diff --git a/deploy/pdserving/README.md b/deploy/pdserving/README.md
index 2b5a422444d7bedaa69773fbc678f292f5d0e684..9da85bb5f3f077ef607698336f0058bca1551de2 100644
--- a/deploy/pdserving/README.md
+++ b/deploy/pdserving/README.md
@@ -198,6 +198,26 @@ The recognition model is the same.
2021-05-13 03:42:36,979 chl1(In: ['det'], Out: ['rec']) size[6/0]
2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
```
+## C++ Serving
+
+1. Compile Serving
+
+ To improve predictive performance, C++ services also provide multiple model concatenation services. Unlike Python Pipeline services, multiple model concatenation requires the pre - and post-model processing code to be written on the server side, so local recompilation is required to generate serving. Specific may refer to the official document: [how to compile Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_EN.md)
+
+2. Run the following command to start the service.
+ ```
+ # Start the service and save the running log in log.txt
+ python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralRecOp --port 9293 &>log.txt &
+ ```
+ After the service is successfully started, a log similar to the following will be printed in log.txt
+ ![](./imgs/start_server.png)
+
+3. Send service request
+ ```
+ python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
+ ```
+ After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
+ ![](./imgs/results.png)
## WINDOWS Users
diff --git a/deploy/pdserving/README_CN.md b/deploy/pdserving/README_CN.md
index 2652ddeb86ee16549cbad3cd205e26cf4ea5f01b..c3a74558c5693d46c74bcd27688eda9407e82d78 100644
--- a/deploy/pdserving/README_CN.md
+++ b/deploy/pdserving/README_CN.md
@@ -22,6 +22,7 @@ PaddleOCR提供2种服务部署方式:
- [环境准备](#环境准备)
- [模型转换](#模型转换)
- [Paddle Serving pipeline部署](#部署)
+- [Paddle Serving C++ 部署](#C++)
- [Windows用户](#Windows用户)
- [FAQ](#FAQ)
@@ -31,28 +32,29 @@ PaddleOCR提供2种服务部署方式:
需要准备PaddleOCR的运行环境和Paddle Serving的运行环境。
- 准备PaddleOCR的运行环境[链接](../../doc/doc_ch/installation.md)
- 根据环境下载对应的paddle whl包,推荐安装2.0.1版本
+ 根据环境下载对应的paddle whl包,推荐安装2.2.1版本
- 准备PaddleServing的运行环境,步骤如下
```bash
# 安装serving,用于启动服务
-wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
-pip3 install paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
+wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
+pip3 install paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
# 如果是cuda10.1环境,可以使用下面的命令安装paddle-serving-server
-# wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
-# pip3 install paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
+wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
+# pip3 install paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
# 安装client,用于向服务发送请求
-wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.7.0-cp37-none-any.whl
-pip3 install paddle_serving_client-0.7.0-cp37-none-any.whl
+wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp37-none-any.whl
+pip3 install paddle_serving_client-0.8.3-cp37-none-any.whl
+
# 安装serving-app
-wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.7.0-py3-none-any.whl
-pip3 install paddle_serving_app-0.7.0-py3-none-any.whl
+wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl
+pip3 install paddle_serving_app-0.8.3-py3-none-any.whl
```
-**Note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md)。
+**Note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Latest_Packages_CN.md)。
## 模型转换
@@ -188,6 +190,34 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
```
+
+## Paddle Serving C++ 部署]
+
+1. 准备 Serving 环境
+
+为了提高预测性能,C++ 服务同样提供了多模型串联服务。与python pipeline服务不同,多模型串联的过程中需要将模型前后处理代码写在服务端,因此需要在本地重新编译生成serving。具体可参考官方文档:[如何编译Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_CN.md)
+
+完成编译后,注意要安装编译出的三个whl包,并设置SERVING_BIN环境变量。
+
+2. 启动服务可运行如下命令:
+
+一个服务启动两个模型串联,只需要在--model后依次按顺序传入模型文件夹的相对路径,且需要在--op后依次传入自定义C++OP类名称:
+
+ ```
+ # 启动服务,运行日志保存在log.txt
+ python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralRecOp --port 9293 &>log.txt &
+ ```
+ 成功启动服务后,log.txt中会打印类似如下日志
+ ![](./imgs/start_server.png)
+
+3. 发送服务请求:
+ ```
+ python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
+ ```
+
+ 成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
+ ![](./imgs/results.png)
+
## Windows用户
diff --git a/deploy/pdserving/ocr_cpp_client.py b/deploy/pdserving/ocr_cpp_client.py
index 2baa7565ac78b9551c788c7b36457bce38828eb5..21c5537fdfdf80363d70d2f493c8fb22386c70ac 100755
--- a/deploy/pdserving/ocr_cpp_client.py
+++ b/deploy/pdserving/ocr_cpp_client.py
@@ -45,7 +45,6 @@ for img_file in os.listdir(test_img_dir):
image_data = file.read()
image = cv2_to_base64(image_data)
res_list = []
- #print(image)
fetch_map = client.predict(
feed={"x": image}, fetch=["save_infer_model/scale_0.tmp_1"], batch=True)
print("fetrch map:", fetch_map)