提交 88a1851e 编写于 作者: qq_25193841's avatar qq_25193841

Merge remote-tracking branch 'origin/release/2.5' into release2.5

......@@ -73,7 +73,7 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
- **加入社区👬:** 微信扫描二维码并填写问卷之后,加入交流群领取福利
- **获取PaddleOCR最新发版解说《OCR超强技术详解与产业应用实战》系列直播课回放链接**
- **10G重磅OCR学习大礼包:**《动手学OCR》电子书,配套讲解视频和notebook项目;66篇OCR相关顶会前沿论文打包放送,包括CVPR、AAAI、IJCAI、ICCV等;PaddleOCR历次发版直播课视频;OCR社区优秀开发者项目分享视频。
- **社区贡献**🏅️:[社区贡献](./doc/doc_ch/thirdparty.md)文档中包含了社区用户**使用PaddleOCR开发的各种工具、应用**以及**为PaddleOCR贡献的功能、优化的文档与代码**等,是官方为社区开发者打造的荣誉墙,也是帮助优质项目宣传的广播站。
- **社区项目**🏅️:[社区项目](./doc/doc_ch/thirdparty.md)文档中包含了社区用户**使用PaddleOCR开发的各种工具、应用**以及**为PaddleOCR贡献的功能、优化的文档与代码**等,是官方为社区开发者打造的荣誉墙,也是帮助优质项目宣传的广播站。
- **社区常规赛**🎁:社区常规赛是面向OCR开发者的积分赛事,覆盖文档、代码、模型和应用四大类型,以季度为单位评选并发放奖励,赛题详情与报名方法可参考[链接](https://github.com/PaddlePaddle/PaddleOCR/issues/4982)
<div align="center">
......@@ -88,12 +88,9 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
| ------------------------------------- | ----------------------- | --------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| 中英文超轻量PP-OCRv3模型(16.2M) | ch_PP-OCRv3_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar) |
| 英文超轻量PP-OCRv3模型(13.4M) | en_PP-OCRv3_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar) |
| 中英文超轻量PP-OCRv2模型(13.0M) | ch_PP-OCRv2_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
| 中英文超轻量PP-OCR mobile模型(9.4M) | ch_ppocr_mobile_v2.0_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
| 中英文通用PP-OCR server模型(143.4M) | ch_ppocr_server_v2.0_xx | 服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
更多模型下载(包括多语言),可以参考[PP-OCR 系列模型下载](./doc/doc_ch/models_list.md),文档分析相关模型参考[PP-Structure 系列模型下载](./ppstructure/docs/models_list.md)
- 超轻量OCR系列更多模型下载(包括多语言),可以参考[PP-OCR系列模型下载](./doc/doc_ch/models_list.md),文档分析相关模型参考[PP-Structure系列模型下载](./ppstructure/docs/models_list.md)
- 制造、金融、交通行业的主要OCR垂类应用(如电表、数码管、液晶屏、不动产证、车牌、SVTR大模型),可参考[场景应用模型下载](./applications)
<a name="文档教程"></a>
## 文档教程
......
......@@ -50,7 +50,7 @@ PaddleOCR场景应用覆盖通用,制造、金融、交通行业的主要OCR
## 模型下载
如需下载全部垂类模型,可以扫描下方二维码,关注公众号填写问卷后,加入PaddleOCR官方交流群获取20G OCR学习大礼包(内含《动手学OCR》电子书、课程回放视频、前沿论文等重磅资料)
如需下载上述场景中已经训练好的垂类模型,可以扫描下方二维码,关注公众号填写问卷后,加入PaddleOCR官方交流群获取20G OCR学习大礼包(内含《动手学OCR》电子书、课程回放视频、前沿论文等重磅资料)
<div align="center">
<img src="https://ai-studio-static-online.cdn.bcebos.com/dd721099bd50478f9d5fb13d8dd00fad69c22d6848244fd3a1d3980d7fefc63e" width = "150" height = "150" />
......
......@@ -54,7 +54,7 @@ public class OCRPredictorNative {
}
public void destory() {
if (nativePointer > 0) {
if (nativePointer != 0) {
release(nativePointer);
nativePointer = 0;
}
......
......@@ -35,11 +35,13 @@ cv::Mat CrnnResizeImg(cv::Mat img, float wh_ratio, int rec_image_height) {
else
resize_w = int(ceilf(imgH * ratio));
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_LINEAR);
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
{127, 127, 127});
return resize_img;
}
std::vector<std::string> ReadDict(std::string path) {
......
......@@ -474,7 +474,7 @@ void system(char **argv){
std::vector<double> rec_times;
RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score,
charactor_dict, cls_predictor, use_direction_classify, &rec_times);
charactor_dict, cls_predictor, use_direction_classify, &rec_times, rec_image_height);
//// visualization
auto img_vis = Visualization(srcimg, boxes);
......
......@@ -7,7 +7,8 @@
- [1. 文本检测模型推理](#1-文本检测模型推理)
- [2. 文本识别模型推理](#2-文本识别模型推理)
- [2.1 超轻量中文识别模型推理](#21-超轻量中文识别模型推理)
- [2.2 多语言模型的推理](#22-多语言模型的推理)
- [2.2 英文识别模型推理](#22-英文识别模型推理)
- [2.3 多语言模型的推理](#23-多语言模型的推理)
- [3. 方向分类模型推理](#3-方向分类模型推理)
- [4. 文本检测、方向分类和文字识别串联推理](#4-文本检测方向分类和文字识别串联推理)
......@@ -78,9 +79,29 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg"
Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.9956803321838379)
```
<a name="英文识别模型推理"></a>
### 2.2 英文识别模型推理
英文识别模型推理,可以执行如下命令, 注意修改字典路径:
```
# 下载英文数字识别模型:
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar
tar xf en_PP-OCRv3_det_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./en_PP-OCRv3_det_infer/" --rec_char_dict_path="ppocr/utils/en_dict.txt"
```
![](../imgs_words/en/word_1.png)
执行命令后,上图的预测结果为:
```
Predicts of ./doc/imgs_words/en/word_1.png: ('JOINT', 0.998160719871521)
```
<a name="多语言模型的推理"></a>
### 2.2 多语言模型的推理
### 2.3 多语言模型的推理
如果您需要预测的是其他语言模型,可以在[此链接](./models_list.md#%E5%A4%9A%E8%AF%AD%E8%A8%80%E8%AF%86%E5%88%AB%E6%A8%A1%E5%9E%8B)中找到对应语言的inference模型,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径, 同时为了得到正确的可视化结果,需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/fonts/` 路径下有默认提供的小语种字体,例如韩文识别:
```
......
......@@ -8,7 +8,8 @@ This article introduces the use of the Python inference engine for the PP-OCR mo
- [Text Detection Model Inference](#text-detection-model-inference)
- [Text Recognition Model Inference](#text-recognition-model-inference)
- [1. Lightweight Chinese Recognition Model Inference](#1-lightweight-chinese-recognition-model-inference)
- [2. Multilingual Model Inference](#2-multilingual-model-inference)
- [2. English Recognition Model Inference](#2-english-recognition-model-inference)
- [3. Multilingual Model Inference](#3-multilingual-model-inference)
- [Angle Classification Model Inference](#angle-classification-model-inference)
- [Text Detection Angle Classification and Recognition Inference Concatenation](#text-detection-angle-classification-and-recognition-inference-concatenation)
......@@ -76,10 +77,31 @@ After executing the command, the prediction results (recognized text and score)
```bash
Predicts of ./doc/imgs_words_en/word_10.png:('PAIN', 0.988671)
```
<a name="2-english-recognition-model-inference"></a>
### 2. English Recognition Model Inference
<a name="MULTILINGUAL_MODEL_INFERENCE"></a>
For English recognition model inference, you can execute the following commands,you need to specify the dictionary path used by `--rec_char_dict_path`:
### 2. Multilingual Model Inference
```
# download en model:
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar
tar xf en_PP-OCRv3_det_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./en_PP-OCRv3_det_infer/" --rec_char_dict_path="ppocr/utils/en_dict.txt"
```
![](../imgs_words/en/word_1.png)
After executing the command, the prediction result of the above figure is:
```
Predicts of ./doc/imgs_words/en/word_1.png: ('JOINT', 0.998160719871521)
```
<a name="3-multilingual-model-inference"></a>
### 3. Multilingual Model Inference
If you need to predict [other language models](./models_list_en.md#Multilingual), when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/fonts` path, such as Korean recognition:
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import Levenshtein
from rapidfuzz.distance import Levenshtein
import string
......@@ -45,8 +45,7 @@ class RecMetric(object):
if self.is_filter:
pred = self._normalize_text(pred)
target = self._normalize_text(target)
norm_edit_dis += Levenshtein.distance(pred, target) / max(
len(pred), len(target), 1)
norm_edit_dis += Levenshtein.normalized_distance(pred, target)
if pred == target:
correct_num += 1
all_num += 1
......
......@@ -9,7 +9,7 @@
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# Apache 2.0 License for more details.
import distance
from rapidfuzz.distance import Levenshtein
from apted import APTED, Config
from apted.helpers import Tree
from lxml import etree, html
......@@ -39,17 +39,6 @@ class TableTree(Tree):
class CustomConfig(Config):
@staticmethod
def maximum(*sequences):
"""Get maximum possible value
"""
return max(map(len, sequences))
def normalized_distance(self, *sequences):
"""Get distance from 0 to 1
"""
return float(distance.levenshtein(*sequences)) / self.maximum(*sequences)
def rename(self, node1, node2):
"""Compares attributes of trees"""
#print(node1.tag)
......@@ -58,23 +47,12 @@ class CustomConfig(Config):
if node1.tag == 'td':
if node1.content or node2.content:
#print(node1.content, )
return self.normalized_distance(node1.content, node2.content)
return Levenshtein.normalized_distance(node1.content, node2.content)
return 0.
class CustomConfig_del_short(Config):
@staticmethod
def maximum(*sequences):
"""Get maximum possible value
"""
return max(map(len, sequences))
def normalized_distance(self, *sequences):
"""Get distance from 0 to 1
"""
return float(distance.levenshtein(*sequences)) / self.maximum(*sequences)
def rename(self, node1, node2):
"""Compares attributes of trees"""
if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
......@@ -90,21 +68,10 @@ class CustomConfig_del_short(Config):
node1_content = ['####']
if len(node2_content) < 3:
node2_content = ['####']
return self.normalized_distance(node1_content, node2_content)
return Levenshtein.normalized_distance(node1_content, node2_content)
return 0.
class CustomConfig_del_block(Config):
@staticmethod
def maximum(*sequences):
"""Get maximum possible value
"""
return max(map(len, sequences))
def normalized_distance(self, *sequences):
"""Get distance from 0 to 1
"""
return float(distance.levenshtein(*sequences)) / self.maximum(*sequences)
def rename(self, node1, node2):
"""Compares attributes of trees"""
if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
......@@ -120,7 +87,7 @@ class CustomConfig_del_block(Config):
while ' ' in node2_content:
print(node2_content.index(' '))
node2_content.pop(node2_content.index(' '))
return self.normalized_distance(node1_content, node2_content)
return Levenshtein.normalized_distance(node1_content, node2_content)
return 0.
class TEDS(object):
......
......@@ -20,7 +20,7 @@ from shapely.geometry import Polygon
import numpy as np
from collections import defaultdict
import operator
import Levenshtein
from rapidfuzz.distance import Levenshtein
import argparse
import json
import copy
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册