diff --git a/doc/doc_ch/algorithm_overview.md b/doc/doc_ch/algorithm_overview.md
index c4a3b3255f7367aec672387272d47b64a02658ee..d047959dbacc53da596d567eb9fd054f7772e4a5 100644
--- a/doc/doc_ch/algorithm_overview.md
+++ b/doc/doc_ch/algorithm_overview.md
@@ -17,17 +17,17 @@ PaddleOCR开源的文本检测算法列表:
|模型|骨干网络|precision|recall|Hmean|下载链接|
|-|-|-|-|-|-|
-|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
-|EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
-|DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
-|DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
-|SAST|ResNet50_vd|92.18%|82.96%|87.33%|[下载链接](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_icdar2015.tar)|
+|EAST|ResNet50_vd||||[敬请期待]()|
+|EAST|MobileNetV3||||[敬请期待]()|
+|DB|ResNet50_vd||||[敬请期待]()|
+|DB|MobileNetV3||||[敬请期待]()|
+|SAST|ResNet50_vd||||[敬请期待]()|
在Total-text文本检测公开数据集上,算法效果如下:
|模型|骨干网络|precision|recall|Hmean|下载链接|
|-|-|-|-|-|-|
-|SAST|ResNet50_vd|88.74%|79.80%|84.03%|[下载链接](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)|
+|SAST|ResNet50_vd||||[敬请期待]()|
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:[百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
@@ -48,17 +48,12 @@ PaddleOCR开源的文本识别算法列表:
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
|-|-|-|-|-|
-|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
-|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
-|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
-|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
-|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
-|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
-|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
-|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
-|SRN|Resnet50_vd_fpn|88.33%|rec_r50fpn_vd_none_srn|[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)|
-
-**说明:** SRN模型使用了数据扰动方法对上述提到对两个训练集进行增广,增广后的数据可以在[百度网盘](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA)上下载,提取码: y3ry。
-原始论文使用两阶段训练平均精度为89.74%,PaddleOCR中使用one-stage训练,平均精度为88.33%。两种预训练权重均在[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)中。
+|Rosetta|Resnet34_vd||rec_r34_vd_none_none_ctc|[敬请期待]()|
+|Rosetta|MobileNetV3||rec_mv3_none_none_ctc|[敬请期待]()|
+|CRNN|Resnet34_vd||rec_r34_vd_none_bilstm_ctc|[敬请期待]()|
+|CRNN|MobileNetV3||rec_mv3_none_bilstm_ctc|[敬请期待]()|
+|STAR-Net|Resnet34_vd||rec_r34_vd_tps_bilstm_ctc|[敬请期待]()|
+|STAR-Net|MobileNetV3||rec_mv3_tps_bilstm_ctc|[敬请期待]()|
+
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)。
diff --git a/doc/doc_ch/recognition.md b/doc/doc_ch/recognition.md
index 71be1e89dc561630315337ef11c52289e0756c00..91b1af78835707fc37494c847a74f7c1f30191bf 100644
--- a/doc/doc_ch/recognition.md
+++ b/doc/doc_ch/recognition.md
@@ -142,9 +142,8 @@ word_dict.txt 每行有一个单字,将字符与数字索引映射在一起,
- 添加空格类别
-如果希望支持识别"空格"类别, 请将yml文件中的 `use_space_char` 字段设置为 `true`。
+如果希望支持识别"空格"类别, 请将yml文件中的 `use_space_char` 字段设置为 `True`。
-**注意:`use_space_char` 仅在 `character_type=ch` 时生效**
### 启动训练
@@ -167,10 +166,9 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar
*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false*
```
-# GPU训练 支持单卡,多卡训练,通过CUDA_VISIBLE_DEVICES指定卡号
-export CUDA_VISIBLE_DEVICES=0,1,2,3
+# GPU训练 支持单卡,多卡训练,通过--gpus参数指定卡号
# 训练icdar15英文数据 并将训练日志保存为 tain_rec.log
-python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml
```
- 数据增强
@@ -195,8 +193,8 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t
| 配置文件 | 算法名称 | backbone | trans | seq | pred |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: |
-| [rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml) | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
-| [rec_chinese_common_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_common_train_v1.1.yml) | CRNN | ResNet34_vd | None | BiLSTM | ctc |
+| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
+| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) | CRNN | ResNet34_vd | None | BiLSTM | ctc |
| rec_chinese_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
| rec_chinese_common_train.yml | CRNN | ResNet34_vd | None | BiLSTM | ctc |
| rec_icdar15_train.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc |
@@ -210,39 +208,69 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t
| rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc |
| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
-训练中文数据,推荐使用[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件:
+训练中文数据,推荐使用[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件:
-以 `rec_mv3_none_none_ctc.yml` 为例:
+以 `rec_chinese_lite_train_v2.0.yml` 为例:
```
Global:
...
