, embed dim]
key: [sequence length, batch size, embed dim]
value: [sequence length, batch size, embed dim]
key_padding_mask: if True, mask padding based on batch size
incremental_state: if provided, previous time steps are cashed
need_weights: output attn_output_weights
static_kv: key and value are static
Outputs of forward function
attn_output: [target length, batch size, embed dim]
attn_output_weights: [batch size, target length, sequence length]
"""
qkv_same
=
qkv_
[
0
]
kv_same
=
qkv_
[
1
]
tgt_len
,
bsz
,
embed_dim
=
query
.
shape
assert
embed_dim
==
self
.
embed_dim
assert
list
(
query
.
shape
)
==
[
tgt_len
,
bsz
,
embed_dim
]
assert
key
.
shape
==
value
.
shape
if
qkv_same
:
# self-attention
q
,
k
,
v
=
self
.
_in_proj_qkv
(
query
)
elif
kv_same
:
# encoder-decoder attention
q
=
self
.
_in_proj_q
(
query
)
if
key
is
None
:
assert
value
is
None
k
=
v
=
None
else
:
k
,
v
=
self
.
_in_proj_kv
(
key
)
else
:
q
=
self
.
_in_proj_q
(
query
)
k
=
self
.
_in_proj_k
(
key
)
v
=
self
.
_in_proj_v
(
value
)
q
*=
self
.
scaling
if
self
.
bias_k
is
not
None
:
assert
self
.
bias_v
is
not
None
self
.
bias_k
=
paddle
.
concat
([
self
.
bias_k
for
i
in
range
(
bsz
)],
axis
=
1
)
self
.
bias_v
=
paddle
.
concat
([
self
.
bias_v
for
i
in
range
(
bsz
)],
axis
=
1
)
k
=
paddle
.
concat
([
k
,
self
.
bias_k
])
v
=
paddle
.
concat
([
v
,
self
.
bias_v
])
if
attn_mask
is
not
None
:
attn_mask
=
paddle
.
concat
([
attn_mask
,
paddle
.
zeros
([
attn_mask
.
shape
[
0
],
1
],
dtype
=
attn_mask
.
dtype
)],
axis
=
1
)
if
key_padding_mask
is
not
None
:
key_padding_mask
=
paddle
.
concat
(
[
key_padding_mask
,
paddle
.
zeros
([
key_padding_mask
.
shape
[
0
],
1
],
dtype
=
key_padding_mask
.
dtype
)],
axis
=
1
)
q
=
q
.
reshape
([
tgt_len
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
([
1
,
0
,
2
])
if
k
is
not
None
:
k
=
k
.
reshape
([
-
1
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
([
1
,
0
,
2
])
if
v
is
not
None
:
v
=
v
.
reshape
([
-
1
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
([
1
,
0
,
2
])
src_len
=
k
.
shape
[
1
]
if
key_padding_mask
is
not
None
:
assert
key_padding_mask
.
shape
[
0
]
==
bsz
assert
key_padding_mask
.
shape
[
1
]
==
src_len
if
self
.
add_zero_attn
:
src_len
+=
1
k
=
paddle
.
concat
([
k
,
paddle
.
zeros
((
k
.
shape
[
0
],
1
)
+
k
.
shape
[
2
:],
dtype
=
k
.
dtype
)],
axis
=
1
)
v
=
paddle
.
concat
([
v
,
paddle
.
zeros
((
v
.
shape
[
0
],
1
)
+
v
.
shape
[
2
:],
dtype
=
v
.
dtype
)],
axis
=
1
)
if
attn_mask
is
not
None
:
attn_mask
=
paddle
.
concat
([
attn_mask
,
paddle
.
zeros
([
attn_mask
.
shape
[
0
],
1
],
dtype
=
attn_mask
.
dtype
)],
axis
=
1
)
if
key_padding_mask
is
not
None
:
key_padding_mask
=
paddle
.
concat
(
[
key_padding_mask
,
paddle
.
zeros
([
key_padding_mask
.
shape
[
0
],
1
],
dtype
=
key_padding_mask
.
dtype
)],
axis
=
1
)
attn_output_weights
=
paddle
.
bmm
(
q
,
k
.
transpose
([
0
,
2
,
1
]))
assert
list
(
attn_output_weights
.
shape
)
==
[
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
]
if
attn_mask
is
not
None
:
attn_mask
=
attn_mask
.
unsqueeze
(
0
)
attn_output_weights
+=
attn_mask
if
key_padding_mask
is
not
None
:
attn_output_weights
=
attn_output_weights
.
reshape
([
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
])
key
=
key_padding_mask
.
unsqueeze
(
1
).
unsqueeze
(
2
).
astype
(
'float32'
)
y
=
paddle
.
full
(
shape
=
key
.
shape
,
dtype
=
'float32'
,
fill_value
=
'-inf'
)
y
=
paddle
.
where
(
key
==
0.
,
key
,
y
)
attn_output_weights
+=
y
attn_output_weights
=
attn_output_weights
.
reshape
([
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
])
attn_output_weights
=
F
.
softmax
(
attn_output_weights
.
astype
(
'float32'
),
axis
=-
1
,
dtype
=
paddle
.
float32
if
attn_output_weights
.
dtype
==
paddle
.
float16
else
attn_output_weights
.
dtype
)
attn_output_weights
=
F
.
dropout
(
attn_output_weights
,
p
=
self
.
dropout
,
training
=
self
.
training
)
attn_output
=
paddle
.
bmm
(
attn_output_weights
,
v
)
assert
list
(
attn_output
.
shape
)
==
[
bsz
*
self
.
num_heads
,
tgt_len
,
self
.
head_dim
]
attn_output
=
attn_output
.
transpose
([
1
,
0
,
2
]).
reshape
([
tgt_len
,
bsz
,
embed_dim
])
attn_output
=
self
.
out_proj
(
attn_output
)
if
need_weights
:
# average attention weights over heads
attn_output_weights
=
attn_output_weights
.
reshape
([
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
])
attn_output_weights
=
attn_output_weights
.
sum
(
axis
=
1
)
/
self
.
num_heads
else
:
attn_output_weights
=
None
return
attn_output
,
attn_output_weights
def
_in_proj_qkv
(
self
,
query
):
query
=
query
.
transpose
([
1
,
2
,
0
])
query
=
paddle
.
unsqueeze
(
query
,
axis
=
2
)
res
=
self
.
conv3
(
query
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
.
chunk
(
3
,
axis
=-
1
)
def
_in_proj_kv
(
self
,
key
):
key
=
key
.
