Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
7408d43d
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7408d43d
编写于
6月 22, 2022
作者:
D
Double_V
提交者:
GitHub
6月 22, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #6655 from LDOUBLEV/dyg_pts
fix order points
上级
8727d265
715fc237
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
266 addition
and
11 deletion
+266
-11
doc/doc_ch/PPOCRv3_det_train.md
doc/doc_ch/PPOCRv3_det_train.md
+252
-0
ppocr/data/imaug/label_ops.py
ppocr/data/imaug/label_ops.py
+10
-8
tools/infer/predict_det.py
tools/infer/predict_det.py
+4
-3
未找到文件。
doc/doc_ch/PPOCRv3_det_train.md
0 → 100644
浏览文件 @
7408d43d
# PP-OCRv3 文本检测模型训练
-
[
1. 简介
](
#1
)
-
[
2. PPOCRv3检测训练
](
#2
)
-
[
3. 基于PPOCRv3检测的finetune训练
](
#3
)
<a
name=
"1"
></a>
## 1. 简介
PP-OCRv3在PP-OCRv2的基础上进一步升级。本节介绍PP-OCRv3检测模型的训练步骤。有关PPOCRv3策略介绍参考
[
文档
](
./PP-OCRv3_introduction.md
)
。
<a
name=
"2"
></a>
## 2. 检测训练
PP-OCRv3检测模型是对PP-OCRv2中的
[
CML
](
https://arxiv.org/pdf/2109.03144.pdf
)
(Collaborative Mutual Learning) 协同互学习文本检测蒸馏策略进行了升级。PP-OCRv3分别针对检测教师模型和学生模型进行进一步效果优化。其中,在对教师模型优化时,提出了大感受野的PAN结构LK-PAN和引入了DML(Deep Mutual Learning)蒸馏策略;在对学生模型优化时,提出了残差注意力机制的FPN结构RSE-FPN。
PP-OCRv3检测训练包括两个步骤:
-
步骤1:采用DML蒸馏方法训练检测教师模型
-
步骤2:使用步骤1得到的教师模型采用CML方法训练出轻量学生模型
### 2.1 准备数据和运行环境
训练数据采用icdar2015数据,准备训练集步骤参考
[
ocr_dataset
](
./dataset/ocr_datasets.md
)
.
运行环境准备参考
[
文档
](
./installation.md
)
。
### 2.2 训练教师模型
教师模型训练的配置文件是
[
ch_PP-OCRv3_det_dml.yml
](
https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.5/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml
)
。教师模型模型结构的Backbone、Neck、Head分别为Resnet50, LKPAN, DBHead,采用DML的蒸馏方法训练。有关配置文件的详细介绍参考
[
文档
](
./knowledge_distillation
)
。
下载ImageNet预训练模型:
```
# 下载ResNet50_vd的预训练模型
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet50_vd_ssld_pretrained.pdparams
```
**启动训练**
```
# 单卡训练
python3 tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml \
-o Architecture.Models.Student.pretrained=./pretrain_models/ResNet50_vd_ssld_pretrained \
Architecture.Models.Student2.pretrained=./pretrain_models/ResNet50_vd_ssld_pretrained \
Global.save_model_dir=./output/
# 如果要使用多GPU分布式训练,请使用如下命令:
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml \
-o Architecture.Models.Student.pretrained=./pretrain_models/ResNet50_vd_ssld_pretrained \
Architecture.Models.Student2.pretrained=./pretrain_models/ResNet50_vd_ssld_pretrained \
Global.save_model_dir=./output/
```
训练过程中保存的模型在output目录下,包含以下文件:
```
best_accuracy.states
best_accuracy.pdparams # 默认保存最优精度的模型参数
best_accuracy.pdopt # 默认保存最优精度的优化器相关参数
latest.states
latest.pdparams # 默认保存的最新模型参数
latest.pdopt # 默认保存的最新模型的优化器相关参数
```
其中,best_accuracy是保存的精度最高的模型参数,可以直接使用该模型评估。
模型评估命令如下:
```
python3 tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml -o Global.checkpoints=./output/best_accuracy
```
训练的教师模型结构更大,精度更高,用于提升学生模型的精度。
**提取教师模型参数**
best_accuracy包含两个模型的参数,分别对应配置文件中的Student,Student2。提取Student的参数方法如下:
```
import paddle
# 加载预训练模型
all_params = paddle.load("output/best_accuracy.pdparams")
# 查看权重参数的keys
print(all_params.keys())
# 模型的权重提取
s_params = {key[len("Student."):]: all_params[key] for key in all_params if "Student." in key}
# 查看模型权重参数的keys
print(s_params.keys())
# 保存
paddle.save(s_params, "./pretrain_models/dml_teacher.pdparams")
```
提取出来的模型参数可以用于模型进一步的finetune训练或者蒸馏训练。
### 2.3 训练学生模型
训练学生模型的配置文件是
[
ch_PP-OCRv3_det_cml.yml
](
https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.5/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml
)
上一节训练得到的教师模型作为监督,采用CML方式训练得到轻量的学生模型。
下载学生模型的ImageNet预训练模型:
```
# 下载MobileNetV3的预训练模型
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams
```
**启动训练**
```
# 单卡训练
python3 tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml \
-o Architecture.Models.Student.pretrained=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
Architecture.Models.Student2.pretrained=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
Architecture.Models.Teacher.pretrained=./pretrain_models/dml_teacher \
Global.save_model_dir=./output/
# 如果要使用多GPU分布式训练,请使用如下命令:
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml \
-o Architecture.Models.Student.pretrained=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
Architecture.Models.Student2.pretrained=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
Architecture.Models.Teacher.pretrained=./pretrain_models/dml_teacher \
Global.save_model_dir=./output/
```
训练过程中保存的模型在output目录下,
模型评估命令如下:
```
python3 tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.checkpoints=./output/best_accuracy
```
best_accuracy包含三个模型的参数,分别对应配置文件中的Student,Student2,Teacher。提取Student参数的方法如下:
```
import paddle
# 加载预训练模型
all_params = paddle.load("output/best_accuracy.pdparams")
# 查看权重参数的keys
print(all_params.keys())
# 模型的权重提取
s_params = {key[len("Student."):]: all_params[key] for key in all_params if "Student." in key}
# 查看模型权重参数的keys
print(s_params.keys())
# 保存
paddle.save(s_params, "./pretrain_models/cml_student.pdparams")
```
提取出来的Student的参数可用于模型部署或者做进一步的finetune训练。
<a
name=
"3"
></a>
## 3. 基于PPOCRv3检测finetune训练
本节介绍如何使用PPOCRv3检测模型在其他场景上的finetune训练。
finetune训练适用于三种场景:
-
基于CML蒸馏方法的finetune训练,适用于教师模型在使用场景上精度高于PPOCRv3检测模型,且希望得到一个轻量检测模型。
-
基于PPOCRv3轻量检测模型的finetune训练,无需训练教师模型,希望在PPOCRv3检测模型基础上提升使用场景上的精度。
-
基于DML蒸馏方法的finetune训练,适用于采用DML方法进一步提升精度的场景。
**基于CML蒸馏方法的finetune训练**
下载PPOCRv3训练模型:
```
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar
tar xf ch_PP-OCRv3_det_distill_train.tar
```
ch_PP-OCRv3_det_distill_train/best_accuracy.pdparams包含CML配置文件中Student、Student2、Teacher模型的参数。
启动训练:
```
# 单卡训练
python3 tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml \
-o Global.pretrained_model=./ch_PP-OCRv3_det_distill_train/best_accuracy \
Global.save_model_dir=./output/
# 如果要使用多GPU分布式训练,请使用如下命令:
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml \
-o Global.pretrained_model=./ch_PP-OCRv3_det_distill_train/best_accuracy \
Global.save_model_dir=./output/
```
**基于PPOCRv3轻量检测模型的finetune训练**
下载PPOCRv3训练模型,并提取Student结构的模型参数:
```
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar
tar xf ch_PP-OCRv3_det_distill_train.tar
```
提取Student参数的方法如下:
```
import paddle
# 加载预训练模型
all_params = paddle.load("output/best_accuracy.pdparams")
# 查看权重参数的keys
print(all_params.keys())
# 模型的权重提取
s_params = {key[len("Student."):]: all_params[key] for key in all_params if "Student." in key}
# 查看模型权重参数的keys
print(s_params.keys())
# 保存
paddle.save(s_params, "./student.pdparams")
```
使用配置文件
[
ch_PP-OCRv3_det_student.yml
](
https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.5/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml
)
训练。
**启动训练**
```
# 单卡训练
python3 tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml \
-o Global.pretrained_model=./student \
Global.save_model_dir=./output/
# 如果要使用多GPU分布式训练,请使用如下命令:
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml \
-o Global.pretrained_model=./student \
Global.save_model_dir=./output/
```
**基于DML蒸馏方法的finetune训练**
以ch_PP-OCRv3_det_distill_train中的Teacher模型为例,首先提取Teacher结构的参数,方法如下:
```
import paddle
# 加载预训练模型
all_params = paddle.load("ch_PP-OCRv3_det_distill_train/best_accuracy.pdparams")
# 查看权重参数的keys
print(all_params.keys())
# 模型的权重提取
s_params = {key[len("Teacher."):]: all_params[key] for key in all_params if "Teacher." in key}
# 查看模型权重参数的keys
print(s_params.keys())
# 保存
paddle.save(s_params, "./teacher.pdparams")
```
**启动训练**
```
# 单卡训练
python3 tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml \
-o Architecture.Models.Student.pretrained=./teacher \
Architecture.Models.Student2.pretrained=./teacher \
Global.save_model_dir=./output/
# 如果要使用多GPU分布式训练,请使用如下命令:
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml \
-o Architecture.Models.Student.pretrained=./teacher \
Architecture.Models.Student2.pretrained=./teacher \
Global.save_model_dir=./output/
```
ppocr/data/imaug/label_ops.py
浏览文件 @
7408d43d
...
...
@@ -23,7 +23,6 @@ import string
from
shapely.geometry
import
LineString
,
Point
,
Polygon
import
json
import
copy
from
ppocr.utils.logging
import
get_logger
...
...
@@ -74,9 +73,10 @@ class DetLabelEncode(object):
s
=
pts
.
sum
(
axis
=
1
)
rect
[
0
]
=
pts
[
np
.
argmin
(
s
)]
rect
[
2
]
=
pts
[
np
.
argmax
(
s
)]
diff
=
np
.
diff
(
pts
,
axis
=
1
)
rect
[
1
]
=
pts
[
np
.
argmin
(
diff
)]
rect
[
3
]
=
pts
[
np
.
argmax
(
diff
)]
tmp
=
np
.
delete
(
pts
,
(
np
.
argmin
(
s
),
np
.
argmax
(
s
)),
axis
=
0
)
diff
=
np
.
diff
(
np
.
array
(
tmp
),
axis
=
1
)
rect
[
1
]
=
tmp
[
np
.
argmin
(
diff
)]
rect
[
3
]
=
tmp
[
np
.
argmax
(
diff
)]
return
rect
def
expand_points_num
(
self
,
boxes
):
...
...
@@ -438,12 +438,14 @@ class KieLabelEncode(object):
texts
.
append
(
ann
[
'transcription'
])
text_ind
=
[
self
.
dict
[
c
]
for
c
in
text
if
c
in
self
.
dict
]
text_inds
.
append
(
text_ind
)
if
'label'
in
ann
o
.
keys
():
if
'label'
in
ann
.
keys
():
labels
.
append
(
ann
[
'label'
])
elif
'key_cls'
in
ann
o
.
keys
():
labels
.
append
(
ann
o
[
'key_cls'
])
elif
'key_cls'
in
ann
.
keys
():
labels
.
append
(
ann
[
'key_cls'
])
else
:
raise
ValueError
(
"Cannot found 'key_cls' in ann.keys(), please check your training annotation."
)
raise
ValueError
(
"Cannot found 'key_cls' in ann.keys(), please check your training annotation."
)
edges
.
append
(
ann
.
get
(
'edge'
,
0
))
ann_infos
=
dict
(
image
=
data
[
'image'
],
...
...
tools/infer/predict_det.py
浏览文件 @
7408d43d
...
...
@@ -154,9 +154,10 @@ class TextDetector(object):
s
=
pts
.
sum
(
axis
=
1
)
rect
[
0
]
=
pts
[
np
.
argmin
(
s
)]
rect
[
2
]
=
pts
[
np
.
argmax
(
s
)]
diff
=
np
.
diff
(
pts
,
axis
=
1
)
rect
[
1
]
=
pts
[
np
.
argmin
(
diff
)]
rect
[
3
]
=
pts
[
np
.
argmax
(
diff
)]
tmp
=
np
.
delete
(
pts
,
(
np
.
argmin
(
s
),
np
.
argmax
(
s
)),
axis
=
0
)
diff
=
np
.
diff
(
np
.
array
(
tmp
),
axis
=
1
)
rect
[
1
]
=
tmp
[
np
.
argmin
(
diff
)]
rect
[
3
]
=
tmp
[
np
.
argmax
(
diff
)]
return
rect
def
clip_det_res
(
self
,
points
,
img_height
,
img_width
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录