- # 修改 image_shape 以适应长文本
- image_shape: [3, 32, 320]
- ...
+ # 添加自定义字典,如修改字典请将路径指向新字典
+ character_dict_path: ppocr/utils/ppocr_keys_v1.txt
# 修改字符类型
character_type: ch
- # 添加自定义字典,如修改字典请将路径指向新字典
- character_dict_path: ./ppocr/utils/ppocr_keys_v1.txt
- # 训练时添加数据增强
- distort: true
- # 识别空格
- use_space_char: true
- ...
- # 修改reader类型
- reader_yml: ./configs/rec/rec_chinese_reader.yml
...
+ # 识别空格
+ use_space_char: True
-...
Optimizer:
...
# 添加学习率衰减策略
- decay:
- function: cosine_decay
- # 每个 epoch 包含 iter 数
- step_each_epoch: 20
- # 总共训练epoch数
- total_epoch: 1000
+ lr:
+ name: Cosine
+ learning_rate: 0.001
+ ...
+
+...
+
+Train:
+ dataset:
+ # 数据集格式,支持LMDBDateSet以及SimpleDataSet
+ name: SimpleDataSet
+ # 数据集路径
+ data_dir: ./train_data/
+ # 训练集标签文件
+ label_file_list: ["./train_data/train_list.txt"]
+ transforms:
+ ...
+ - RecResizeImg:
+ # 修改 image_shape 以适应长文本
+ image_shape: [3, 32, 320]
+ ...
+ loader:
+ ...
+ # 单卡训练的batch_size
+ batch_size_per_card: 256
+ ...
+
+Eval:
+ dataset:
+ # 数据集格式,支持LMDBDateSet以及SimpleDataSet
+ name: SimpleDataSet
+ # 数据集路径
+ data_dir: ./train_data
+ # 验证集标签文件
+ label_file_list: ["./train_data/val_list.txt"]
+ transforms:
+ ...
+ - RecResizeImg:
+ # 修改 image_shape 以适应长文本
+ image_shape: [3, 32, 320]
+ ...
+ loader:
+ # 单卡验证的batch_size
+ batch_size_per_card: 256
+ ...
```
**注意,预测/评估时的配置文件请务必与训练一致。**
@@ -270,39 +298,41 @@ Global:
...
# 添加自定义字典,如修改字典请将路径指向新字典
character_dict_path: ./ppocr/utils/dict/french_dict.txt
- # 训练时添加数据增强
- distort: true
- # 识别空格
- use_space_char: true
- ...
- # 修改reader类型
- reader_yml: ./configs/rec/multi_languages/rec_french_reader.yml
- ...
-...
-```
-
-同时需要修改数据读取文件 `rec_french_reader.yml`:
-
-```
-TrainReader:
...
- # 修改训练数据存放的目录名
- img_set_dir: ./train_data
- # 修改 label 文件名称
- label_file_path: ./train_data/french_train.txt
+ # 识别空格
+ use_space_char: True
...
+
+Train:
+ dataset:
+ # 数据集格式,支持LMDBDateSet以及SimpleDataSet
+ name: SimpleDataSet
+ # 数据集路径
+ data_dir: ./train_data/
+ # 训练集标签文件
+ label_file_list: ["./train_data/french_train.txt"]
+ ...
+
+Eval:
+ dataset:
+ # 数据集格式,支持LMDBDateSet以及SimpleDataSet
+ name: SimpleDataSet
+ # 数据集路径
+ data_dir: ./train_data
+ # 验证集标签文件
+ label_file_list: ["./train_data/french_val.txt"]
+ ...
