Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
911c604d
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
911c604d
编写于
10月 28, 2020
作者:
T
tink2123
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add anno for head
上级
234bb38c
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
291 addition
and
67 deletion
+291
-67
ppocr/modeling/heads/cls_head.py
ppocr/modeling/heads/cls_head.py
+8
-0
ppocr/modeling/heads/det_east_head.py
ppocr/modeling/heads/det_east_head.py
+6
-0
ppocr/modeling/heads/det_sast_head.py
ppocr/modeling/heads/det_sast_head.py
+277
-67
未找到文件。
ppocr/modeling/heads/cls_head.py
浏览文件 @
911c604d
...
...
@@ -23,6 +23,14 @@ import paddle.fluid as fluid
class
ClsHead
(
object
):
"""
Class orientation
Args:
params(dict): super parameters for build Class network
"""
def
__init__
(
self
,
params
):
super
(
ClsHead
,
self
).
__init__
()
self
.
class_dim
=
params
[
'class_dim'
]
...
...
ppocr/modeling/heads/det_east_head.py
浏览文件 @
911c604d
...
...
@@ -109,6 +109,12 @@ class EASTHead(object):
return
f_score
,
f_geo
def
__call__
(
self
,
inputs
):
"""
Fuse different levels of feature map from backbone and predict results
Args:
inputs(list): feature maps from backbone
Return: predicts
"""
f_common
=
self
.
unet_fusion
(
inputs
)
f_score
,
f_geo
=
self
.
detector_header
(
f_common
)
predicts
=
OrderedDict
()
...
...
ppocr/modeling/heads/det_sast_head.py
浏览文件 @
911c604d
...
...
@@ -38,34 +38,65 @@ class SASTHead(object):
blocks{}: contain block_2, block_3, block_4, block_5, block_6, block_7 with
1/4, 1/8, 1/16, 1/32, 1/64, 1/128 resolution.
"""
f
=
[
blocks
[
'block_6'
],
blocks
[
'block_5'
],
blocks
[
'block_4'
],
blocks
[
'block_3'
],
blocks
[
'block_2'
]]
f
=
[
blocks
[
'block_6'
],
blocks
[
'block_5'
],
blocks
[
'block_4'
],
blocks
[
'block_3'
],
blocks
[
'block_2'
]
]
num_outputs
=
[
256
,
256
,
192
,
192
,
128
]
g
=
[
None
,
None
,
None
,
None
,
None
]
h
=
[
None
,
None
,
None
,
None
,
None
]
for
i
in
range
(
5
):
h
[
i
]
=
conv_bn_layer
(
input
=
f
[
i
],
num_filters
=
num_outputs
[
i
],
filter_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
'fpn_up_h'
+
str
(
i
))
h
[
i
]
=
conv_bn_layer
(
input
=
f
[
i
],
num_filters
=
num_outputs
[
i
],
filter_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
'fpn_up_h'
+
str
(
i
))
for
i
in
range
(
4
):
if
i
==
0
:
g
[
i
]
=
deconv_bn_layer
(
input
=
h
[
i
],
num_filters
=
num_outputs
[
i
+
1
],
act
=
None
,
name
=
'fpn_up_g0'
)
g
[
i
]
=
deconv_bn_layer
(
input
=
h
[
i
],
num_filters
=
num_outputs
[
i
+
1
],
act
=
None
,
name
=
'fpn_up_g0'
)
#print("g[{}] shape: {}".format(i, g[i].shape))
else
:
g
[
i
]
=
fluid
.
layers
.
elementwise_add
(
x
=
g
[
i
-
1
],
y
=
h
[
i
])
g
[
i
]
=
fluid
.
layers
.
relu
(
g
[
i
])
#g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i],
# filter_size=1, stride=1, act='relu')
g
[
i
]
=
conv_bn_layer
(
input
=
g
[
i
],
num_filters
=
num_outputs
[
i
],
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'fpn_up_g%d_1'
%
i
)
g
[
i
]
=
deconv_bn_layer
(
input
=
g
[
i
],
num_filters
=
num_outputs
[
i
+
1
],
act
=
None
,
name
=
'fpn_up_g%d_2'
%
i
)
g
[
i
]
=
conv_bn_layer
(
input
=
g
[
i
],
num_filters
=
num_outputs
[
i
],
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'fpn_up_g%d_1'
%
i
)
g
[
i
]
=
deconv_bn_layer
(
input
=
g
[
i
],
num_filters
=
num_outputs
[
i
+
1
],
act
=
None
,
name
=
'fpn_up_g%d_2'
%
i
)
#print("g[{}] shape: {}".format(i, g[i].shape))
g
[
4
]
=
fluid
.
layers
.
elementwise_add
(
x
=
g
[
3
],
y
=
h
[
4
])
g
[
4
]
=
fluid
.
layers
.
relu
(
g
[
4
])
g
[
4
]
=
conv_bn_layer
(
input
=
g
[
4
],
num_filters
=
num_outputs
[
4
],
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'fpn_up_fusion_1'
)
g
[
4
]
=
conv_bn_layer
(
input
=
g
[
4
],
num_filters
=
num_outputs
[
4
],
filter_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
'fpn_up_fusion_2'
)
g
[
4
]
=
conv_bn_layer
(
input
=
g
[
4
],
num_filters
=
num_outputs
[
4
],
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'fpn_up_fusion_1'
)
g
[
4
]
=
conv_bn_layer
(
input
=
g
[
4
],
num_filters
=
num_outputs
[
4
],
filter_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
'fpn_up_fusion_2'
)
return
g
[
4
]
...
...
@@ -79,40 +110,119 @@ class SASTHead(object):
g
=
[
None
,
None
,
None
]
h
=
[
None
,
None
,
None
]
for
i
in
range
(
3
):
h
[
i
]
=
conv_bn_layer
(
input
=
f
[
i
],
num_filters
=
num_outputs
[
i
],
filter_size
=
3
,
stride
=
1
,
act
=
None
,
name
=
'fpn_down_h'
+
str
(
i
))
h
[
i
]
=
conv_bn_layer
(
input
=
f
[
i
],
num_filters
=
num_outputs
[
i
],
filter_size
=
3
,
stride
=
1
,
act
=
None
,
name
=
'fpn_down_h'
+
str
(
i
))
for
i
in
range
(
2
):
if
i
==
0
:
g
[
i
]
=
conv_bn_layer
(
input
=
h
[
i
],
num_filters
=
num_outputs
[
i
+
1
],
filter_size
=
3
,
stride
=
2
,
act
=
None
,
name
=
'fpn_down_g0'
)
g
[
i
]
=
conv_bn_layer
(
input
=
h
[
i
],
num_filters
=
num_outputs
[
i
+
1
],
filter_size
=
3
,
stride
=
2
,
act
=
None
,
name
=
'fpn_down_g0'
)
else
:
g
[
i
]
=
fluid
.
layers
.
elementwise_add
(
x
=
g
[
i
-
1
],
y
=
h
[
i
])
g
[
i
]
=
fluid
.
layers
.
relu
(
g
[
i
])
g
[
i
]
=
conv_bn_layer
(
input
=
g
[
i
],
num_filters
=
num_outputs
[
i
],
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'fpn_down_g%d_1'
%
i
)
g
[
i
]
=
conv_bn_layer
(
input
=
g
[
i
],
num_filters
=
num_outputs
[
i
+
1
],
filter_size
=
3
,
stride
=
2
,
act
=
None
,
name
=
'fpn_down_g%d_2'
%
i
)
g
[
i
]
=
conv_bn_layer
(
input
=
g
[
i
],
num_filters
=
num_outputs
[
i
],
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'fpn_down_g%d_1'
%
i
)
g
[
i
]
=
conv_bn_layer
(
input
=
g
[
i
],
num_filters
=
num_outputs
[
i
+
1
],
filter_size
=
3
,
stride
=
2
,
act
=
None
,
name
=
'fpn_down_g%d_2'
%
i
)
# print("g[{}] shape: {}".format(i, g[i].shape))
g
[
2
]
=
fluid
.
layers
.
elementwise_add
(
x
=
g
[
1
],
y
=
h
[
2
])
g
[
2
]
=
fluid
.
layers
.
