diff --git a/configs/rec/rec_r45_abinet.yml b/configs/rec/rec_r45_abinet.yml index a756fead9f383dc135e3c6de337da88bb64ab801..3cf4cddb0464ca0bede823fc7af7c1da71f9bed6 100644 --- a/configs/rec/rec_r45_abinet.yml +++ b/configs/rec/rec_r45_abinet.yml @@ -8,7 +8,7 @@ Global: # evaluation is run every 2000 iterations eval_batch_step: [0, 2000] cal_metric_during_train: True - pretrained_model: + pretrained_model: ./rec_r45_abinet_train/abinet_vl_pretrained checkpoints: save_inference_dir: use_visualdl: False @@ -67,6 +67,7 @@ Train: - DecodeImage: # load image img_mode: RGB channel_first: False + - ABINetRecAug: - ABINetLabelEncode: # Class handling label ignore_index: *ignore_index - ABINetRecResizeImg: diff --git a/doc/doc_ch/algorithm_rec_abinet.md b/doc/doc_ch/algorithm_rec_abinet.md index d20c703014bf1e1947f6a37003d80602ef5b0582..47507c36c7295411e4b7c1662d2bde385b0a95b8 100644 --- a/doc/doc_ch/algorithm_rec_abinet.md +++ b/doc/doc_ch/algorithm_rec_abinet.md @@ -27,7 +27,7 @@ |模型|骨干网络|配置文件|Acc|下载链接| | --- | --- | --- | --- | --- | -|ABINet|ResNet45|[rec_r45_abinet.yml](../../configs/rec/rec_r45_abinet.yml)|90.75%|[训练模型]()/[预训练模型]| +|ABINet|ResNet45|[rec_r45_abinet.yml](../../configs/rec/rec_r45_abinet.yml)|90.75%|[预训练、训练模型](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar)| ## 2. 环境配置 @@ -80,7 +80,7 @@ python3 tools/infer_rec.py -c configs/rec/rec_r45_abinet.yml -o Global.infer_img ### 4.1 Python推理 -首先将训练得到best模型,转换成inference model。这里以训练完成的模型为例([模型下载地址]() ),可以使用如下命令进行转换: +首先将训练得到best模型,转换成inference model。这里以训练完成的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar) ),可以使用如下命令进行转换: ```shell # 注意将pretrained_model的路径设置为本地路径。 diff --git a/doc/doc_en/algorithm_rec_abinet_en.md b/doc/doc_en/algorithm_rec_abinet_en.md index 3b0f6c09a95f8d1ea15dd7dcae2dc2e29d969370..767ca65f6411a7bc071ccafacc09d12bc160e6b6 100644 --- a/doc/doc_en/algorithm_rec_abinet_en.md +++ b/doc/doc_en/algorithm_rec_abinet_en.md @@ -25,7 +25,7 @@ Using MJSynth and SynthText two text recognition datasets for training, and eval |Model|Backbone|config|Acc|Download link| | --- | --- | --- | --- | --- | -|ABINet|ResNet45|[rec_r45_abinet.yml](../../configs/rec/rec_r45_abinet.yml)|90.75%|[trained model]()/[pretrained model]()| +|ABINet|ResNet45|[rec_r45_abinet.yml](../../configs/rec/rec_r45_abinet.yml)|90.75%|[pretrained & trained model](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar)| ## 2. Environment @@ -68,7 +68,7 @@ python3 tools/infer_rec.py -c configs/rec/rec_r45_abinet.yml -o Global.infer_img ### 4.1 Python Inference -First, the model saved during the ABINet text recognition training process is converted into an inference model. ( [Model download link]()) ), you can use the following command to convert: +First, the model saved during the ABINet text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar)) ), you can use the following command to convert: ``` python3 tools/export_model.py -c configs/rec/rec_r45_abinet.yml -o Global.pretrained_model=./rec_r45_abinet_train/best_accuracy Global.save_inference_dir=./inference/rec_r45_abinet diff --git a/ppocr/data/imaug/__init__.py b/ppocr/data/imaug/__init__.py index 437e0152fa51221676f4b4587353607bb9e0ffec..63dfda91f8d0eb200d3c635fda43670039375784 100644 --- a/ppocr/data/imaug/__init__.py +++ b/ppocr/data/imaug/__init__.py @@ -25,7 +25,7 @@ from .make_pse_gt import MakePseGt from .rec_img_aug import RecAug, RecConAug, RecResizeImg, ClsResizeImg, \ SRNRecResizeImg, GrayRecResizeImg, SARRecResizeImg, PRENResizeImg, \ - ABINetRecResizeImg, SVTRRecResizeImg + ABINetRecResizeImg, SVTRRecResizeImg, ABINetRecAug from .ssl_img_aug import SSLRotateResize from .randaugment import RandAugment from .copy_paste import CopyPaste diff --git a/ppocr/data/imaug/abinet_aug.py b/ppocr/data/imaug/abinet_aug.py new file mode 100644 index 0000000000000000000000000000000000000000..eefdc75d5a5c0ac3f7136bf22a2adb31129bd313 --- /dev/null +++ b/ppocr/data/imaug/abinet_aug.py @@ -0,0 +1,407 @@ +# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This code is refer from: +https://github.com/FangShancheng/ABINet/blob/main/transforms.py +""" +import math +import numbers +import random + +import cv2 +import numpy as np +from paddle.vision.transforms import Compose, ColorJitter + + +def sample_asym(magnitude, size=None): + return np.random.beta(1, 4, size) * magnitude + + +def sample_sym(magnitude, size=None): + return (np.random.beta(4, 4, size=size) - 0.5) * 2 * magnitude + + +def sample_uniform(low, high, size=None): + return np.random.uniform(low, high, size=size) + + +def get_interpolation(type='random'): + if type == 'random': + choice = [ + cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA + ] + interpolation = choice[random.randint(0, len(choice) - 1)] + elif type == 'nearest': + interpolation = cv2.INTER_NEAREST + elif type == 'linear': + interpolation = cv2.INTER_LINEAR + elif type == 'cubic': + interpolation = cv2.INTER_CUBIC + elif type == 'area': + interpolation = cv2.INTER_AREA + else: + raise TypeError( + 'Interpolation types only nearest, linear, cubic, area are supported!' + ) + return interpolation + + +class CVRandomRotation(object): + def __init__(self, degrees=15): + assert isinstance(degrees, + numbers.Number), "degree should be a single number." + assert degrees >= 0, "degree must be positive." + self.degrees = degrees + + @staticmethod + def get_params(degrees): + return sample_sym(degrees) + + def __call__(self, img): + angle = self.get_params(self.degrees) + src_h, src_w = img.shape[:2] + M = cv2.getRotationMatrix2D( + center=(src_w / 2, src_h / 2), angle=angle, scale=1.0) + abs_cos, abs_sin = abs(M[0, 0]), abs(M[0, 1]) + dst_w = int(src_h * abs_sin + src_w * abs_cos) + dst_h = int(src_h * abs_cos + src_w * abs_sin) + M[0, 2] += (dst_w - src_w) / 2 + M[1, 2] += (dst_h - src_h) / 2 + + flags = get_interpolation() + return cv2.warpAffine( + img, + M, (dst_w, dst_h), + flags=flags, + borderMode=cv2.BORDER_REPLICATE) + + +class CVRandomAffine(object): + def __init__(self, degrees, translate=None, scale=None, shear=None): + assert isinstance(degrees, + numbers.Number), "degree should be a single number." + assert degrees >= 0, "degree must be positive." + self.degrees = degrees + + if translate is not None: + assert isinstance(translate, (tuple, list)) and len(translate) == 2, \ + "translate should be a list or tuple and it must be of length 2." + for t in translate: + if not (0.0 <= t <= 1.0): + raise ValueError( + "translation values should be between 0 and 1") + self.translate = translate + + if scale is not None: + assert isinstance(scale, (tuple, list)) and len(scale) == 2, \ + "scale should be a list or tuple and it must be of length 2." + for s in scale: + if s <= 0: + raise ValueError("scale values should be positive") + self.scale = scale + + if shear is not None: + if isinstance(shear, numbers.Number): + if shear < 0: + raise ValueError( + "If shear is a single number, it must be positive.") + self.shear = [shear] + else: + assert isinstance(shear, (tuple, list)) and (len(shear) == 2), \ + "shear should be a list or tuple and it must be of length 2." + self.shear = shear + else: + self.shear = shear + + def _get_inverse_affine_matrix(self, center, angle, translate, scale, + shear): + # https://github.com/pytorch/vision/blob/v0.4.0/torchvision/transforms/functional.py#L717 + from numpy import sin, cos, tan + + if isinstance(shear, numbers.Number): + shear = [shear, 0] + + if not isinstance(shear, (tuple, list)) and len(shear) == 2: + raise ValueError( + "Shear should be a single value or a tuple/list containing " + + "two values. Got {}".format(shear)) + + rot = math.radians(angle) + sx, sy = [math.radians(s) for s in shear] + + cx, cy = center + tx, ty = translate + + # RSS without scaling + a = cos(rot - sy) / cos(sy) + b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot) + c = sin(rot - sy) / cos(sy) + d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot) + + # Inverted rotation matrix with scale and shear + # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1 + M = [d, -b, 0, -c, a, 0] + M = [x / scale for x in M] + + # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1 + M[2] += M[0] * (-cx - tx) + M[1] * (-cy - ty) + M[5] += M[3] * (-cx - tx) + M[4] * (-cy - ty) + + # Apply center translation: C * RSS^-1 * C^-1 * T^-1 + M[2] += cx + M[5] += cy + return M + + @staticmethod + def get_params(degrees, translate, scale_ranges, shears, height): + angle = sample_sym(degrees) + if translate is not None: + max_dx = translate[0] * height + max_dy = translate[1] * height + translations = (np.round(sample_sym(max_dx)), + np.round(sample_sym(max_dy))) + else: + translations = (0, 0) + + if scale_ranges is not None: + scale = sample_uniform(scale_ranges[0], scale_ranges[1]) + else: + scale = 1.0 + + if shears is not None: + if len(shears) == 1: + shear = [sample_sym(shears[0]), 0.] + elif len(shears) == 2: + shear = [sample_sym(shears[0]), sample_sym(shears[1])] + else: + shear = 0.0 + + return angle, translations, scale, shear + + def __call__(self, img): + src_h, src_w = img.shape[:2] + angle, translate, scale, shear = self.get_params( + self.degrees, self.translate, self.scale, self.shear, src_h) + + M = self._get_inverse_affine_matrix((src_w / 2, src_h / 2), angle, + (0, 0), scale, shear) + M = np.array(M).reshape(2, 3) + + startpoints = [(0, 0), (src_w - 1, 0), (src_w - 1, src_h - 1), + (0, src_h - 1)] + project = lambda x, y, a, b, c: int(a * x + b * y + c) + endpoints = [(project(x, y, *M[0]), project(x, y, *M[1])) + for x, y in startpoints] + + rect = cv2.minAreaRect(np.array(endpoints)) + bbox = cv2.boxPoints(rect).astype(dtype=np.int) + max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max() + min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min() + + dst_w = int(max_x - min_x) + dst_h = int(max_y - min_y) + M[0, 2] += (dst_w - src_w) / 2 + M[1, 2] += (dst_h - src_h) / 2 + + # add translate + dst_w += int(abs(translate[0])) + dst_h += int(abs(translate[1])) + if translate[0] < 0: M[0, 2] += abs(translate[0]) + if translate[1] < 0: M[1, 2] += abs(translate[1]) + + flags = get_interpolation() + return cv2.warpAffine( + img, + M, (dst_w, dst_h), + flags=flags, + borderMode=cv2.BORDER_REPLICATE) + + +class CVRandomPerspective(object): + def __init__(self, distortion=0.5): + self.distortion = distortion + + def get_params(self, width, height, distortion): + offset_h = sample_asym( + distortion * height / 2, size=4).astype(dtype=np.int) + offset_w = sample_asym( + distortion * width / 2, size=4).astype(dtype=np.int) + topleft = (offset_w[0], offset_h[0]) + topright = (width - 1 - offset_w[1], offset_h[1]) + botright = (width - 1 - offset_w[2], height - 1 - offset_h[2]) + botleft = (offset_w[3], height - 1 - offset_h[3]) + + startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), + (0, height - 1)] + endpoints = [topleft, topright, botright, botleft] + return np.array( + startpoints, dtype=np.float32), np.array( + endpoints, dtype=np.float32) + + def __call__(self, img): + height, width = img.shape[:2] + startpoints, endpoints = self.get_params(width, height, self.distortion) + M = cv2.getPerspectiveTransform(startpoints, endpoints) + + # TODO: more robust way to crop image + rect = cv2.minAreaRect(endpoints) + bbox = cv2.boxPoints(rect).astype(dtype=np.int) + max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max() + min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min() + min_x, min_y = max(min_x, 0), max(min_y, 0) + + flags = get_interpolation() + img = cv2.warpPerspective( + img, + M, (max_x, max_y), + flags=flags, + borderMode=cv2.BORDER_REPLICATE) + img = img[min_y:, min_x:] + return img + + +class CVRescale(object): + def __init__(self, factor=4, base_size=(128, 512)): + """ Define image scales using gaussian pyramid and rescale image to target scale. + + Args: + factor: the decayed factor from base size, factor=4 keeps target scale by default. + base_size: base size the build the bottom layer of pyramid + """ + if isinstance(factor, numbers.Number): + self.factor = round(sample_uniform(0, factor)) + elif isinstance(factor, (tuple, list)) and len(factor) == 2: + self.factor = round(sample_uniform(factor[0], factor[1])) + else: + raise Exception('factor must be number or list with length 2') + # assert factor is valid + self.base_h, self.base_w = base_size[:2] + + def __call__(self, img): + if self.factor == 0: return img + src_h, src_w = img.shape[:2] + cur_w, cur_h = self.base_w, self.base_h + scale_img = cv2.resize( + img, (cur_w, cur_h), interpolation=get_interpolation()) + for _ in range(self.factor): + scale_img = cv2.pyrDown(scale_img) + scale_img = cv2.resize( + scale_img, (src_w, src_h), interpolation=get_interpolation()) + return scale_img + + +class CVGaussianNoise(object): + def __init__(self, mean=0, var=20): + self.mean = mean + if isinstance(var, numbers.Number): + self.var = max(int(sample_asym(var)), 1) + elif isinstance(var, (tuple, list)) and len(var) == 2: + self.var = int(sample_uniform(var[0], var[1])) + else: + raise Exception('degree must be number or list with length 2') + + def __call__(self, img): + noise = np.random.normal(self.mean, self.var**0.5, img.shape) + img = np.clip(img + noise, 0, 255).astype(np.uint8) + return img + + +class CVMotionBlur(object): + def __init__(self, degrees=12, angle=90): + if isinstance(degrees, numbers.Number): + self.degree = max(int(sample_asym(degrees)), 1) + elif isinstance(degrees, (tuple, list)) and len(degrees) == 2: + self.degree = int(sample_uniform(degrees[0], degrees[1])) + else: + raise Exception('degree must be number or list with length 2') + self.angle = sample_uniform(-angle, angle) + + def __call__(self, img): + M = cv2.getRotationMatrix2D((self.degree // 2, self.degree // 2), + self.angle, 1) + motion_blur_kernel = np.zeros((self.degree, self.degree)) + motion_blur_kernel[self.degree // 2, :] = 1 + motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, + (self.degree, self.degree)) + motion_blur_kernel = motion_blur_kernel / self.degree + img = cv2.filter2D(img, -1, motion_blur_kernel) + img = np.clip(img, 0, 255).astype(np.uint8) + return img + + +class CVGeometry(object): + def __init__(self, + degrees=15, + translate=(0.3, 0.3), + scale=(0.5, 2.), + shear=(45, 15), + distortion=0.5, + p=0.5): + self.p = p + type_p = random.random() + if type_p < 0.33: + self.transforms = CVRandomRotation(degrees=degrees) + elif type_p < 0.66: + self.transforms = CVRandomAffine( + degrees=degrees, translate=translate, scale=scale, shear=shear) + else: + self.transforms = CVRandomPerspective(distortion=distortion) + + def __call__(self, img): + if random.random() < self.p: + return self.transforms(img) + else: + return img + + +class CVDeterioration(object): + def __init__(self, var, degrees, factor, p=0.5): + self.p = p + transforms = [] + if var is not None: + transforms.append(CVGaussianNoise(var=var)) + if degrees is not None: + transforms.append(CVMotionBlur(degrees=degrees)) + if factor is not None: + transforms.append(CVRescale(factor=factor)) + + random.shuffle(transforms) + transforms = Compose(transforms) + self.transforms = transforms + + def __call__(self, img): + if random.random() < self.p: + + return self.transforms(img) + else: + return img + + +class CVColorJitter(object): + def __init__(self, + brightness=0.5, + contrast=0.5, + saturation=0.5, + hue=0.1, + p=0.5): + self.p = p + self.transforms = ColorJitter( + brightness=brightness, + contrast=contrast, + saturation=saturation, + hue=hue) + + def __call__(self, img): + if random.random() < self.p: return self.transforms(img) + else: return img diff --git a/ppocr/data/imaug/rec_img_aug.py b/ppocr/data/imaug/rec_img_aug.py index 874d9aa0845cd48fbf7610c0dc5f6723b509a2e1..92f7382724df3d46dcd31bbbfe1c281bf92ae621 100644 --- a/ppocr/data/imaug/rec_img_aug.py +++ b/ppocr/data/imaug/rec_img_aug.py @@ -19,6 +19,8 @@ import random import copy from PIL import Image from .text_image_aug import tia_perspective, tia_stretch, tia_distort +from .abinet_aug import CVGeometry, CVDeterioration, CVColorJitter +from paddle.vision.transforms import Compose class RecAug(object): @@ -94,6 +96,31 @@ class BaseDataAugmentation(object): return data +class ABINetRecAug(object): + def __init__(self, **kwargs): + self.transforms = Compose([ + CVGeometry( + degrees=45, + translate=(0.0, 0.0), + scale=(0.5, 2.), + shear=(45, 15), + distortion=0.5, + p=0.5), CVDeterioration( + var=20, degrees=6, factor=4, p=0.25), CVColorJitter( + brightness=0.5, + contrast=0.5, + saturation=0.5, + hue=0.1, + p=0.25) + ]) + + def __call__(self, data): + img = data['image'] + img = self.transforms(img) + data['image'] = img + return data + + class RecConAug(object): def __init__(self, prob=0.5, diff --git a/test_tipc/configs/rec_r45_abinet/rec_r45_abinet.yml b/test_tipc/configs/rec_r45_abinet/rec_r45_abinet.yml index 306c49d68311321e72b669ae44b730176f7764e2..5b5890e7728b9a1cb629744bd5d56488657c73f3 100644 --- a/test_tipc/configs/rec_r45_abinet/rec_r45_abinet.yml +++ b/test_tipc/configs/rec_r45_abinet/rec_r45_abinet.yml @@ -68,6 +68,7 @@ Train: - DecodeImage: # load image img_mode: RGB channel_first: False + - ABINetRecAug: - ABINetLabelEncode: # Class handling label ignore_index: *ignore_index - ABINetRecResizeImg: