From 982926db347328640af24fbc6e90b92bc5d14641 Mon Sep 17 00:00:00 2001 From: WenmuZhou Date: Tue, 27 Jul 2021 17:29:52 +0800 Subject: [PATCH] add fpn --- ppocr/modeling/necks/__init__.py | 3 +- ppocr/modeling/necks/fpn.py | 102 +++++++++++++++++++++++++++++++ 2 files changed, 104 insertions(+), 1 deletion(-) create mode 100644 ppocr/modeling/necks/fpn.py diff --git a/ppocr/modeling/necks/__init__.py b/ppocr/modeling/necks/__init__.py index e97c4f64..5606a4c3 100644 --- a/ppocr/modeling/necks/__init__.py +++ b/ppocr/modeling/necks/__init__.py @@ -22,7 +22,8 @@ def build_neck(config): from .rnn import SequenceEncoder from .pg_fpn import PGFPN from .table_fpn import TableFPN - support_dict = ['DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN', 'TableFPN'] + from .fpn import FPN + support_dict = ['FPN','DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN', 'TableFPN'] module_name = config.pop('name') assert module_name in support_dict, Exception('neck only support {}'.format( diff --git a/ppocr/modeling/necks/fpn.py b/ppocr/modeling/necks/fpn.py new file mode 100644 index 00000000..49089200 --- /dev/null +++ b/ppocr/modeling/necks/fpn.py @@ -0,0 +1,102 @@ +# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.nn as nn +import paddle +import math +import paddle.nn.functional as F + +class Conv_BN_ReLU(nn.Layer): + def __init__(self, in_planes, out_planes, kernel_size=1, stride=1, padding=0): + super(Conv_BN_ReLU, self).__init__() + self.conv = nn.Conv2D(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, + bias_attr=False) + self.bn = nn.BatchNorm2D(out_planes, momentum=0.1) + self.relu = nn.ReLU() + + for m in self.sublayers(): + if isinstance(m, nn.Conv2D): + n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels + m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', default_initializer=paddle.nn.initializer.Normal(0, math.sqrt(2. / n))) + elif isinstance(m, nn.BatchNorm2D): + m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', default_initializer=paddle.nn.initializer.Constant(1.0)) + m.bias = paddle.create_parameter(shape=m.bias.shape, dtype='float32', default_initializer=paddle.nn.initializer.Constant(0.0)) + + def forward(self, x): + return self.relu(self.bn(self.conv(x))) + +class FPN(nn.Layer): + def __init__(self, in_channels, out_channels): + super(FPN, self).__init__() + + # Top layer + self.toplayer_ = Conv_BN_ReLU(in_channels[3], out_channels, kernel_size=1, stride=1, padding=0) + # Lateral layers + self.latlayer1_ = Conv_BN_ReLU(in_channels[2], out_channels, kernel_size=1, stride=1, padding=0) + + self.latlayer2_ = Conv_BN_ReLU(in_channels[1], out_channels, kernel_size=1, stride=1, padding=0) + + self.latlayer3_ = Conv_BN_ReLU(in_channels[0], out_channels, kernel_size=1, stride=1, padding=0) + + # Smooth layers + self.smooth1_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + + self.smooth2_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + + self.smooth3_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + + + self.out_channels = out_channels * 4 + for m in self.sublayers(): + if isinstance(m, nn.Conv2D): + n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels + m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', + default_initializer=paddle.nn.initializer.Normal(0, + math.sqrt(2. / n))) + elif isinstance(m, nn.BatchNorm2D): + m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', + default_initializer=paddle.nn.initializer.Constant(1.0)) + m.bias = paddle.create_parameter(shape=m.bias.shape, dtype='float32', + default_initializer=paddle.nn.initializer.Constant(0.0)) + + def _upsample(self, x, y, scale=1): + _, _, H, W = y.shape + return F.upsample(x, size=(H // scale, W // scale), mode='bilinear') + + def _upsample_add(self, x, y): + _, _, H, W = y.shape + return F.upsample(x, size=(H, W), mode='bilinear') + y + + def forward(self, x): + f2, f3, f4, f5 = x + p5 = self.toplayer_(f5) + + f4 = self.latlayer1_(f4) + p4 = self._upsample_add(p5, f4) + p4 = self.smooth1_(p4) + + f3 = self.latlayer2_(f3) + p3 = self._upsample_add(p4, f3) + p3 = self.smooth2_(p3) + + f2 = self.latlayer3_(f2) + p2 = self._upsample_add(p3, f2) + p2 = self.smooth3_(p2) + + p3 = self._upsample(p3, p2) + p4 = self._upsample(p4, p2) + p5 = self._upsample(p5, p2) + + fuse = paddle.concat([p2, p3, p4, p5], axis=1) + return fuse \ No newline at end of file -- GitLab