transpose
([
1
,
2
,
0
])
key
=
paddle
.
unsqueeze
(
key
,
axis
=
2
)
res
=
self
.
conv2
(
key
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
.
chunk
(
2
,
axis
=-
1
)
def
_in_proj_q
(
self
,
query
):
query
=
query
.
transpose
([
1
,
2
,
0
])
query
=
paddle
.
unsqueeze
(
query
,
axis
=
2
)
res
=
self
.
conv1
(
query
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
def
_in_proj_k
(
self
,
key
):
key
=
key
.
transpose
([
1
,
2
,
0
])
key
=
paddle
.
unsqueeze
(
key
,
axis
=
2
)
res
=
self
.
conv1
(
key
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
def
_in_proj_v
(
self
,
value
):
value
=
value
.
transpose
([
1
,
2
,
0
])
#(1, 2, 0)
value
=
paddle
.
unsqueeze
(
value
,
axis
=
2
)
res
=
self
.
conv1
(
value
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
class
MultiheadAttentionOptim
(
nn
.
Layer
):
r
"""Allows the model to jointly attend to information
from different representation subspaces.
See reference: Attention Is All You Need
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
Args:
embed_dim: total dimension of the model
num_heads: parallel attention layers, or heads
Examples::
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
"""
def
__init__
(
self
,
embed_dim
,
num_heads
,
dropout
=
0.
,
bias
=
True
,
add_bias_kv
=
False
,
add_zero_attn
=
False
):
super
(
MultiheadAttentionOptim
,
self
).
__init__
()
self
.
embed_dim
=
embed_dim
self
.
num_heads
=
num_heads
self
.
dropout
=
dropout
self
.
head_dim
=
embed_dim
//
num_heads
assert
self
.
head_dim
*
num_heads
==
self
.
embed_dim
,
"embed_dim must be divisible by num_heads"
self
.
scaling
=
self
.
head_dim
**
-
0.5
self
.
out_proj
=
Linear
(
embed_dim
,
embed_dim
,
bias_attr
=
bias
)
self
.
_reset_parameters
()
self
.
conv1
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
self
.
conv2
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
self
.
conv3
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
def
_reset_parameters
(
self
):
xavier_uniform_
(
self
.
out_proj
.
weight
)
def
forward
(
self
,
query
,
key
,
value
,
key_padding_mask
=
None
,
incremental_state
=
None
,
need_weights
=
True
,
static_kv
=
False
,
attn_mask
=
None
):
"""
Inputs of forward function
query: [target length, batch size, embed dim]
key: [sequence length, batch size, embed dim]
value: [sequence length, batch size, embed dim]
key_padding_mask: if True, mask padding based on batch size
incremental_state: if provided, previous time steps are cashed
need_weights: output attn_output_weights
static_kv: key and value are static
Outputs of forward function
attn_output: [target length, batch size, embed dim]
attn_output_weights: [batch size, target length, sequence length]
"""
tgt_len
,
bsz
,
embed_dim
=
query
.
shape
assert
embed_dim
==
self
.
embed_dim
assert
list
(
query
.
shape
)
==
[
tgt_len
,
bsz
,
embed_dim
]
assert
key
.
shape
==
value
.
shape
q
=
self
.
_in_proj_q
(
query
)
k
=
self
.
_in_proj_k
(
key
)
v
=
self
.
_in_proj_v
(
value
)
q
*=
self
.
scaling
q
=
q
.
reshape
([
tgt_len
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
([
1
,
0
,
2
])
k
=
k
.
reshape
([
-
1
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
([
1
,
0
,
2
])
v
=
v
.
reshape
([
-
1
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
([
1
,
0
,
2
])
src_len
=
k
.
shape
[
1
]
if
key_padding_mask
is
not
None
:
assert
key_padding_mask
.
shape
[
0
]
==
bsz
assert
key_padding_mask
.
shape
[
1
]
==
src_len
attn_output_weights
=
paddle
.
bmm
(
q
,
k
.
transpose
([
0
,
2
,
1
]))
assert
list
(
attn_output_weights
.
shape
)
==
[
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
]
if
attn_mask
is
not
None
:
attn_mask
=
attn_mask
.
unsqueeze
(
0
)
attn_output_weights
+=
attn_mask
if
key_padding_mask
is
not
None
:
attn_output_weights
=
attn_output_weights
.
reshape
([
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
])
key
=
key_padding_mask
.
unsqueeze
(
1
).
unsqueeze
(
2
).
astype
(
'float32'
)
y
=
paddle
.
full
(
shape
=
key
.
shape
,
dtype
=
'float32'
,
fill_value
=
'-inf'
)
y
=
paddle
.
where
(
key
==
0.
,
key
,
y
)
attn_output_weights
+=
y
attn_output_weights
=
attn_output_weights
.
reshape
([
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
])
attn_output_weights
=
F
.
softmax
(
attn_output_weights
.
astype
(
'float32'
),
axis
=-
1
,
dtype
=
paddle
.
float32
if
attn_output_weights
.
dtype
==
paddle
.
float16
else
attn_output_weights
.
dtype
)
attn_output_weights
=
F
.
dropout
(
attn_output_weights
,
p
=
self
.
dropout
,
training
=
self
.
training
)
attn_output
=
paddle
.
bmm
(
attn_output_weights
,
v
)
assert
list
(
attn_output
.
shape
)
==
[
bsz
*
self
.
num_heads
,
tgt_len
,
self
.
head_dim
]
attn_output
=
attn_output
.
transpose
([
1
,
0
,
2
]).
reshape
([
tgt_len
,
bsz
,
embed_dim
])
attn_output
=
self
.
out_proj
(
attn_output
)
if
need_weights
:
# average attention weights over heads
attn_output_weights
=
attn_output_weights
.
reshape
([
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
])
attn_output_weights
=
attn_output_weights
.
sum
(
axis
=
1
)
/
self
.
num_heads
else
:
attn_output_weights
=
None
return
attn_output
,
attn_output_weights
def
_in_proj_q
(
self
,
query
):
query
=
query
.
transpose
([
1
,
2
,
0
])
query
=
paddle
.
unsqueeze
(
query
,
axis
=
2
)
res
=
self
.
conv1
(
query
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
def
_in_proj_k
(
self
,
key
):
key
=
key
.
transpose
([
1
,
2
,
0
])
key
=
paddle
.
unsqueeze
(
key
,
axis
=
2
)
res
=
self
.
conv2
(
key
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
def
_in_proj_v
(
self
,
value
):
value
=
value
.
transpose
([
1
,
2
,
0
])
#(1, 2, 0)
value
=
paddle
.
unsqueeze
(
value
,
axis
=
2
)
res
=
self
.
conv3
(
value
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
\ No newline at end of file
ppocr/modeling/heads/rec_nrtr_optim_head.py
0 → 100644
浏览文件 @
b6f0a903
import
math
import
paddle
import
copy
from
paddle
import
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
LayerList
from
paddle.nn.initializer
import
XavierNormal
as
xavier_uniform_
from
paddle.nn
import
Dropout
,
Linear
,
LayerNorm
,
Conv2D
import
numpy
as
np
from
ppocr.modeling.heads.multiheadAttention
import
MultiheadAttentionOptim
from
paddle.nn.initializer
import
Constant
as
constant_
from
paddle.nn.initializer
import
XavierNormal
as
xavier_normal_
zeros_
=
constant_
(
value
=
0.
)
ones_
=
constant_
(
value
=
1.
)
class
TransformerOptim
(
nn
.
Layer
):
r
"""A transformer model. User is able to modify the attributes as needed. The architechture
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 6000-6010.
Args:
d_model: the number of expected features in the encoder/decoder inputs (default=512).
nhead: the number of heads in the multiheadattention models (default=8).
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
custom_encoder: custom encoder (default=None).
custom_decoder: custom decoder (default=None).
Examples::
>>> transformer_model = nn.Transformer(src_vocab, tgt_vocab)
>>> transformer_model = nn.Transformer(src_vocab, tgt_vocab, nhead=16, num_encoder_layers=12)
"""
def
__init__
(
self
,
d_model
=
512
,
nhead
=
8
,
num_encoder_layers
=
6
,
beam_size
=
0
,
num_decoder_layers
=
6
,
dim_feedforward
=
1024
,
attention_dropout_rate
=
0.0
,
residual_dropout_rate
=
0.1
,
custom_encoder
=
None
,
custom_decoder
=
None
,
in_channels
=
0
,
out_channels
=
0
,
dst_vocab_size
=
99
,
scale_embedding
=
True
):
super
(
TransformerOptim
,
self
).
__init__
()
self
.
embedding
=
Embeddings
(
d_model
=
d_model
,
vocab
=
dst_vocab_size
,
padding_idx
=
0
,
scale_embedding
=
scale_embedding
)
self
.
positional_encoding
=
PositionalEncoding
(
dropout
=
residual_dropout_rate
,
dim
=
d_model
,
)
if
custom_encoder
is
not
None
:
self
.
encoder
=
custom_encoder
else
:
if
num_encoder_layers
>
0
:
encoder_layer
=
TransformerEncoderLayer
(
d_model
,
nhead
,
dim_feedforward
,
attention_dropout_rate
,
residual_dropout_rate
)
self
.
encoder
=
TransformerEncoder
(
encoder_layer
,
num_encoder_layers
)
else
:
self
.
encoder
=
None
if
custom_decoder
is
not
None
:
self
.
decoder
=
custom_decoder
else
:
decoder_layer
=
TransformerDecoderLayer
(
d_model
,
nhead
,
dim_feedforward
,
attention_dropout_rate
,
residual_dropout_rate
)
self
.
decoder
=
TransformerDecoder
(
decoder_layer
,
num_decoder_layers
)
self
.
_reset_parameters
()
self
.
beam_size
=
beam_size
self
.
d_model
=
d_model
self
.
nhead
=
nhead
self
.
tgt_word_prj
=
nn
.
Linear
(
d_model
,
dst_vocab_size
,
bias_attr
=
False
)
w0
=
np
.
random
.
normal
(
0.0
,
d_model
**-
0.5
,(
d_model
,
dst_vocab_size
)).
astype
(
np
.
float32
)
self
.
tgt_word_prj
.
weight
.
set_value
(
w0
)
self
.
apply
(
self
.
_init_weights
)
def
_init_weights
(
self
,
m
):
if
isinstance
(
m
,
nn
.
Conv2D
):
xavier_normal_
(
m
.
weight
)
if
m
.
bias
is
not
None
:
zeros_
(
m
.
bias
)
def
forward_train
(
self
,
src
,
tgt
):
tgt
=
tgt
[:,
:
-
1
]
tgt_key_padding_mask
=
self
.
generate_padding_mask
(
tgt
)
tgt
=
self
.
embedding
(
tgt
).
transpose
([
1
,
0
,
2
])
tgt
=
self
.
positional_encoding
(
tgt
)
tgt_mask
=
self
.
generate_square_subsequent_mask
(
tgt
.
shape
[
0
])
if
self
.
encoder
is
not
None
:
src
=
self
.
positional_encoding
(
src
.
transpose
([
1
,
0
,
2
]))
memory
=
self
.
encoder
(
src
)
else
:
memory
=
src
.
squeeze
(
2
).
transpose
([
2
,
0
,
1
])
output
=
self
.
decoder
(
tgt
,
memory
,
tgt_mask
=
tgt_mask
,
memory_mask
=
None
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
memory_key_padding_mask
=
None
)
output
=
output
.
transpose
([
1
,
0
,
2
])
logit
=
self
.
tgt_word_prj
(
output
)
return
logit
def
forward
(
self
,
src
,
tgt
=
None
):
r
"""Take in and process masked source/target sequences.
Args:
src: the sequence to the encoder (required).
tgt: the sequence to the decoder (required).
src_mask: the additive mask for the src sequence (optional).
tgt_mask: the additive mask for the tgt sequence (optional).
memory_mask: the additive mask for the encoder output (optional).
src_key_padding_mask: the ByteTensor mask for src keys per batch (optional).
tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional).
memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional).
Shape:
- src: :math:`(S, N, E)`.
- tgt: :math:`(T, N, E)`.
- src_mask: :math:`(S, S)`.
- tgt_mask: :math:`(T, T)`.
- memory_mask: :math:`(T, S)`.
- src_key_padding_mask: :math:`(N, S)`.
- tgt_key_padding_mask: :math:`(N, T)`.
- memory_key_padding_mask: :math:`(N, S)`.
Note: [src/tgt/memory]_mask should be filled with
float('-inf') for the masked positions and float(0.0) else. These masks
ensure that predictions for position i depend only on the unmasked positions
j and are applied identically for each sequence in a batch.
[src/tgt/memory]_key_padding_mask should be a ByteTensor where True values are positions
that should be masked with float('-inf') and False values will be unchanged.
This mask ensures that no information will be taken from position i if
it is masked, and has a separate mask for each sequence in a batch.
- output: :math:`(T, N, E)`.
Note: Due to the multi-head attention architecture in the transformer model,
the output sequence length of a transformer is same as the input sequence
(i.e. target) length of the decode.
where S is the source sequence length, T is the target sequence length, N is the
batch size, E is the feature number
Examples:
>>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
"""
if
tgt
is
not
None
:
return
self
.
forward_train
(
src
,
tgt
)
else
:
if
self
.
beam_size
>
0
:
return
self
.
forward_beam
(
src
)
else
:
return
self
.
forward_test
(
src
)
def
forward_test
(
self
,
src
):
bs
=
src
.
shape
[
0
]
if
self
.
encoder
is
not
None
:
src
=
self
.
positional_encoding
(
src
.
transpose
([
1
,
0
,
2
]))
memory
=
self
.
encoder
(
src
)
else
:
memory
=
src
.
squeeze
(
2
).
transpose
([
2
,
0
,
1
])
dec_seq
=
paddle
.
full
((
bs
,
1
),
2
,
dtype
=
paddle
.
int64
)
for
len_dec_seq
in
range
(
1
,
25
):
src_enc
=
memory
.
clone
()
tgt_key_padding_mask
=
self
.
generate_padding_mask
(
dec_seq
)
dec_seq_embed
=
self
.
embedding
(
dec_seq
).
transpose
([
1
,
0
,
2
])
dec_seq_embed
=
self
.
positional_encoding
(
dec_seq_embed
)
tgt_mask
=
self
.
generate_square_subsequent_mask
(
dec_seq_embed
.
shape
[
0
])
output
=
self
.
decoder
(
dec_seq_embed
,
src_enc
,
tgt_mask
=
tgt_mask
,
memory_mask
=
None
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
memory_key_padding_mask
=
None
)
dec_output
=
output
.
transpose
([
1
,
0
,
2
])
dec_output
=
dec_output
[:,
-
1
,
:]
# Pick the last step: (bh * bm) * d_h
word_prob
=
F
.
log_softmax
(
self
.
tgt_word_prj
(
dec_output
),
axis
=
1
)
word_prob
=
word_prob
.
reshape
([
1
,
bs
,
-
1
])
preds_idx
=
word_prob
.
argmax
(
axis
=
2
)
if
paddle
.
equal_all
(
preds_idx
[
-
1
],
paddle
.
full
(
preds_idx
[
-
1
].
shape
,
3
,
dtype
=
'int64'
)):
break
preds_prob
=
word_prob
.
max
(
axis
=
2
)
dec_seq
=
paddle
.
concat
([
dec_seq
,
preds_idx
.
reshape
([
-
1
,
1
])],
axis
=
1
)
return
dec_seq
def
forward_beam
(
self
,
images
):
''' Translation work in one batch '''
def
get_inst_idx_to_tensor_position_map
(
inst_idx_list
):
''' Indicate the position of an instance in a tensor. '''
return
{
inst_idx
:
tensor_position
for
tensor_position
,
inst_idx
in
enumerate
(
inst_idx_list
)}
def
collect_active_part
(
beamed_tensor
,
curr_active_inst_idx
,
n_prev_active_inst
,
n_bm
):
''' Collect tensor parts associated to active instances. '''
_
,
*
d_hs
=
beamed_tensor
.
shape
n_curr_active_inst
=
len
(
curr_active_inst_idx
)
new_shape
=
(
n_curr_active_inst
*
n_bm
,
*
d_hs
)
beamed_tensor
=
beamed_tensor
.
reshape
([
n_prev_active_inst
,
-
1
])
#contiguous()
beamed_tensor
=
beamed_tensor
.
index_select
(
paddle
.
to_tensor
(
curr_active_inst_idx
),
axis
=
0
)
beamed_tensor
=
beamed_tensor
.
reshape
([
*
new_shape
])
return
beamed_tensor
def
collate_active_info
(
src_enc
,
inst_idx_to_position_map
,
active_inst_idx_list
):
# Sentences which are still active are collected,
# so the decoder will not run on completed sentences.
n_prev_active_inst
=
len
(
inst_idx_to_position_map
)
active_inst_idx
=
[
inst_idx_to_position_map
[
k
]
for
k
in
active_inst_idx_list
]
active_inst_idx
=
paddle
.
to_tensor
(
active_inst_idx
,
dtype
=
'int64'
)
active_src_enc
=
collect_active_part
(
src_enc
.
transpose
([
1
,
0
,
2
]),
active_inst_idx
,
n_prev_active_inst
,
n_bm
).
transpose
([
1
,
0
,
2
])
active_inst_idx_to_position_map
=
get_inst_idx_to_tensor_position_map
(
active_inst_idx_list
)
return
active_src_enc
,
active_inst_idx_to_position_map
def
beam_decode_step
(
inst_dec_beams
,
len_dec_seq
,
enc_output
,
inst_idx_to_position_map
,
n_bm
,
memory_key_padding_mask
):
''' Decode and update beam status, and then return active beam idx '''
def
prepare_beam_dec_seq
(
inst_dec_beams
,
len_dec_seq
):
dec_partial_seq
=
[
b
.
get_current_state
()
for
b
in
inst_dec_beams
if
not
b
.
done
]
dec_partial_seq
=
paddle
.
stack
(
dec_partial_seq
)
dec_partial_seq
=
dec_partial_seq
.
reshape
([
-
1
,
len_dec_seq
])
return
dec_partial_seq
def
prepare_beam_memory_key_padding_mask
(
inst_dec_beams
,
memory_key_padding_mask
,
n_bm
):
keep
=
[]
for
idx
in
(
memory_key_padding_mask
):
if
not
inst_dec_beams
[
idx
].
done
:
keep
.
append
(
idx
)
memory_key_padding_mask
=
memory_key_padding_mask
[
paddle
.
to_tensor
(
keep
)]
len_s
=
memory_key_padding_mask
.
shape
[
-
1
]
n_inst
=
memory_key_padding_mask
.
shape
[
0
]
memory_key_padding_mask
=
paddle
.
concat
([
memory_key_padding_mask
for
i
in
range
(
n_bm
)],
axis
=
1
)
memory_key_padding_mask
=
memory_key_padding_mask
.
reshape
([
n_inst
*
n_bm
,
len_s
])
#repeat(1, n_bm)
return
memory_key_padding_mask
def
predict_word
(
dec_seq
,
enc_output
,
n_active_inst
,
n_bm
,
memory_key_padding_mask
):
tgt_key_padding_mask
=
self
.
generate_padding_mask
(
dec_seq
)
dec_seq
=
self
.
embedding
(
dec_seq
).
transpose
([
1
,
0
,
2
])
dec_seq
=
self
.
positional_encoding
(
dec_seq
)
tgt_mask
=
self
.
generate_square_subsequent_mask
(
dec_seq
.
shape
[
0
])
dec_output
=
self
.
decoder
(
dec_seq
,
enc_output
,
tgt_mask
=
tgt_mask
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
memory_key_padding_mask
=
memory_key_padding_mask
,
).
transpose
([
1
,
0
,
2
])
dec_output
=
dec_output
[:,
-
1
,
:]
# Pick the last step: (bh * bm) * d_h
word_prob
=
F
.
log_softmax
(
self
.
tgt_word_prj
(
dec_output
),
axis
=
1
)
word_prob
=
word_prob
.
reshape
([
n_active_inst
,
n_bm
,
-
1
])
return
word_prob
def
collect_active_inst_idx_list
(
inst_beams
,
word_prob
,
inst_idx_to_position_map
):
active_inst_idx_list
=
[]
for
inst_idx
,
inst_position
in
inst_idx_to_position_map
.
items
():
is_inst_complete
=
inst_beams
[
inst_idx
].
advance
(
word_prob
[
inst_position
])
if
not
is_inst_complete
:
active_inst_idx_list
+=
[
inst_idx
]
return
active_inst_idx_list
n_active_inst
=
len
(
inst_idx_to_position_map
)
dec_seq
=
prepare_beam_dec_seq
(
inst_dec_beams
,
len_dec_seq
)
memory_key_padding_mask
=
None
word_prob
=
predict_word
(
dec_seq
,
enc_output
,
n_active_inst
,
n_bm
,
memory_key_padding_mask
)
# Update the beam with predicted word prob information and collect incomplete instances
active_inst_idx_list
=
collect_active_inst_idx_list
(
inst_dec_beams
,
word_prob
,
inst_idx_to_position_map
)
return
active_inst_idx_list
def
collect_hypothesis_and_scores
(
inst_dec_beams
,
n_best
):
all_hyp
,
all_scores
=
[],
[]
for
inst_idx
in
range
(
len
(
inst_dec_beams
)):
scores
,
tail_idxs
=
inst_dec_beams
[
inst_idx
].
sort_scores
()
all_scores
+=
[
scores
[:
n_best
]]
hyps
=
[
inst_dec_beams
[
inst_idx
].
get_hypothesis
(
i
)
for
i
in
tail_idxs
[:
n_best
]]
all_hyp
+=
[
hyps
]
return
all_hyp
,
all_scores
with
paddle
.
no_grad
():
#-- Encode
if
self
.
encoder
is
not
None
:
src
=
self
.
positional_encoding
(
images
.
transpose
([
1
,
0
,
2
]))
src_enc
=
self
.
encoder
(
src
).
transpose
([
1
,
0
,
2
])
else
:
src_enc
=
images
.
squeeze
(
2
).
transpose
([
0
,
2
,
1
])
#-- Repeat data for beam search
n_bm
=
self
.
beam_size
n_inst
,
len_s
,
d_h
=
src_enc
.
shape
src_enc
=
paddle
.
concat
([
src_enc
for
i
in
range
(
n_bm
)],
axis
=
1
)
src_enc
=
src_enc
.
reshape
([
n_inst
*
n_bm
,
len_s
,
d_h
]).
transpose
([
1
,
0
,
2
])
#repeat(1, n_bm, 1)
#-- Prepare beams
inst_dec_beams
=
[
Beam
(
n_bm
)
for
_
in
range
(
n_inst
)]
#-- Bookkeeping for active or not
active_inst_idx_list
=
list
(
range
(
n_inst
))
inst_idx_to_position_map
=
get_inst_idx_to_tensor_position_map
(
active_inst_idx_list
)
#-- Decode
for
len_dec_seq
in
range
(
1
,
25
):
src_enc_copy
=
src_enc
.
clone
()
active_inst_idx_list
=
beam_decode_step
(
inst_dec_beams
,
len_dec_seq
,
src_enc_copy
,
inst_idx_to_position_map
,
n_bm
,
None
)
if
not
active_inst_idx_list
:
break
# all instances have finished their path to <EOS>
src_enc
,
inst_idx_to_position_map
=
collate_active_info
(
src_enc_copy
,
inst_idx_to_position_map
,
active_inst_idx_list
)
batch_hyp
,
batch_scores
=
collect_hypothesis_and_scores
(
inst_dec_beams
,
1
)
result_hyp
=
[]
for
bs_hyp
in
batch_hyp
:
bs_hyp_pad
=
bs_hyp
[
0
]
+
[
3
]
*
(
25
-
len
(
bs_hyp
[
0
]))
result_hyp
.
append
(
bs_hyp_pad
)
return
paddle
.
to_tensor
(
np
.
array
(
result_hyp
),
dtype
=
paddle
.
int64
)
def
generate_square_subsequent_mask
(
self
,
sz
):
r
"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
Unmasked positions are filled with float(0.0).
"""
mask
=
paddle
.
zeros
([
sz
,
sz
],
dtype
=
'float32'
)
mask_inf
=
paddle
.
triu
(
paddle
.
full
(
shape
=
[
sz
,
sz
],
dtype
=
'float32'
,
fill_value
=
'-inf'
),
diagonal
=
1
)
mask
=
mask
+
mask_inf
return
mask
def
generate_padding_mask
(
self
,
x
):
padding_mask
=
x
.
equal
(
paddle
.
to_tensor
(
0
,
dtype
=
x
.
dtype
))
return
padding_mask
def
_reset_parameters
(
self
):
r
"""Initiate parameters in the transformer model."""
for
p
in
self
.
parameters
():
if
p
.
dim
()
>
1
:
xavier_uniform_
(
p
)
class
TransformerEncoder
(
nn
.
Layer
):
r
"""TransformerEncoder is a stack of N encoder layers
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)
"""
def
__init__
(
self
,
encoder_layer
,
num_layers
):
super
(
TransformerEncoder
,
self
).
__init__
()
self
.
layers
=
_get_clones
(
encoder_layer
,
num_layers
)
self
.
num_layers
=
num_layers
def
forward
(
self
,
src
):
r
"""Pass the input through the endocder layers in turn.
Args:
src: the sequnce to the encoder (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
output
=
src
for
i
in
range
(
self
.
num_layers
):
output
=
self
.
layers
[
i
](
output
,
src_mask
=
None
,
src_key_padding_mask
=
None
)
return
output
class
TransformerDecoder
(
nn
.
Layer
):
r
"""TransformerDecoder is a stack of N decoder layers
Args:
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
num_layers: the number of sub-decoder-layers in the decoder (required).
norm: the layer normalization component (optional).
Examples::
>>> decoder_layer = nn.TransformerDecoderLayer(d_model, nhead)
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers)
"""
def
__init__
(
self
,
decoder_layer
,
num_layers
):
super
(
TransformerDecoder
,
self
).
__init__
()
self
.
layers
=
_get_clones
(
decoder_layer
,
num_layers
)
self
.
num_layers
=
num_layers
def
forward
(
self
,
tgt
,
memory
,
tgt_mask
=
None
,
memory_mask
=
None
,
tgt_key_padding_mask
=
None
,
memory_key_padding_mask
=
None
):
r
"""Pass the inputs (and mask) through the decoder layer in turn.
Args:
tgt: the sequence to the decoder (required).
memory: the sequnce from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
output
=
tgt
for
i
in
range
(
self
.
num_layers
):
output
=
self
.
layers
[
i
](
output
,
memory
,
tgt_mask
=
tgt_mask
,
memory_mask
=
memory_mask
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
memory_key_padding_mask
=
memory_key_padding_mask
)
return
output
class
TransformerEncoderLayer
(
nn
.
Layer
):
r
"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
"""
def
__init__
(
self
,
d_model
,
nhead
,
dim_feedforward
=
2048
,
attention_dropout_rate
=
0.0
,
residual_dropout_rate
=
0.1
):
super
(
TransformerEncoderLayer
,
self
).
__init__
()
self
.
self_attn
=
MultiheadAttentionOptim
(
d_model
,
nhead
,
dropout
=
attention_dropout_rate
)
self
.
conv1
=
Conv2D
(
in_channels
=
d_model
,
out_channels
=
dim_feedforward
,
kernel_size
=
(
1
,
1
))
self
.
conv2
=
Conv2D
(
in_channels
=
dim_feedforward
,
out_channels
=
d_model
,
kernel_size
=
(
1
,
1
))
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
self
.
dropout1
=
Dropout
(
residual_dropout_rate
)
self
.
dropout2
=
Dropout
(
residual_dropout_rate
)
def
forward
(
self
,
src
,
src_mask
=
None
,
src_key_padding_mask
=
None
):
r
"""Pass the input through the endocder layer.
Args:
src: the sequnce to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
src2
=
self
.
self_attn
(
src
,
src
,
src
,
attn_mask
=
src_mask
,
key_padding_mask
=
src_key_padding_mask
)[
0
]
src
=
src
+
self
.
dropout1
(
src2
)
src
=
self
.
norm1
(
src
)
src
=
src
.
transpose
([
1
,
2
,
0
])
src
=
paddle
.
unsqueeze
(
src
,
2
)
src2
=
self
.
conv2
(
F
.
relu
(
self
.
conv1
(
src
)))
src2
=
paddle
.
squeeze
(
src2
,
2
)
src2
=
src2
.
transpose
([
2
,
0
,
1
])
src
=
paddle
.
squeeze
(
src
,
2
)
src
=
src
.
transpose
([
2
,
0
,
1
])
src
=
src
+
self
.
dropout2
(
src2
)
src
=
self
.
norm2
(
src
)
return
src
class
TransformerDecoderLayer
(
nn
.
Layer
):
r
"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
This standard decoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
Examples::
>>> decoder_layer = nn.TransformerDecoderLayer(d_model, nhead)
"""
def
__init__
(
self
,
d_model
,
nhead
,
dim_feedforward
=
2048
,
attention_dropout_rate
=
0.0
,
residual_dropout_rate
=
0.1
):
super
(
TransformerDecoderLayer
,
self
).
__init__
()
self
.
self_attn
=
MultiheadAttentionOptim
(
d_model
,
nhead
,
dropout
=
attention_dropout_rate
)
self
.
multihead_attn
=
MultiheadAttentionOptim
(
d_model
,
nhead
,
dropout
=
attention_dropout_rate
)
self
.
conv1
=
Conv2D
(
in_channels
=
d_model
,
out_channels
=
dim_feedforward
,
kernel_size
=
(
1
,
1
))
self
.
conv2
=
Conv2D
(
in_channels
=
dim_feedforward
,
out_channels
=
d_model
,
kernel_size
=
(
1
,
1
))
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
self
.
norm3
=
LayerNorm
(
d_model
)
self
.
dropout1
=
Dropout
(
residual_dropout_rate
)
self
.
dropout2
=
Dropout
(
residual_dropout_rate
)
self
.
dropout3
=
Dropout
(
residual_dropout_rate
)
def
forward
(
self
,
tgt
,
memory
,
tgt_mask
=
None
,
memory_mask
=
None
,
tgt_key_padding_mask
=
None
,
memory_key_padding_mask
=
None
):
r
"""Pass the inputs (and mask) through the decoder layer.
Args:
tgt: the sequence to the decoder layer (required).
memory: the sequnce from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
tgt2
=
self
.
self_attn
(
tgt
,
tgt
,
tgt
,
attn_mask
=
tgt_mask
,
key_padding_mask
=
tgt_key_padding_mask
)[
0
]
tgt
=
tgt
+
self
.
dropout1
(
tgt2
)
tgt
=
self
.
norm1
(
tgt
)
tgt2
=
self
.
multihead_attn
(
tgt
,
memory
,
memory
,
attn_mask
=
memory_mask
,
key_padding_mask
=
memory_key_padding_mask
)[
0
]
tgt
=
tgt
+
self
.
dropout2
(
tgt2
)
tgt
=
self
.
norm2
(
tgt
)
# default
tgt
=
tgt
.
transpose
([
1
,
2
,
0
])
tgt
=
paddle
.
unsqueeze
(
tgt
,
2
)
tgt2
=
self
.
conv2
(
F
.
relu
(
self
.
conv1
(
tgt
)))
tgt2
=
paddle
.
squeeze
(
tgt2
,
2
)
tgt2
=
tgt2
.
transpose
([
2
,
0
,
1
])
tgt
=
paddle
.
squeeze
(
tgt
,
2
)
tgt
=
tgt
.
transpose
([
2
,
0
,
1
])
tgt
=
tgt
+
self
.
dropout3
(
tgt2
)
tgt
=
self
.
norm3
(
tgt
)
return
tgt
def
_get_clones
(
module
,
N
):
return
LayerList
([
copy
.
deepcopy
(
module
)
for
i
in
range
(
N
)])
class
PositionalEncoding
(
nn
.
Layer
):
r
"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def
__init__
(
self
,
dropout
,
dim
,
max_len
=
5000
):
super
(
PositionalEncoding
,
self
).
__init__
()
self
.
dropout
=
nn
.
Dropout
(
p
=
dropout
)
pe
=
paddle
.
zeros
([
max_len
,
dim
])
position
=
paddle
.
arange
(
0
,
max_len
,
dtype
=
paddle
.
float32
).
unsqueeze
(
1
)
div_term
=
paddle
.
exp
(
paddle
.
arange
(
0
,
dim
,
2
).
astype
(
'float32'
)
*
(
-
math
.
log
(
10000.0
)
/
dim
))
pe
[:,
0
::
2
]
=
paddle
.
sin
(
position
*
div_term
)
pe
[:,
1
::
2
]
=
paddle
.
cos
(
position
*
div_term
)
pe
=
pe
.
unsqueeze
(
0
)
pe
=
pe
.
transpose
([
1
,
0
,
2
])
self
.
register_buffer
(
'pe'
,
pe
)
def
forward
(
self
,
x
):
r
"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
x
=
x
+
self
.
pe
[:
x
.
shape
[
0
],
:]
return
self
.
dropout
(
x
)
class
PositionalEncoding_2d
(
nn
.
Layer
):
r
"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def
__init__
(
self
,
dropout
,
dim
,
max_len
=
5000
):
super
(
PositionalEncoding_2d
,
self
).
__init__
()
self
.
dropout
=
nn
.
Dropout
(
p
=
dropout
)
pe
=
paddle
.
zeros
([
max_len
,
dim
])
position
=
paddle
.
arange
(
0
,
max_len
,
dtype
=
paddle
.
float32
).
unsqueeze
(
1
)
div_term
=
paddle
.
exp
(
paddle
.
arange
(
0
,
dim
,
2
).
astype
(
'float32'
)
*
(
-
math
.
log
(
10000.0
)
/
dim
))
pe
[:,
0
::
2
]
=
paddle
.
sin
(
position
*
div_term
)
pe
[:,
1
::
2
]
=
paddle
.
cos
(
position
*
div_term
)
pe
=
pe
.
unsqueeze
(
0
).
transpose
([
1
,
0
,
2
])
self
.
register_buffer
(
'pe'
,
pe
)
self
.
avg_pool_1
=
nn
.
AdaptiveAvgPool2D
((
1
,
1
))
self
.
linear1
=
nn
.
Linear
(
dim
,
dim
)
self
.
linear1
.
weight
.
data
.
fill_
(
1.
)
self
.
avg_pool_2
=
nn
.
AdaptiveAvgPool2D
((
1
,
1
))
self
.
linear2
=
nn
.
Linear
(
dim
,
dim
)
self
.
linear2
.
weight
.
data
.
fill_
(
1.
)
def
forward
(
self
,
x
):
r
"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
w_pe
=
self
.
pe
[:
x
.
shape
[
-
1
],
:]
w1
=
self
.
linear1
(
self
.
avg_pool_1
(
x
).
squeeze
()).
unsqueeze
(
0
)
w_pe
=
w_pe
*
w1
w_pe
=
w_pe
.
transpose
([
1
,
2
,
0
])
w_pe
=
w_pe
.
unsqueeze
(
2
)
h_pe
=
self
.
pe
[:
x
.
shape
[
-
2
],
:]
w2
=
self
.
linear2
(
self
.
avg_pool_2
(
x
).
squeeze
()).
unsqueeze
(
0
)
h_pe
=
h_pe
*
w2
h_pe
=
h_pe
.
transpose
([
1
,
2
,
0
])
h_pe
=
h_pe
.
unsqueeze
(
3
)
x
=
x
+
w_pe
+
h_pe
x
=
x
.
reshape
([
x
.
shape
[
0
],
x
.
shape
[
1
],
x
.
shape
[
2
]
*
x
.
shape
[
3
]]).
transpose
([
2
,
0
,
1
])
return
self
.
dropout
(
x
)
class
Embeddings
(
nn
.
Layer
):
def
__init__
(
self
,
d_model
,
vocab
,
padding_idx
,
scale_embedding
):
super
(
Embeddings
,
self
).
__init__
()
self
.
embedding
=
nn
.
Embedding
(
vocab
,
d_model
,
padding_idx
=
padding_idx
)
w0
=
np
.
random
.
normal
(
0.0
,
d_model
**-
0.5
,(
vocab
,
d_model
)).
astype
(
np
.
float32
)
self
.
embedding
.
weight
.
set_value
(
w0
)
self
.
d_model
=
d_model
self
.
scale_embedding
=
scale_embedding
def
forward
(
self
,
x
):
if
self
.
scale_embedding
:
x
=
self
.
embedding
(
x
)
return
x
*
math
.
sqrt
(
self
.
d_model
)
return
self
.
embedding
(
x
)
class
Beam
():
''' Beam search '''
def
__init__
(
self
,
size
,
device
=
False
):
self
.
size
=
size
self
.
_done
=
False
# The score for each translation on the beam.
self
.
scores
=
paddle
.
zeros
((
size
,),
dtype
=
paddle
.
float32
)
self
.
all_scores
=
[]
# The backpointers at each time-step.
self
.
prev_ks
=
[]
# The outputs at each time-step.
self
.
next_ys
=
[
paddle
.
full
((
size
,),
0
,
dtype
=
paddle
.
int64
)]
self
.
next_ys
[
0
][
0
]
=
2
def
get_current_state
(
self
):
"Get the outputs for the current timestep."
return
self
.
get_tentative_hypothesis
()
def
get_current_origin
(
self
):
"Get the backpointers for the current timestep."
return
self
.
prev_ks
[
-
1
]
@
property
def
done
(
self
):
return
self
.
_done
def
advance
(
self
,
word_prob
):
"Update beam status and check if finished or not."
num_words
=
word_prob
.
shape
[
1
]
# Sum the previous scores.
if
len
(
self
.
prev_ks
)
>
0
:
beam_lk
=
word_prob
+
self
.
scores
.
unsqueeze
(
1
).
expand_as
(
word_prob
)
else
:
beam_lk
=
word_prob
[
0
]
flat_beam_lk
=
beam_lk
.
reshape
([
-
1
])
best_scores
,
best_scores_id
=
flat_beam_lk
.
topk
(
self
.
size
,
0
,
True
,
True
)
# 1st sort
self
.
all_scores
.
append
(
self
.
scores
)
self
.
scores
=
best_scores
# bestScoresId is flattened as a (beam x word) array,
# so we need to calculate which word and beam each score came from
prev_k
=
best_scores_id
//
num_words
self
.
prev_ks
.
append
(
prev_k
)
self
.
next_ys
.
append
(
best_scores_id
-
prev_k
*
num_words
)
# End condition is when top-of-beam is EOS.
if
self
.
next_ys
[
-
1
][
0
]
==
3
:
self
.
_done
=
True
self
.
all_scores
.
append
(
self
.
scores
)
return
self
.
_done
def
sort_scores
(
self
):
"Sort the scores."
return
self
.
scores
,
paddle
.
to_tensor
([
i
for
i
in
range
(
self
.
scores
.
shape
[
0
])],
dtype
=
'int32'
)
def
get_the_best_score_and_idx
(
self
):
"Get the score of the best in the beam."
scores
,
ids
=
self
.
sort_scores
()
return
scores
[
1
],
ids
[
1
]
def
get_tentative_hypothesis
(
self
):
"Get the decoded sequence for the current timestep."
if
len
(
self
.
next_ys
)
==
1
:
dec_seq
=
self
.
next_ys
[
0
].
unsqueeze
(
1
)
else
:
_
,
keys
=
self
.
sort_scores
()
hyps
=
[
self
.
get_hypothesis
(
k
)
for
k
in
keys
]
hyps
=
[[
2
]
+
h
for
h
in
hyps
]
dec_seq
=
paddle
.
to_tensor
(
hyps
,
dtype
=
'int64'
)
return
dec_seq
def
get_hypothesis
(
self
,
k
):
""" Walk back to construct the full hypothesis. """
hyp
=
[]
for
j
in
range
(
len
(
self
.
prev_ks
)
-
1
,
-
1
,
-
1
):
hyp
.
append
(
self
.
next_ys
[
j
+
1
][
k
])
k
=
self
.
prev_ks
[
j
][
k
]
return
list
(
map
(
lambda
x
:
x
.
item
(),
hyp
[::
-
1
]))
ppocr/postprocess/rec_postprocess.py
浏览文件 @
b6f0a903
...
@@ -156,6 +156,69 @@ class DistillationCTCLabelDecode(CTCLabelDecode):
...
@@ -156,6 +156,69 @@ class DistillationCTCLabelDecode(CTCLabelDecode):
return
output
return
output
class
NRTRLabelDecode
(
BaseRecLabelDecode
):
""" Convert between text-label and text-index """
def
__init__
(
self
,
character_dict_path
=
None
,
character_type
=
'EN_symbol'
,
use_space_char
=
True
,
**
kwargs
):
super
(
NRTRLabelDecode
,
self
).
__init__
(
character_dict_path
,
character_type
,
use_space_char
)
def
__call__
(
self
,
preds
,
label
=
None
,
*
args
,
**
kwargs
):
if
preds
.
dtype
==
paddle
.
int64
:
if
isinstance
(
preds
,
paddle
.
Tensor
):
preds
=
preds
.
numpy
()
if
preds
[
0
][
0
]
==
2
:
preds_idx
=
preds
[:,
1
:]
else
:
preds_idx
=
preds
text
=
self
.
decode
(
preds_idx
)
if
label
is
None
:
return
text
label
=
self
.
decode
(
label
[:,
1
:])
else
:
if
isinstance
(
preds
,
paddle
.
Tensor
):
preds
=
preds
.
numpy
()
preds_idx
=
preds
.
argmax
(
axis
=
2
)
preds_prob
=
preds
.
max
(
axis
=
2
)
text
=
self
.
decode
(
preds_idx
,
preds_prob
,
is_remove_duplicate
=
False
)
if
label
is
None
:
return
text
label
=
self
.
decode
(
label
[:,
1
:])
return
text
,
label
def
add_special_char
(
self
,
dict_character
):
dict_character
=
[
'blank'
,
'<unk>'
,
'<s>'
,
'</s>'
]
+
dict_character
return
dict_character
def
decode
(
self
,
text_index
,
text_prob
=
None
,
is_remove_duplicate
=
False
):
""" convert text-index into text-label. """
result_list
=
[]
batch_size
=
len
(
text_index
)
for
batch_idx
in
range
(
batch_size
):
char_list
=
[]
conf_list
=
[]
for
idx
in
range
(
len
(
text_index
[
batch_idx
])):
if
text_index
[
batch_idx
][
idx
]
==
3
:
# end
break
try
:
char_list
.
append
(
self
.
character
[
int
(
text_index
[
batch_idx
][
idx
])])
except
:
continue
if
text_prob
is
not
None
:
conf_list
.
append
(
text_prob
[
batch_idx
][
idx
])
else
:
conf_list
.
append
(
1
)
text
=
''
.
join
(
char_list
)
result_list
.
append
((
text
.
lower
(),
np
.
mean
(
conf_list
)))
return
result_list
class
AttnLabelDecode
(
BaseRecLabelDecode
):
class
AttnLabelDecode
(
BaseRecLabelDecode
):
""" Convert between text-label and text-index """
""" Convert between text-label and text-index """
...
...
tools/eval.py
浏览文件 @
b6f0a903
...
@@ -22,7 +22,6 @@ import sys
...
@@ -22,7 +22,6 @@ import sys
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'..'
)))
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'..'
)))
from
ppocr.data
import
build_dataloader
from
ppocr.data
import
build_dataloader
from
ppocr.modeling.architectures
import
build_model
from
ppocr.modeling.architectures
import
build_model
from
ppocr.postprocess
import
build_post_process
from
ppocr.postprocess
import
build_post_process
...
@@ -31,7 +30,6 @@ from ppocr.utils.save_load import init_model
...
@@ -31,7 +30,6 @@ from ppocr.utils.save_load import init_model
from
ppocr.utils.utility
import
print_dict
from
ppocr.utils.utility
import
print_dict
import
tools.program
as
program
import
tools.program
as
program
def
main
():
def
main
():
global_config
=
config
[
'Global'
]
global_config
=
config
[
'Global'
]
# build dataloader
# build dataloader
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录