relu
(
g
[
2
])
g
[
2
]
=
conv_bn_layer
(
input
=
g
[
2
],
num_filters
=
num_outputs
[
2
],
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'fpn_down_fusion_1'
)
g
[
2
]
=
conv_bn_layer
(
input
=
g
[
2
],
num_filters
=
num_outputs
[
2
],
filter_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
'fpn_down_fusion_2'
)
g
[
2
]
=
conv_bn_layer
(
input
=
g
[
2
],
num_filters
=
num_outputs
[
2
],
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'fpn_down_fusion_1'
)
g
[
2
]
=
conv_bn_layer
(
input
=
g
[
2
],
num_filters
=
num_outputs
[
2
],
filter_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
'fpn_down_fusion_2'
)
return
g
[
2
]
def
SAST_Header1
(
self
,
f_common
):
"""Detector header."""
#f_score
f_score
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
64
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_score1'
)
f_score
=
conv_bn_layer
(
input
=
f_score
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_score2'
)
f_score
=
conv_bn_layer
(
input
=
f_score
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_score3'
)
f_score
=
conv_bn_layer
(
input
=
f_score
,
num_filters
=
1
,
filter_size
=
3
,
stride
=
1
,
name
=
'f_score4'
)
f_score
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
64
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_score1'
)
f_score
=
conv_bn_layer
(
input
=
f_score
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_score2'
)
f_score
=
conv_bn_layer
(
input
=
f_score
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_score3'
)
f_score
=
conv_bn_layer
(
input
=
f_score
,
num_filters
=
1
,
filter_size
=
3
,
stride
=
1
,
name
=
'f_score4'
)
f_score
=
fluid
.
layers
.
sigmoid
(
f_score
)
# print("f_score shape: {}".format(f_score.shape))
#f_boder
f_border
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
64
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_border1'
)
f_border
=
conv_bn_layer
(
input
=
f_border
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_border2'
)
f_border
=
conv_bn_layer
(
input
=
f_border
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_border3'
)
f_border
=
conv_bn_layer
(
input
=
f_border
,
num_filters
=
4
,
filter_size
=
3
,
stride
=
1
,
name
=
'f_border4'
)
f_border
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
64
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_border1'
)
f_border
=
conv_bn_layer
(
input
=
f_border
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_border2'
)
f_border
=
conv_bn_layer
(
input
=
f_border
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_border3'
)
f_border
=
conv_bn_layer
(
input
=
f_border
,
num_filters
=
4
,
filter_size
=
3
,
stride
=
1
,
name
=
'f_border4'
)
# print("f_border shape: {}".format(f_border.shape))
return
f_score
,
f_border
...
...
@@ -120,17 +230,55 @@ class SASTHead(object):
def
SAST_Header2
(
self
,
f_common
):
"""Detector header."""
#f_tvo
f_tvo
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
64
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_tvo1'
)
f_tvo
=
conv_bn_layer
(
input
=
f_tvo
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_tvo2'
)
f_tvo
=
conv_bn_layer
(
input
=
f_tvo
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_tvo3'
)
f_tvo
=
conv_bn_layer
(
input
=
f_tvo
,
num_filters
=
8
,
filter_size
=
3
,
stride
=
1
,
name
=
'f_tvo4'
)
f_tvo
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
64
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_tvo1'
)
f_tvo
=
conv_bn_layer
(
input
=
f_tvo
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_tvo2'
)
f_tvo
=
conv_bn_layer
(
input
=
f_tvo
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_tvo3'
)
f_tvo
=
conv_bn_layer
(
input
=
f_tvo
,
num_filters
=
8
,
filter_size
=
3
,
stride
=
1
,
name
=
'f_tvo4'
)
# print("f_tvo shape: {}".format(f_tvo.shape))
#f_tco
f_tco
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
64
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_tco1'
)
f_tco
=
conv_bn_layer
(
input
=
f_tco
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_tco2'
)
f_tco
=
conv_bn_layer
(
input
=
f_tco
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_tco3'
)
f_tco
=
conv_bn_layer
(
input
=
f_tco
,
num_filters
=
2
,
filter_size
=
3
,
stride
=
1
,
name
=
'f_tco4'
)
f_tco
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
64
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_tco1'
)
f_tco
=
conv_bn_layer
(
input
=
f_tco
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_tco2'
)
f_tco
=
conv_bn_layer
(
input
=
f_tco
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_tco3'
)
f_tco
=
conv_bn_layer
(
input
=
f_tco
,
num_filters
=
2
,
filter_size
=
3
,
stride
=
1
,
name
=
'f_tco4'
)
# print("f_tco shape: {}".format(f_tco.shape))
return
f_tvo
,
f_tco
...
...
@@ -139,33 +287,66 @@ class SASTHead(object):
"""
"""
f_shape
=
fluid
.
layers
.
shape
(
f_common
)
f_theta
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_theta'
)
f_phi
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_phi'
)
f_g
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_g'
)
f_theta
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_theta'
)
f_phi
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_phi'
)
f_g
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_g'
)
### horizon
fh_theta
=
f_theta
fh_phi
=
f_phi
fh_g
=
f_g
#flatten
fh_theta
=
fluid
.
layers
.
transpose
(
fh_theta
,
[
0
,
2
,
3
,
1
])
fh_theta
=
fluid
.
layers
.
reshape
(
fh_theta
,
[
f_shape
[
0
]
*
f_shape
[
2
],
f_shape
[
3
],
128
])
fh_theta
=
fluid
.
layers
.
reshape
(
fh_theta
,
[
f_shape
[
0
]
*
f_shape
[
2
],
f_shape
[
3
],
128
])
fh_phi
=
fluid
.
layers
.
transpose
(
fh_phi
,
[
0
,
2
,
3
,
1
])
fh_phi
=
fluid
.
layers
.
reshape
(
fh_phi
,
[
f_shape
[
0
]
*
f_shape
[
2
],
f_shape
[
3
],
128
])
fh_phi
=
fluid
.
layers
.
reshape
(
fh_phi
,
[
f_shape
[
0
]
*
f_shape
[
2
],
f_shape
[
3
],
128
])
fh_g
=
fluid
.
layers
.
transpose
(
fh_g
,
[
0
,
2
,
3
,
1
])
fh_g
=
fluid
.
layers
.
reshape
(
fh_g
,
[
f_shape
[
0
]
*
f_shape
[
2
],
f_shape
[
3
],
128
])
fh_g
=
fluid
.
layers
.
reshape
(
fh_g
,
[
f_shape
[
0
]
*
f_shape
[
2
],
f_shape
[
3
],
128
])
#correlation
fh_attn
=
fluid
.
layers
.
matmul
(
fh_theta
,
fluid
.
layers
.
transpose
(
fh_phi
,
[
0
,
2
,
1
]))
fh_attn
=
fluid
.
layers
.
matmul
(
fh_theta
,
fluid
.
layers
.
transpose
(
fh_phi
,
[
0
,
2
,
1
]))
#scale
fh_attn
=
fh_attn
/
(
128
**
0.5
)
fh_attn
=
fh_attn
/
(
128
**
0.5
)
fh_attn
=
fluid
.
layers
.
softmax
(
fh_attn
)
#weighted sum
fh_weight
=
fluid
.
layers
.
matmul
(
fh_attn
,
fh_g
)
fh_weight
=
fluid
.
layers
.
reshape
(
fh_weight
,
[
f_shape
[
0
],
f_shape
[
2
],
f_shape
[
3
],
128
])
fh_weight
=
fluid
.
layers
.
reshape
(
fh_weight
,
[
f_shape
[
0
],
f_shape
[
2
],
f_shape
[
3
],
128
])
# print("fh_weight: {}".format(fh_weight.shape))
fh_weight
=
fluid
.
layers
.
transpose
(
fh_weight
,
[
0
,
3
,
1
,
2
])
fh_weight
=
conv_bn_layer
(
input
=
fh_weight
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
name
=
'fh_weight'
)
fh_weight
=
conv_bn_layer
(
input
=
fh_weight
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
name
=
'fh_weight'
)
#short cut
fh_sc
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
name
=
'fh_sc'
)
fh_sc
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
name
=
'fh_sc'
)
f_h
=
fluid
.
layers
.
relu
(
fh_weight
+
fh_sc
)
######
#vertical
...
...
@@ -174,31 +355,60 @@ class SASTHead(object):
fv_g
=
fluid
.
layers
.
transpose
(
f_g
,
[
0
,
1
,
3
,
2
])
#flatten
fv_theta
=
fluid
.
layers
.
transpose
(
fv_theta
,
[
0
,
2
,
3
,
1
])
fv_theta
=
fluid
.
layers
.
reshape
(
fv_theta
,
[
f_shape
[
0
]
*
f_shape
[
3
],
f_shape
[
2
],
128
])
fv_theta
=
fluid
.
layers
.
reshape
(
fv_theta
,
[
f_shape
[
0
]
*
f_shape
[
3
],
f_shape
[
2
],
128
])
fv_phi
=
fluid
.
layers
.
transpose
(
fv_phi
,
[
0
,
2
,
3
,
1
])
fv_phi
=
fluid
.
layers
.
reshape
(
fv_phi
,
[
f_shape
[
0
]
*
f_shape
[
3
],
f_shape
[
2
],
128
])
fv_phi
=
fluid
.
layers
.
reshape
(
fv_phi
,
[
f_shape
[
0
]
*
f_shape
[
3
],
f_shape
[
2
],
128
])
fv_g
=
fluid
.
layers
.
transpose
(
fv_g
,
[
0
,
2
,
3
,
1
])
fv_g
=
fluid
.
layers
.
reshape
(
fv_g
,
[
f_shape
[
0
]
*
f_shape
[
3
],
f_shape
[
2
],
128
])
fv_g
=
fluid
.
layers
.
reshape
(
fv_g
,
[
f_shape
[
0
]
*
f_shape
[
3
],
f_shape
[
2
],
128
])
#correlation
fv_attn
=
fluid
.
layers
.
matmul
(
fv_theta
,
fluid
.
layers
.
transpose
(
fv_phi
,
[
0
,
2
,
1
]))
fv_attn
=
fluid
.
layers
.
matmul
(
fv_theta
,
fluid
.
layers
.
transpose
(
fv_phi
,
[
0
,
2
,
1
]))
#scale
fv_attn
=
fv_attn
/
(
128
**
0.5
)
fv_attn
=
fv_attn
/
(
128
**
0.5
)
fv_attn
=
fluid
.
layers
.
softmax
(
fv_attn
)
#weighted sum
fv_weight
=
fluid
.
layers
.
matmul
(
fv_attn
,
fv_g
)
fv_weight
=
fluid
.
layers
.
reshape
(
fv_weight
,
[
f_shape
[
0
],
f_shape
[
3
],
f_shape
[
2
],
128
])
fv_weight
=
fluid
.
layers
.
reshape
(
fv_weight
,
[
f_shape
[
0
],
f_shape
[
3
],
f_shape
[
2
],
128
])
# print("fv_weight: {}".format(fv_weight.shape))
fv_weight
=
fluid
.
layers
.
transpose
(
fv_weight
,
[
0
,
3
,
2
,
1
])
fv_weight
=
conv_bn_layer
(
input
=
fv_weight
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
name
=
'fv_weight'
)
fv_weight
=
conv_bn_layer
(
input
=
fv_weight
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
name
=
'fv_weight'
)
#short cut
fv_sc
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
name
=
'fv_sc'
)
fv_sc
=
conv_bn_layer
(
input
=
f_common
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
name
=
'fv_sc'
)
f_v
=
fluid
.
layers
.
relu
(
fv_weight
+
fv_sc
)
######
f_attn
=
fluid
.
layers
.
concat
([
f_h
,
f_v
],
axis
=
1
)
f_attn
=
conv_bn_layer
(
input
=
f_attn
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_attn'
)
f_attn
=
conv_bn_layer
(
input
=
f_attn
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
'f_attn'
)
return
f_attn
def
__call__
(
self
,
blocks
,
with_cab
=
False
):
"""
Fuse different levels of feature map from backbone and predict results
Args:
blocks(list): feature maps from backbone
with_cab(bool): whether use cross_attention
Return: predicts
"""
# for k, v in blocks.items():
# print(k, v.shape)
...
...
@@ -217,7 +427,7 @@ class SASTHead(object):
# print('enhence f_common with CAB.')
f_common
=
self
.
cross_attention
(
f_common
)
f_score
,
f_border
=
self
.
SAST_Header1
(
f_common
)
f_score
,
f_border
=
self
.
SAST_Header1
(
f_common
)
f_tvo
,
f_tco
=
self
.
SAST_Header2
(
f_common
)
predicts
=
OrderedDict
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录