```
### 评估
-评估数据集可以通过 `configs/rec/rec_icdar15_reader.yml` 修改EvalReader中的 `label_file_path` 设置。
+评估数据集可以通过 `configs/rec/rec_icdar15_train.yml` 修改Eval中的 `label_file_path` 设置。
*注意* 评估时必须确保配置文件中 infer_img 字段为空
```
-export CUDA_VISIBLE_DEVICES=0
# GPU 评估, Global.checkpoints 为待测权重
-python3 tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
@@ -332,12 +362,12 @@ infer_img: doc/imgs_words/en/word_1.png
word : joint
```
-预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml` 完成了中文模型的训练,
+预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml` 完成了中文模型的训练,
您可以使用如下命令进行中文模型预测。
```
# 预测中文结果
-python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg
+python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg
```
预测图片:
diff --git a/doc/doc_en/algorithm_overview_en.md b/doc/doc_en/algorithm_overview_en.md
index 2e21fd621971e062384a9323e79a8cf4498d7495..60c44865a74d08f6f77af98812266370e2f68309 100644
--- a/doc/doc_en/algorithm_overview_en.md
+++ b/doc/doc_en/algorithm_overview_en.md
@@ -19,17 +19,17 @@ On the ICDAR2015 dataset, the text detection result is as follows:
|Model|Backbone|precision|recall|Hmean|Download link|
|-|-|-|-|-|-|
-|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
-|EAST|MobileNetV3|81.67%|79.83%|80.74%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
-|DB|ResNet50_vd|83.79%|80.65%|82.19%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
-|DB|MobileNetV3|75.92%|73.18%|74.53%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
-|SAST|ResNet50_vd|92.18%|82.96%|87.33%|[Download link](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_icdar2015.tar)|
+|EAST|ResNet50_vd||||[Coming soon]()|
+|EAST|MobileNetV3||||[Coming soon]()|
+|DB|ResNet50_vd||||[Coming soon]()|
+|DB|MobileNetV3||||[Coming soon]()|
+|SAST|ResNet50_vd||||[Coming soon]()|
On Total-Text dataset, the text detection result is as follows:
|Model|Backbone|precision|recall|Hmean|Download link|
|-|-|-|-|-|-|
-|SAST|ResNet50_vd|88.74%|79.80%|84.03%|[Download link](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)|
+|SAST|ResNet50_vd||||[Coming soon]()|
**Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi).
@@ -49,18 +49,12 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|Model|Backbone|Avg Accuracy|Module combination|Download link|
|-|-|-|-|-|
-|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
-|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
-|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
-|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
-|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
-|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
-|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
-|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
-|SRN|Resnet50_vd_fpn|88.33%|rec_r50fpn_vd_none_srn|[Download link](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)|
-
-**Note:** SRN model uses data expansion method to expand the two training sets mentioned above, and the expanded data can be downloaded from [Baidu Drive](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA) (download code: y3ry).
-
-The average accuracy of the two-stage training in the original paper is 89.74%, and that of one stage training in paddleocr is 88.33%. Both pre-trained weights can be downloaded [here](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar).
+|Rosetta|Resnet34_vd||rec_r34_vd_none_none_ctc|[Coming soon]()|
+|Rosetta|MobileNetV3||rec_mv3_none_none_ctc|[Coming soon]()|
+|CRNN|Resnet34_vd||rec_r34_vd_none_bilstm_ctc|[Coming soon]()|
+|CRNN|MobileNetV3||rec_mv3_none_bilstm_ctc|[Coming soon]()|
+|STAR-Net|Resnet34_vd||rec_r34_vd_tps_bilstm_ctc|[Coming soon]()|
+|STAR-Net|MobileNetV3||rec_mv3_tps_bilstm_ctc|[Coming soon]()|
+
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
diff --git a/doc/doc_en/recognition_en.md b/doc/doc_en/recognition_en.md
index 41b00c52a7780d02c144c251553f427e5b875e5e..f9849321d3ac792accf02cac260f16daf030e755 100644
--- a/doc/doc_en/recognition_en.md
+++ b/doc/doc_en/recognition_en.md
@@ -135,7 +135,7 @@ If you need to customize dic file, please add character_dict_path field in confi
- Add space category
-If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `true`.
+If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`.
**Note: use_space_char only takes effect when character_type=ch**
@@ -158,10 +158,9 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar
Start training:
```
-# GPU training Support single card and multi-card training, specify the card number through CUDA_VISIBLE_DEVICES
-export CUDA_VISIBLE_DEVICES=0,1,2,3
+# GPU training Support single card and multi-card training, specify the card number through --gpus
# Training icdar15 English data and saving the log as train_rec.log
-python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
+python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml
```
- Data Augmentation
@@ -184,8 +183,8 @@ If the evaluation set is large, the test will be time-consuming. It is recommend
| Configuration file | Algorithm | backbone | trans | seq | pred |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: |
-| [rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml) | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
-| [rec_chinese_common_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_common_train_v1.1.yml) | CRNN | ResNet34_vd | None | BiLSTM | ctc |
+| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
+| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) | CRNN | ResNet34_vd | None | BiLSTM | ctc |
| rec_chinese_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc |
| rec_chinese_common_train.yml | CRNN | ResNet34_vd | None | BiLSTM | ctc |
| rec_icdar15_train.yml | CRNN | Mobilenet_v3 large 0.5 | None | BiLSTM | ctc |
@@ -199,39 +198,69 @@ If the evaluation set is large, the test will be time-consuming. It is recommend
| rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc |
For training Chinese data, it is recommended to use
-训练中文数据,推荐使用[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
+[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
co
-Take `rec_mv3_none_none_ctc.yml` as an example:
+Take `rec_chinese_lite_train_v2.0.yml` as an example:
```
Global:
...
- # Modify image_shape to fit long text
- image_shape: [3, 32, 320]
- ...
+ # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
+ character_dict_path: ppocr/utils/ppocr_keys_v1.txt
# Modify character type
character_type: ch
- # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
- character_dict_path: ./ppocr/utils/ppocr_keys_v1.txt
...
- # Modify reader type
- reader_yml: ./configs/rec/rec_chinese_reader.yml
- # Whether to use data augmentation
- distort: true
# Whether to recognize spaces
- use_space_char: true
- ...
+ use_space_char: True
-...
Optimizer:
...
# Add learning rate decay strategy
- decay:
- function: cosine_decay
- # Each epoch contains iter number
- step_each_epoch: 20
- # Total epoch number
- total_epoch: 1000
+ lr:
+ name: Cosine
+ learning_rate: 0.001
+ ...
+
+...
+
+Train:
+ dataset:
+ # Type of dataset,we support LMDBDateSet and SimpleDataSet
+ name: SimpleDataSet
+ # Path of dataset
+ data_dir: ./train_data/
+ # Path of train list
+ label_file_list: ["./train_data/train_list.txt"]
+ transforms:
+ ...
+ - RecResizeImg:
+ # Modify image_shape to fit long text
+ image_shape: [3, 32, 320]
+ ...
+ loader:
+ ...
+ # Train batch_size for Single card
+ batch_size_per_card: 256
+ ...
+
+Eval:
+ dataset:
+ # Type of dataset,we support LMDBDateSet and SimpleDataSet
+ name: SimpleDataSet
+ # Path of dataset
+ data_dir: ./train_data
+ # Path of eval list
+ label_file_list: ["./train_data/val_list.txt"]
+ transforms:
+ ...
+ - RecResizeImg:
+ # Modify image_shape to fit long text
+ image_shape: [3, 32, 320]
+ ...
+ loader:
+ # Eval batch_size for Single card
+ batch_size_per_card: 256
+ ...
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**
@@ -257,18 +286,33 @@ Take `rec_french_lite_train` as an example:
```
Global:
...
- # Add a custom dictionary, if you modify the dictionary
- # please point the path to the new dictionary
+ # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
character_dict_path: ./ppocr/utils/dict/french_dict.txt
- # Add data augmentation during training
- distort: true
- # Identify spaces
- use_space_char: true
- ...
- # Modify reader type
- reader_yml: ./configs/rec/multi_languages/rec_french_reader.yml
...
+ # Whether to recognize spaces
+ use_space_char: True
+
...
+
+Train:
+ dataset:
+ # Type of dataset,we support LMDBDateSet and SimpleDataSet
+ name: SimpleDataSet
+ # Path of dataset
+ data_dir: ./train_data/
+ # Path of train list
+ label_file_list: ["./train_data/french_train.txt"]
+ ...
+
+Eval:
+ dataset:
+ # Type of dataset,we support LMDBDateSet and SimpleDataSet
+ name: SimpleDataSet
+ # Path of dataset
+ data_dir: ./train_data
+ # Path of eval list
+ label_file_list: ["./train_data/french_val.txt"]
+ ...
```
@@ -277,9 +321,8 @@ Global:
The evaluation data set can be modified via `configs/rec/rec_icdar15_reader.yml` setting of `label_file_path` in EvalReader.
```
-export CUDA_VISIBLE_DEVICES=0
# GPU evaluation, Global.checkpoints is the weight to be tested
-python3 tools/eval.py -c configs/rec/rec_icdar15_reader.yml -o Global.checkpoints={path/to/weights}/best_accuracy
+python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_reader.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
@@ -294,7 +337,7 @@ The default prediction picture is stored in `infer_img`, and the weight is speci
```
# Predict English results
-python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/en/word_1.jpg
+python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/en/word_1.jpg
```
Input image:
@@ -309,11 +352,11 @@ infer_img: doc/imgs_words/en/word_1.png
word : joint
```
-The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml`, you can use the following command to predict the Chinese model:
+The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml`, you can use the following command to predict the Chinese model:
```
# Predict Chinese results
-python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/ch/word_1.jpg
+python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/ch/word_1.jpg
```
Input image: