diff --git a/configs/rec/rec_icdar15_train.yml b/configs/rec/rec_icdar15_train.yml index 20f758c20da9547486d7492d6a09cceb2b937e4e..500d2333f217008b2abf352b0ccd29a43ec24fd5 100644 --- a/configs/rec/rec_icdar15_train.yml +++ b/configs/rec/rec_icdar15_train.yml @@ -10,7 +10,7 @@ Global: cal_metric_during_train: True pretrained_model: checkpoints: - save_inference_dir: + save_inference_dir: ./ use_visualdl: False infer_img: doc/imgs_words_en/word_10.png # for data or label process @@ -60,8 +60,8 @@ Metric: Train: dataset: name: SimpleDataSet - data_dir: ./train_data/ - label_file_list: ["./train_data/train_list.txt"] + data_dir: ./train_data/ic15_data/ + label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"] transforms: - DecodeImage: # load image img_mode: BGR @@ -81,8 +81,8 @@ Train: Eval: dataset: name: SimpleDataSet - data_dir: ./train_data/ - label_file_list: ["./train_data/val_list.txt"] + data_dir: ./train_data/ic15_data + label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"] transforms: - DecodeImage: # load image img_mode: BGR diff --git a/deploy/cpp_infer/CMakeLists.txt b/deploy/cpp_infer/CMakeLists.txt index 4f2dc88a8f1a9d185b7274a1a723c0e670bd1bf1..0cf20635f8849cbb405118fd0e2fa8538eb3fa06 100644 --- a/deploy/cpp_infer/CMakeLists.txt +++ b/deploy/cpp_infer/CMakeLists.txt @@ -37,10 +37,8 @@ endif() if (WIN32) - include_directories("${PADDLE_LIB}/paddle/fluid/inference") include_directories("${PADDLE_LIB}/paddle/include") link_directories("${PADDLE_LIB}/paddle/lib") - link_directories("${PADDLE_LIB}/paddle/fluid/inference") find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/build/ NO_DEFAULT_PATH) else () diff --git a/deploy/cpp_infer/src/config.cpp b/deploy/cpp_infer/src/config.cpp index a0ac1d08c93d1ff1e51f769465b2df2b4355fbc0..050b75ede9475432f250cafac2cd5fbed17fea0a 100644 --- a/deploy/cpp_infer/src/config.cpp +++ b/deploy/cpp_infer/src/config.cpp @@ -21,12 +21,18 @@ std::vector OCRConfig::split(const std::string &str, std::vector res; if ("" == str) return res; - char strs[str.length() + 1]; + + int strlen = str.length() + 1; + chars *strs = new char[strlen]; std::strcpy(strs, str.c_str()); - char d[delim.length() + 1]; + int delimlen = delim.length() + 1; + char *d = new char[delimlen]; std::strcpy(d, delim.c_str()); + delete[] strs; + delete[] d; + char *p = std::strtok(strs, d); while (p) { std::string s = p; diff --git a/doc/joinus.PNG b/doc/joinus.PNG index b45f006c1850f39af4d4eb85279df3953331f7f7..33f5badb61e9d5c5be5439be861beee3dcf7bcf2 100644 Binary files a/doc/joinus.PNG and b/doc/joinus.PNG differ diff --git a/requirements.txt b/requirements.txt index cbb156ff86175103e86f4f3a6cfe0ed16c58bc16..5a2c5192772aebe1e11b948231e8e46b216be9a8 100644 --- a/requirements.txt +++ b/requirements.txt @@ -7,5 +7,5 @@ tqdm numpy visualdl python-Levenshtein -opencv-contrib-python==4.2.0.32 +opencv-contrib-python==4.4.0.46 cython \ No newline at end of file diff --git a/test/ocr_det_params.txt b/test/ocr_det_params.txt deleted file mode 100644 index bdfd4d4f47431bca97437963e1dc56d1b57838bb..0000000000000000000000000000000000000000 --- a/test/ocr_det_params.txt +++ /dev/null @@ -1,35 +0,0 @@ -model_name:ocr_det -python:python3.7 -gpu_list:0|0,1 -Global.auto_cast:null -Global.epoch_num:10 -Global.save_model_dir:./output/ -Train.loader.batch_size_per_card: -Global.use_gpu: -Global.pretrained_model:null - -trainer:norm|pact -norm_train:tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained -quant_train:deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy -fpgm_train:null -distill_train:null - -eval:tools/eval.py -c configs/det/det_mv3_db.yml -o - -Global.save_inference_dir:./output/ -Global.pretrained_model: -norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o -quant_export:deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o -fpgm_export:deploy/slim/prune/export_prune_model.py -distill_export:null - -inference:tools/infer/predict_det.py ---use_gpu:True|False ---enable_mkldnn:True|False ---cpu_threads:1|6 ---rec_batch_num:1 ---use_tensorrt:True|False ---precision:fp32|fp16|int8 ---det_model_dir:./inference/ch_ppocr_mobile_v2.0_det_infer/ ---image_dir:./inference/ch_det_data_50/all-sum-510/ ---save_log_path:./test/output/ diff --git a/test/ocr_rec_params.txt b/test/ocr_rec_params.txt deleted file mode 100644 index 6ce081ec0523e86ee22c192cde5e631ebe1f63b0..0000000000000000000000000000000000000000 --- a/test/ocr_rec_params.txt +++ /dev/null @@ -1,35 +0,0 @@ -model_name:ocr_rec -python:python -gpu_list:0|0,1 -Global.auto_cast:null -Global.epoch_num:10 -Global.save_model_dir:./output/ -Train.loader.batch_size_per_card: -Global.use_gpu: -Global.pretrained_model:null - -trainer:norm|pact -norm_train:tools/train.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml -quant_train:deploy/slim/quantization/quant.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml -fpgm_train:null -distill_train:null - -eval:tools/eval.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml -o - -Global.save_inference_dir:./output/ -Global.pretrained_model: -norm_export:tools/export_model.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml -o -quant_export:deploy/slim/quantization/export_model.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml -o -fpgm_export:null -distill_export:null - -inference:tools/infer/predict_rec.py ---use_gpu:True|False ---enable_mkldnn:True|False ---cpu_threads:1|6 ---rec_batch_num:1 ---use_tensorrt:True|False ---precision:fp32|fp16|int8 ---rec_model_dir:./inference/ch_ppocr_mobile_v2.0_rec_infer/ ---image_dir:./inference/rec_inference ---save_log_path:./test/output/ \ No newline at end of file diff --git a/test/prepare.sh b/test/prepare.sh deleted file mode 100644 index f6941b9ced8eb3b2fc6dda2a7ac76d025f7a18e1..0000000000000000000000000000000000000000 --- a/test/prepare.sh +++ /dev/null @@ -1,146 +0,0 @@ -#!/bin/bash -FILENAME=$1 -# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer'] -MODE=$2 - -dataline=$(cat ${FILENAME}) - -# parser params -IFS=$'\n' -lines=(${dataline}) -function func_parser_key(){ - strs=$1 - IFS=":" - array=(${strs}) - tmp=${array[0]} - echo ${tmp} -} -function func_parser_value(){ - strs=$1 - IFS=":" - array=(${strs}) - tmp=${array[1]} - echo ${tmp} -} -IFS=$'\n' -# The training params -model_name=$(func_parser_value "${lines[0]}") -train_model_list=$(func_parser_value "${lines[0]}") - -trainer_list=$(func_parser_value "${lines[10]}") - -# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer'] -MODE=$2 -# prepare pretrained weights and dataset -if [ ${train_model_list[*]} = "ocr_det" ]; then - wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams - wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar - cd pretrain_models && tar xf det_mv3_db_v2.0_train.tar && cd ../ - fi -if [ ${MODE} = "lite_train_infer" ];then - # pretrain lite train data - rm -rf ./train_data/icdar2015 - wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar - wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar # todo change to bcebos - - cd ./train_data/ && tar xf icdar2015_lite.tar && tar xf ic15_data.tar - ln -s ./icdar2015_lite ./icdar2015 - cd ../ - epoch=10 - eval_batch_step=10 -elif [ ${MODE} = "whole_train_infer" ];then - rm -rf ./train_data/icdar2015 - wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar - wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar - cd ./train_data/ && tar xf icdar2015.tar && tar xf ic15_data.tar && cd ../ - epoch=500 - eval_batch_step=200 -elif [ ${MODE} = "whole_infer" ];then - rm -rf ./train_data/icdar2015 - wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar - wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar - cd ./train_data/ && tar xf icdar2015_infer.tar && tar xf ic15_data.tar - ln -s ./icdar2015_infer ./icdar2015 - cd ../ - epoch=10 - eval_batch_step=10 -else - rm -rf ./train_data/icdar2015 - wget -nc -P ./train_data https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar - if [ ${model_name} = "ocr_det" ]; then - eval_model_name="ch_ppocr_mobile_v2.0_det_infer" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - else - eval_model_name="ch_ppocr_mobile_v2.0_rec_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - fi -fi - - -IFS='|' -for train_model in ${train_model_list[*]}; do - if [ ${train_model} = "ocr_det" ];then - model_name="ocr_det" - yml_file="configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar - cd ./inference && tar xf ch_det_data_50.tar && cd ../ - img_dir="./inference/ch_det_data_50/all-sum-510" - data_dir=./inference/ch_det_data_50/ - data_label_file=[./inference/ch_det_data_50/test_gt_50.txt] - elif [ ${train_model} = "ocr_rec" ];then - model_name="ocr_rec" - yml_file="configs/rec/rec_mv3_none_bilstm_ctc.yml" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar - cd ./inference && tar xf rec_inference.tar && cd ../ - img_dir="./inference/rec_inference/" - data_dir=./inference/rec_inference - data_label_file=[./inference/rec_inference/rec_gt_test.txt] - fi - - # eval - for slim_trainer in ${trainer_list[*]}; do - if [ ${slim_trainer} = "norm" ]; then - if [ ${model_name} = "det" ]; then - eval_model_name="ch_ppocr_mobile_v2.0_det_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - else - eval_model_name="ch_ppocr_mobile_v2.0_rec_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - fi - elif [ ${slim_trainer} = "pact" ]; then - if [ ${model_name} = "det" ]; then - eval_model_name="ch_ppocr_mobile_v2.0_det_quant_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_quant_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - else - eval_model_name="ch_ppocr_mobile_v2.0_rec_quant_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_rec_quant_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - fi - elif [ ${slim_trainer} = "distill" ]; then - if [ ${model_name} = "det" ]; then - eval_model_name="ch_ppocr_mobile_v2.0_det_distill_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_distill_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - else - eval_model_name="ch_ppocr_mobile_v2.0_rec_distill_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_rec_distill_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - fi - elif [ ${slim_trainer} = "fpgm" ]; then - if [ ${model_name} = "det" ]; then - eval_model_name="ch_ppocr_mobile_v2.0_det_prune_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - else - eval_model_name="ch_ppocr_mobile_v2.0_rec_prune_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_rec_prune_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - fi - fi - done -done diff --git a/test/test.sh b/test/test.sh deleted file mode 100644 index f2ac3f8b29af1be08e8eb5b836133dc53ad3d5b2..0000000000000000000000000000000000000000 --- a/test/test.sh +++ /dev/null @@ -1,237 +0,0 @@ -#!/bin/bash -FILENAME=$1 -# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer'] -MODE=$2 - -dataline=$(cat ${FILENAME}) - -# parser params -IFS=$'\n' -lines=(${dataline}) -function func_parser_key(){ - strs=$1 - IFS=":" - array=(${strs}) - tmp=${array[0]} - echo ${tmp} -} -function func_parser_value(){ - strs=$1 - IFS=":" - array=(${strs}) - tmp=${array[1]} - echo ${tmp} -} -function status_check(){ - last_status=$1 # the exit code - run_command=$2 - run_log=$3 - if [ $last_status -eq 0 ]; then - echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log} - else - echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log} - fi -} - -IFS=$'\n' -# The training params -model_name=$(func_parser_value "${lines[0]}") -python=$(func_parser_value "${lines[1]}") -gpu_list=$(func_parser_value "${lines[2]}") -autocast_list=$(func_parser_value "${lines[3]}") -autocast_key=$(func_parser_key "${lines[3]}") -epoch_key=$(func_parser_key "${lines[4]}") -epoch_num=$(func_parser_value "${lines[4]}") -save_model_key=$(func_parser_key "${lines[5]}") -train_batch_key=$(func_parser_key "${lines[6]}") -train_use_gpu_key=$(func_parser_key "${lines[7]}") -pretrain_model_key=$(func_parser_key "${lines[8]}") -pretrain_model_value=$(func_parser_value "${lines[8]}") - -trainer_list=$(func_parser_value "${lines[9]}") -norm_trainer=$(func_parser_value "${lines[10]}") -pact_trainer=$(func_parser_value "${lines[11]}") -fpgm_trainer=$(func_parser_value "${lines[12]}") -distill_trainer=$(func_parser_value "${lines[13]}") - -eval_py=$(func_parser_value "${lines[14]}") - -save_infer_key=$(func_parser_key "${lines[15]}") -export_weight=$(func_parser_key "${lines[16]}") -norm_export=$(func_parser_value "${lines[17]}") -pact_export=$(func_parser_value "${lines[18]}") -fpgm_export=$(func_parser_value "${lines[19]}") -distill_export=$(func_parser_value "${lines[20]}") - -inference_py=$(func_parser_value "${lines[21]}") -use_gpu_key=$(func_parser_key "${lines[22]}") -use_gpu_list=$(func_parser_value "${lines[22]}") -use_mkldnn_key=$(func_parser_key "${lines[23]}") -use_mkldnn_list=$(func_parser_value "${lines[23]}") -cpu_threads_key=$(func_parser_key "${lines[24]}") -cpu_threads_list=$(func_parser_value "${lines[24]}") -batch_size_key=$(func_parser_key "${lines[25]}") -batch_size_list=$(func_parser_value "${lines[25]}") -use_trt_key=$(func_parser_key "${lines[26]}") -use_trt_list=$(func_parser_value "${lines[26]}") -precision_key=$(func_parser_key "${lines[27]}") -precision_list=$(func_parser_value "${lines[27]}") -infer_model_key=$(func_parser_key "${lines[28]}") -infer_model=$(func_parser_value "${lines[28]}") -image_dir_key=$(func_parser_key "${lines[29]}") -infer_img_dir=$(func_parser_value "${lines[29]}") -save_log_key=$(func_parser_key "${lines[30]}") - -LOG_PATH="./test/output" -mkdir -p ${LOG_PATH} -status_log="${LOG_PATH}/results.log" - - -function func_inference(){ - IFS='|' - _python=$1 - _script=$2 - _model_dir=$3 - _log_path=$4 - _img_dir=$5 - - # inference - for use_gpu in ${use_gpu_list[*]}; do - if [ ${use_gpu} = "False" ]; then - for use_mkldnn in ${use_mkldnn_list[*]}; do - for threads in ${cpu_threads_list[*]}; do - for batch_size in ${batch_size_list[*]}; do - _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log" - command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True" - eval $command - status_check $? "${command}" "${status_log}" - done - done - done - else - for use_trt in ${use_trt_list[*]}; do - for precision in ${precision_list[*]}; do - if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then - continue - fi - for batch_size in ${batch_size_list[*]}; do - _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" - command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True" - eval $command - status_check $? "${command}" "${status_log}" - done - done - done - fi - done -} - -if [ ${MODE} != "infer" ]; then - -IFS="|" -for gpu in ${gpu_list[*]}; do - use_gpu=True - if [ ${gpu} = "-1" ];then - use_gpu=False - env="" - elif [ ${#gpu} -le 1 ];then - env="export CUDA_VISIBLE_DEVICES=${gpu}" - eval ${env} - elif [ ${#gpu} -le 15 ];then - IFS="," - array=(${gpu}) - env="export CUDA_VISIBLE_DEVICES=${array[0]}" - IFS="|" - else - IFS=";" - array=(${gpu}) - ips=${array[0]} - gpu=${array[1]} - IFS="|" - env=" " - fi - for autocast in ${autocast_list[*]}; do - for trainer in ${trainer_list[*]}; do - if [ ${trainer} = "pact" ]; then - run_train=${pact_trainer} - run_export=${pact_export} - elif [ ${trainer} = "fpgm" ]; then - run_train=${fpgm_trainer} - run_export=${fpgm_export} - elif [ ${trainer} = "distill" ]; then - run_train=${distill_trainer} - run_export=${distill_export} - else - run_train=${norm_trainer} - run_export=${norm_export} - fi - - if [ ${run_train} = "null" ]; then - continue - fi - if [ ${run_export} = "null" ]; then - continue - fi - - # not set autocast when autocast is null - if [ ${autocast} = "null" ]; then - set_autocast=" " - else - set_autocast="${autocast_key}=${autocast}" - fi - # not set epoch when whole_train_infer - if [ ${MODE} != "whole_train_infer" ]; then - set_epoch="${epoch_key}=${epoch_num}" - else - set_epoch=" " - fi - # set pretrain - if [ ${pretrain_model_value} != "null" ]; then - set_pretrain="${pretrain_model_key}=${pretrain_model_value}" - else - set_pretrain=" " - fi - - save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" - if [ ${#gpu} -le 2 ];then # train with cpu or single gpu - cmd="${python} ${run_train} ${train_use_gpu_key}=${use_gpu} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast}" - elif [ ${#gpu} -le 15 ];then # train with multi-gpu - cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast}" - else # train with multi-machine - cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_pretrain} ${set_epoch} ${set_autocast}" - fi - # run train - eval $cmd - status_check $? "${cmd}" "${status_log}" - - # run eval - eval_cmd="${python} ${eval_py} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/latest" - eval $eval_cmd - status_check $? "${eval_cmd}" "${status_log}" - - # run export model - save_infer_path="${save_log}" - export_cmd="${python} ${run_export} ${save_model_key}=${save_log} ${export_weight}=${save_log}/latest ${save_infer_key}=${save_infer_path}" - eval $export_cmd - status_check $? "${export_cmd}" "${status_log}" - - #run inference - eval $env - save_infer_path="${save_log}" - func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}" - eval "unset CUDA_VISIBLE_DEVICES" - done - done -done - -else - GPUID=$3 - if [ ${#GPUID} -le 0 ];then - env=" " - else - env="export CUDA_VISIBLE_DEVICES=${GPUID}" - fi - echo $env - #run inference - func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}" -fi diff --git a/tests/ocr_det_params.txt b/tests/ocr_det_params.txt new file mode 100644 index 0000000000000000000000000000000000000000..6aff66c6aa8591c9f48c81cf857809f956a3cda2 --- /dev/null +++ b/tests/ocr_det_params.txt @@ -0,0 +1,52 @@ +===========================train_params=========================== +model_name:ocr_det +python:python3.7 +gpu_list:0|0,1 +Global.use_gpu:True|True +Global.auto_cast:null +Global.epoch_num:lite_train_infer=2|whole_train_infer=300 +Global.save_model_dir:./output/ +Train.loader.batch_size_per_card:lite_train_infer=2|whole_train_infer=4 +Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/ +null:null +## +trainer:norm_train|pact_train +norm_train:tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained +pact_train:deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:tools/eval.py -c configs/det/det_mv3_db.yml -o +null:null +## +===========================infer_params=========================== +Global.save_inference_dir:./output/ +Global.pretrained_model: +norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o +quant_export:deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o +fpgm_export:deploy/slim/prune/export_prune_model.py +distill_export:null +export1:null +export2:null +## +infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/ +infer_export:null +infer_quant:False +inference:tools/infer/predict_det.py +--use_gpu:True|False +--enable_mkldnn:True|False +--cpu_threads:1|6 +--rec_batch_num:1 +--use_tensorrt:False|True +--precision:fp32|fp16|int8 +--det_model_dir: +--image_dir:./inference/ch_det_data_50/all-sum-510/ +--save_log_path:null +--benchmark:True +null:null + diff --git a/tests/ocr_rec_params.txt b/tests/ocr_rec_params.txt new file mode 100644 index 0000000000000000000000000000000000000000..71d12f90b3bda128c3f6047c6740911dac417954 --- /dev/null +++ b/tests/ocr_rec_params.txt @@ -0,0 +1,51 @@ +===========================train_params=========================== +model_name:ocr_rec +python:python3.7 +gpu_list:0|2,3 +Global.use_gpu:True|True +Global.auto_cast:null +Global.epoch_num:lite_train_infer=2|whole_train_infer=300 +Global.save_model_dir:./output/ +Train.loader.batch_size_per_card:lite_train_infer=128|whole_train_infer=128 +Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./train_data/ic15_data/train +null:null +## +trainer:norm_train|pact_train +norm_train:tools/train.py -c configs/rec/rec_icdar15_train.yml -o +pact_train:deploy/slim/quantization/quant.py -c configs/rec/rec_icdar15_train.yml -o +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:tools/eval.py -c configs/rec/rec_icdar15_train.yml -o +null:null +## +===========================infer_params=========================== +Global.save_inference_dir:./output/ +Global.pretrained_model: +norm_export:tools/export_model.py -c configs/rec/rec_icdar15_train.yml -o +quant_export:deploy/slim/quantization/export_model.py -c configs/rec/rec_icdar15_train.yml -o +fpgm_export:null +distill_export:null +export1:null +export2:null +## +infer_model:./inference/ch_ppocr_mobile_v2.0_rec_infer/ +infer_export:null +infer_quant:False +inference:tools/infer/predict_rec.py +--use_gpu:True|False +--enable_mkldnn:True|False +--cpu_threads:1|6 +--rec_batch_num:1 +--use_tensorrt:True|False +--precision:fp32|fp16|int8 +--rec_model_dir: +--image_dir:./inference/rec_inference +--save_log_path:./test/output/ +--benchmark:True +null:null diff --git a/tests/prepare.sh b/tests/prepare.sh new file mode 100644 index 0000000000000000000000000000000000000000..d27a051cb0a7effc50305db8e2268ad36492d6cb --- /dev/null +++ b/tests/prepare.sh @@ -0,0 +1,76 @@ +#!/bin/bash +FILENAME=$1 +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer'] +MODE=$2 + +dataline=$(cat ${FILENAME}) + +# parser params +IFS=$'\n' +lines=(${dataline}) +function func_parser_key(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[0]} + echo ${tmp} +} +function func_parser_value(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[1]} + echo ${tmp} +} +IFS=$'\n' +# The training params +model_name=$(func_parser_value "${lines[1]}") + +trainer_list=$(func_parser_value "${lines[14]}") + +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer'] +MODE=$2 + +if [ ${MODE} = "lite_train_infer" ];then + # pretrain lite train data + wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams + rm -rf ./train_data/icdar2015 + rm -rf ./train_data/ic15_data + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar # todo change to bcebos + + cd ./train_data/ && tar xf icdar2015_lite.tar && tar xf ic15_data.tar + ln -s ./icdar2015_lite ./icdar2015 + cd ../ +elif [ ${MODE} = "whole_train_infer" ];then + wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams + rm -rf ./train_data/icdar2015 + rm -rf ./train_data/ic15_data + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar + cd ./train_data/ && tar xf icdar2015.tar && tar xf ic15_data.tar && cd ../ +elif [ ${MODE} = "whole_infer" ];then + wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams + rm -rf ./train_data/icdar2015 + rm -rf ./train_data/ic15_data + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar + cd ./train_data/ && tar xf icdar2015_infer.tar && tar xf ic15_data.tar + ln -s ./icdar2015_infer ./icdar2015 + cd ../ +else + if [ ${model_name} = "ocr_det" ]; then + eval_model_name="ch_ppocr_mobile_v2.0_det_infer" + rm -rf ./train_data/icdar2015 + wget -nc -P ./train_data https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar + cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../ + else + rm -rf ./train_data/ic15_data + eval_model_name="ch_ppocr_mobile_v2.0_rec_infer" + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar + cd ./inference && tar xf ${eval_model_name}.tar && tar xf ic15_data.tar && cd ../ + fi +fi + diff --git a/tests/test.sh b/tests/test.sh new file mode 100644 index 0000000000000000000000000000000000000000..9888e0faabb13b00acdf41ad154ba0a0e7ec2b63 --- /dev/null +++ b/tests/test.sh @@ -0,0 +1,365 @@ +#!/bin/bash +FILENAME=$1 +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer'] +MODE=$2 + +dataline=$(cat ${FILENAME}) + +# parser params +IFS=$'\n' +lines=(${dataline}) + +function func_parser_key(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[0]} + echo ${tmp} +} +function func_parser_value(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[1]} + echo ${tmp} +} +function func_set_params(){ + key=$1 + value=$2 + if [ ${key} = "null" ];then + echo " " + elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then + echo " " + else + echo "${key}=${value}" + fi +} +function func_parser_params(){ + strs=$1 + IFS=":" + array=(${strs}) + key=${array[0]} + tmp=${array[1]} + IFS="|" + res="" + for _params in ${tmp[*]}; do + IFS="=" + array=(${_params}) + mode=${array[0]} + value=${array[1]} + if [[ ${mode} = ${MODE} ]]; then + IFS="|" + #echo $(func_set_params "${mode}" "${value}") + echo $value + break + fi + IFS="|" + done + echo ${res} +} +function status_check(){ + last_status=$1 # the exit code + run_command=$2 + run_log=$3 + if [ $last_status -eq 0 ]; then + echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log} + else + echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log} + fi +} + +IFS=$'\n' +# The training params +model_name=$(func_parser_value "${lines[1]}") +python=$(func_parser_value "${lines[2]}") +gpu_list=$(func_parser_value "${lines[3]}") +train_use_gpu_key=$(func_parser_key "${lines[4]}") +train_use_gpu_value=$(func_parser_value "${lines[4]}") +autocast_list=$(func_parser_value "${lines[5]}") +autocast_key=$(func_parser_key "${lines[5]}") +epoch_key=$(func_parser_key "${lines[6]}") +epoch_num=$(func_parser_params "${lines[6]}") +save_model_key=$(func_parser_key "${lines[7]}") +train_batch_key=$(func_parser_key "${lines[8]}") +train_batch_value=$(func_parser_params "${lines[8]}") +pretrain_model_key=$(func_parser_key "${lines[9]}") +pretrain_model_value=$(func_parser_value "${lines[9]}") +train_model_name=$(func_parser_value "${lines[10]}") +train_infer_img_dir=$(func_parser_value "${lines[11]}") +train_param_key1=$(func_parser_key "${lines[12]}") +train_param_value1=$(func_parser_value "${lines[12]}") + +trainer_list=$(func_parser_value "${lines[14]}") +trainer_norm=$(func_parser_key "${lines[15]}") +norm_trainer=$(func_parser_value "${lines[15]}") +pact_key=$(func_parser_key "${lines[16]}") +pact_trainer=$(func_parser_value "${lines[16]}") +fpgm_key=$(func_parser_key "${lines[17]}") +fpgm_trainer=$(func_parser_value "${lines[17]}") +distill_key=$(func_parser_key "${lines[18]}") +distill_trainer=$(func_parser_value "${lines[18]}") +trainer_key1=$(func_parser_key "${lines[19]}") +trainer_value1=$(func_parser_value "${lines[19]}") +trainer_key2=$(func_parser_key "${lines[20]}") +trainer_value2=$(func_parser_value "${lines[20]}") + +eval_py=$(func_parser_value "${lines[23]}") +eval_key1=$(func_parser_key "${lines[24]}") +eval_value1=$(func_parser_value "${lines[24]}") + +save_infer_key=$(func_parser_key "${lines[27]}") +export_weight=$(func_parser_key "${lines[28]}") +norm_export=$(func_parser_value "${lines[29]}") +pact_export=$(func_parser_value "${lines[30]}") +fpgm_export=$(func_parser_value "${lines[31]}") +distill_export=$(func_parser_value "${lines[32]}") +export_key1=$(func_parser_key "${lines[33]}") +export_value1=$(func_parser_value "${lines[33]}") +export_key2=$(func_parser_key "${lines[34]}") +export_value2=$(func_parser_value "${lines[34]}") + +# parser inference model +infer_model_dir_list=$(func_parser_value "${lines[36]}") +infer_export_list=$(func_parser_value "${lines[37]}") +infer_is_quant=$(func_parser_value "${lines[38]}") +# parser inference +inference_py=$(func_parser_value "${lines[39]}") +use_gpu_key=$(func_parser_key "${lines[40]}") +use_gpu_list=$(func_parser_value "${lines[40]}") +use_mkldnn_key=$(func_parser_key "${lines[41]}") +use_mkldnn_list=$(func_parser_value "${lines[41]}") +cpu_threads_key=$(func_parser_key "${lines[42]}") +cpu_threads_list=$(func_parser_value "${lines[42]}") +batch_size_key=$(func_parser_key "${lines[43]}") +batch_size_list=$(func_parser_value "${lines[43]}") +use_trt_key=$(func_parser_key "${lines[44]}") +use_trt_list=$(func_parser_value "${lines[44]}") +precision_key=$(func_parser_key "${lines[45]}") +precision_list=$(func_parser_value "${lines[45]}") +infer_model_key=$(func_parser_key "${lines[46]}") +image_dir_key=$(func_parser_key "${lines[47]}") +infer_img_dir=$(func_parser_value "${lines[47]}") +save_log_key=$(func_parser_key "${lines[48]}") +benchmark_key=$(func_parser_key "${lines[49]}") +benchmark_value=$(func_parser_value "${lines[49]}") +infer_key1=$(func_parser_key "${lines[50]}") +infer_value1=$(func_parser_value "${lines[50]}") + +LOG_PATH="./tests/output" +mkdir -p ${LOG_PATH} +status_log="${LOG_PATH}/results.log" + + +function func_inference(){ + IFS='|' + _python=$1 + _script=$2 + _model_dir=$3 + _log_path=$4 + _img_dir=$5 + _flag_quant=$6 + # inference + for use_gpu in ${use_gpu_list[*]}; do + if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then + for use_mkldnn in ${use_mkldnn_list[*]}; do + if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then + continue + fi + for threads in ${cpu_threads_list[*]}; do + for batch_size in ${batch_size_list[*]}; do + _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log" + set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") + set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") + set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") + set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}") + set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") + set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") + command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " + eval $command + last_status=${PIPESTATUS[0]} + eval "cat ${_save_log_path}" + status_check $last_status "${command}" "${status_log}" + done + done + done + elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then + for use_trt in ${use_trt_list[*]}; do + for precision in ${precision_list[*]}; do + if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then + continue + fi + if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then + continue + fi + if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then + continue + fi + for batch_size in ${batch_size_list[*]}; do + _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" + set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") + set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") + set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") + set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}") + set_precision=$(func_set_params "${precision_key}" "${precision}") + set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") + set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") + command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " + eval $command + last_status=${PIPESTATUS[0]} + eval "cat ${_save_log_path}" + status_check $last_status "${command}" "${status_log}" + + done + done + done + else + echo "Does not support hardware other than CPU and GPU Currently!" + fi + done +} + +if [ ${MODE} = "infer" ]; then + GPUID=$3 + if [ ${#GPUID} -le 0 ];then + env=" " + else + env="export CUDA_VISIBLE_DEVICES=${GPUID}" + fi + # set CUDA_VISIBLE_DEVICES + eval $env + export Count=0 + IFS="|" + infer_run_exports=(${infer_export_list}) + infer_quant_flag=(${infer_is_quant}) + for infer_model in ${infer_model_dir_list[*]}; do + # run export + if [ ${infer_run_exports[Count]} != "null" ];then + save_infer_dir=$(dirname $infer_model) + set_export_weight=$(func_set_params "${export_weight}" "${infer_model}") + set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}") + export_cmd="${python} ${norm_export} ${set_export_weight} ${set_save_infer_key}" + eval $export_cmd + status_export=$? + if [ ${status_export} = 0 ];then + status_check $status_export "${export_cmd}" "${status_log}" + fi + else + save_infer_dir=${infer_model} + fi + #run inference + is_quant=${infer_quant_flag[Count]} + func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} + Count=$(($Count + 1)) + done + +else + IFS="|" + export Count=0 + USE_GPU_KEY=(${train_use_gpu_value}) + for gpu in ${gpu_list[*]}; do + use_gpu=${USE_GPU_KEY[Count]} + Count=$(($Count + 1)) + if [ ${gpu} = "-1" ];then + env="" + elif [ ${#gpu} -le 1 ];then + env="export CUDA_VISIBLE_DEVICES=${gpu}" + eval ${env} + elif [ ${#gpu} -le 15 ];then + IFS="," + array=(${gpu}) + env="export CUDA_VISIBLE_DEVICES=${array[0]}" + IFS="|" + else + IFS=";" + array=(${gpu}) + ips=${array[0]} + gpu=${array[1]} + IFS="|" + env=" " + fi + for autocast in ${autocast_list[*]}; do + for trainer in ${trainer_list[*]}; do + flag_quant=False + if [ ${trainer} = ${pact_key} ]; then + run_train=${pact_trainer} + run_export=${pact_export} + flag_quant=True + elif [ ${trainer} = "${fpgm_key}" ]; then + run_train=${fpgm_trainer} + run_export=${fpgm_export} + elif [ ${trainer} = "${distill_key}" ]; then + run_train=${distill_trainer} + run_export=${distill_export} + elif [ ${trainer} = ${trainer_key1} ]; then + run_train=${trainer_value1} + run_export=${export_value1} + elif [[ ${trainer} = ${trainer_key2} ]]; then + run_train=${trainer_value2} + run_export=${export_value2} + else + run_train=${norm_trainer} + run_export=${norm_export} + fi + + if [ ${run_train} = "null" ]; then + continue + fi + + set_autocast=$(func_set_params "${autocast_key}" "${autocast}") + set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}") + set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") + set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") + set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") + set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}") + save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" + + # load pretrain from norm training if current trainer is pact or fpgm trainer + if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then + set_pretrain="${load_norm_train_model}" + fi + + set_save_model=$(func_set_params "${save_model_key}" "${save_log}") + if [ ${#gpu} -le 2 ];then # train with cpu or single gpu + cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} " + elif [ ${#gpu} -le 15 ];then # train with multi-gpu + cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}" + else # train with multi-machine + cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}" + fi + # run train + eval "unset CUDA_VISIBLE_DEVICES" + eval $cmd + status_check $? "${cmd}" "${status_log}" + + set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}") + # save norm trained models to set pretrain for pact training and fpgm training + if [ ${trainer} = ${trainer_norm} ]; then + load_norm_train_model=${set_eval_pretrain} + fi + # run eval + if [ ${eval_py} != "null" ]; then + set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") + eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" + eval $eval_cmd + status_check $? "${eval_cmd}" "${status_log}" + fi + # run export model + if [ ${run_export} != "null" ]; then + # run export model + save_infer_path="${save_log}" + set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}") + set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}") + export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}" + eval $export_cmd + status_check $? "${export_cmd}" "${status_log}" + + #run inference + eval $env + save_infer_path="${save_log}" + func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" + eval "unset CUDA_VISIBLE_DEVICES" + fi + done # done with: for trainer in ${trainer_list[*]}; do + done # done with: for autocast in ${autocast_list[*]}; do + done # done with: for gpu in ${gpu_list[*]}; do +fi # end if [ ${MODE} = "infer" ]; then diff --git a/tools/infer/predict_det.py b/tools/infer/predict_det.py index 728c36676617decf8104b95a8db94fde0a9567b2..d2152d81631b99cfaa93b33fbecbc500ddc014b0 100755 --- a/tools/infer/predict_det.py +++ b/tools/infer/predict_det.py @@ -114,7 +114,7 @@ class TextDetector(object): model_precision=args.precision, batch_size=1, data_shape="dynamic", - save_path=args.save_log_path, + save_path=None, inference_config=self.config, pids=pid, process_name=None, @@ -122,7 +122,8 @@ class TextDetector(object): time_keys=[ 'preprocess_time', 'inference_time', 'postprocess_time' ], - warmup=10) + warmup=2, + logger=logger) def order_points_clockwise(self, pts): """ @@ -244,7 +245,7 @@ if __name__ == "__main__": if args.warmup: img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8) - for i in range(10): + for i in range(2): res = text_detector(img) if not os.path.exists(draw_img_save): diff --git a/tools/infer/predict_rec.py b/tools/infer/predict_rec.py index bc9f713aeafb9977c60fe65bea56fbe2b395efd5..bb4a31706471b9b1745519ac9f390d01b60d5d44 100755 --- a/tools/infer/predict_rec.py +++ b/tools/infer/predict_rec.py @@ -73,7 +73,7 @@ class TextRecognizer(object): model_precision=args.precision, batch_size=args.rec_batch_num, data_shape="dynamic", - save_path=args.save_log_path, + save_path=None, #args.save_log_path, inference_config=self.config, pids=pid, process_name=None, @@ -81,7 +81,8 @@ class TextRecognizer(object): time_keys=[ 'preprocess_time', 'inference_time', 'postprocess_time' ], - warmup=10) + warmup=2, + logger=logger) def resize_norm_img(self, img, max_wh_ratio): imgC, imgH, imgW = self.rec_image_shape @@ -272,10 +273,10 @@ def main(args): valid_image_file_list = [] img_list = [] - # warmup 10 times + # warmup 2 times if args.warmup: img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8) - for i in range(10): + for i in range(2): res = text_recognizer([img]) for image_file in image_file_list: diff --git a/tools/infer/utility.py b/tools/infer/utility.py index 32f60a78c7eeb8696d9b3b94ce9dcb8d76cba811..ea242adf704577adffca2b035df504df23dceee9 100755 --- a/tools/infer/utility.py +++ b/tools/infer/utility.py @@ -216,6 +216,27 @@ def create_predictor(args, mode, logger): "elementwise_add_7": [1, 56, 40, 40], "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40] } + min_pact_shape = { + "nearest_interp_v2_26.tmp_0":[1,256,20,20], + "nearest_interp_v2_27.tmp_0":[1,64,20,20], + "nearest_interp_v2_28.tmp_0":[1,64,20,20], + "nearest_interp_v2_29.tmp_0":[1,64,20,20] + } + max_pact_shape = { + "nearest_interp_v2_26.tmp_0":[1,256,400,400], + "nearest_interp_v2_27.tmp_0":[1,64,400,400], + "nearest_interp_v2_28.tmp_0":[1,64,400,400], + "nearest_interp_v2_29.tmp_0":[1,64,400,400] + } + opt_pact_shape = { + "nearest_interp_v2_26.tmp_0":[1,256,160,160], + "nearest_interp_v2_27.tmp_0":[1,64,160,160], + "nearest_interp_v2_28.tmp_0":[1,64,160,160], + "nearest_interp_v2_29.tmp_0":[1,64,160,160] + } + min_input_shape.update(min_pact_shape) + max_input_shape.update(max_pact_shape) + opt_input_shape.update(opt_pact_shape) elif mode == "rec": min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]} max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}