diff --git a/README.md b/README.md index b168ecc5e59261580e71335ced43533b2cb1732e..f57672e5055df042ede9ae03bbed590889c5941c 100644 --- a/README.md +++ b/README.md @@ -72,6 +72,7 @@ PaddleOCR support a variety of cutting-edge algorithms related to OCR, and devel + ## PP-OCR Series Model List(Update on September 8th) | Model introduction | Model name | Recommended scene | Detection model | Direction classifier | Recognition model | diff --git a/README_ch.md b/README_ch.md index f837980498c4b2e2c55a44192b7d3a2c7afb0ba9..e801ce561cb41aafb376f81a3016f0a6b838320d 100755 --- a/README_ch.md +++ b/README_ch.md @@ -71,6 +71,8 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力 ## 《动手学OCR》电子书 - [《动手学OCR》电子书📚](./doc/doc_ch/ocr_book.md) +## 场景应用 +- PaddleOCR场景应用覆盖通用,制造、金融、交通行业的主要OCR垂类应用,在PP-OCR、PP-Structure的通用能力基础之上,以notebook的形式展示利用场景数据微调、模型优化方法、数据增广等内容,为开发者快速落地OCR应用提供示范与启发。详情可查看[README](./applications)。 ## 开源社区 diff --git "a/applications/\345\214\205\350\243\205\347\224\237\344\272\247\346\227\245\346\234\237\350\257\206\345\210\253.md" "b/applications/\345\214\205\350\243\205\347\224\237\344\272\247\346\227\245\346\234\237\350\257\206\345\210\253.md" new file mode 100644 index 0000000000000000000000000000000000000000..73c174c4f954d7cd348b57fc5d6b00f6c5dab64b --- /dev/null +++ "b/applications/\345\214\205\350\243\205\347\224\237\344\272\247\346\227\245\346\234\237\350\257\206\345\210\253.md" @@ -0,0 +1,685 @@ +# 一种基于PaddleOCR的产品包装生产日期识别模型 + +- [1. 项目介绍](#1-项目介绍) +- [2. 环境搭建](#2-环境搭建) +- [3. 数据准备](#3-数据准备) +- [4. 直接使用PP-OCRv3模型评估](#4-直接使用PPOCRv3模型评估) +- [5. 基于合成数据finetune](#5-基于合成数据finetune) + - [5.1 Text Renderer数据合成方法](#51-TextRenderer数据合成方法) + - [5.1.1 下载Text Renderer代码](#511-下载TextRenderer代码) + - [5.1.2 准备背景图片](#512-准备背景图片) + - [5.1.3 准备语料](#513-准备语料) + - [5.1.4 下载字体](#514-下载字体) + - [5.1.5 运行数据合成命令](#515-运行数据合成命令) + - [5.2 模型训练](#52-模型训练) +- [6. 基于真实数据finetune](#6-基于真实数据finetune) + - [6.1 python爬虫获取数据](#61-python爬虫获取数据) + - [6.2 数据挖掘](#62-数据挖掘) + - [6.3 模型训练](#63-模型训练) +- [7. 基于合成+真实数据finetune](#7-基于合成+真实数据finetune) + + +## 1. 项目介绍 + +产品包装生产日期是计算机视觉图像识别技术在工业场景中的一种应用。产品包装生产日期识别技术要求能够将产品生产日期从复杂背景中提取并识别出来,在物流管理、物资管理中得到广泛应用。 + +![](https://ai-studio-static-online.cdn.bcebos.com/d9e0533cc1df47ffa3bbe99de9e42639a3ebfa5bce834bafb1ca4574bf9db684) + + +- 项目难点 + +1. 没有训练数据 +2. 图像质量层次不齐: 角度倾斜、图片模糊、光照不足、过曝等问题严重 + +针对以上问题, 本例选用PP-OCRv3这一开源超轻量OCR系统进行包装产品生产日期识别系统的开发。直接使用PP-OCRv3进行评估的精度为62.99%。为提升识别精度,我们首先使用数据合成工具合成了3k数据,基于这部分数据进行finetune,识别精度提升至73.66%。由于合成数据与真实数据之间的分布存在差异,为进一步提升精度,我们使用网络爬虫配合数据挖掘策略得到了1k带标签的真实数据,基于真实数据finetune的精度为71.33%。最后,我们综合使用合成数据和真实数据进行finetune,将识别精度提升至86.99%。各策略的精度提升效果如下: + +| 策略 | 精度| +| :--------------- | :-------- | +| PP-OCRv3评估 | 62.99| +| 合成数据finetune | 73.66| +| 真实数据finetune | 71.33| +| 真实+合成数据finetune | 86.99| + +AIStudio项目链接: [一种基于PaddleOCR的包装生产日期识别方法](https://aistudio.baidu.com/aistudio/projectdetail/4287736) + +## 2. 环境搭建 + +本任务基于Aistudio完成, 具体环境如下: + +- 操作系统: Linux +- PaddlePaddle: 2.3 +- PaddleOCR: Release/2.5 +- text_renderer: master + +下载PaddlleOCR代码并安装依赖库: +```bash +git clone -b dygraph https://gitee.com/paddlepaddle/PaddleOCR + +# 安装依赖库 +cd PaddleOCR +pip install -r PaddleOCR/requirements.txt +``` + +## 3. 数据准备 + +本项目使用人工预标注的300张图像作为测试集。 + +部分数据示例如下: + +![](https://ai-studio-static-online.cdn.bcebos.com/39ff30e0ab0442579712255e6a9ea6b5271169c98e624e6eb2b8781f003bfea0) + + +标签文件格式如下: +```txt +数据路径 标签(中间以制表符分隔) +``` + +|数据集类型|数量| +|---|---| +|测试集| 300| + +数据集[下载链接](https://aistudio.baidu.com/aistudio/datasetdetail/149770),下载后可以通过下方命令解压: + +```bash +tar -xvf data.tar +mv data ${PaddleOCR_root} +``` + +数据解压后的文件结构如下: + +```shell +PaddleOCR +├── data +│ ├── mining_images # 挖掘的真实数据示例 +│ ├── mining_train.list # 挖掘的真实数据文件列表 +│ ├── render_images # 合成数据示例 +│ ├── render_train.list # 合成数据文件列表 +│ ├── val # 测试集数据 +│ └── val.list # 测试集数据文件列表 +| ├── bg # 合成数据所需背景图像 +│ └── corpus # 合成数据所需语料 +``` + +## 4. 直接使用PP-OCRv3模型评估 + +准备好测试数据后,可以使用PaddleOCR的PP-OCRv3模型进行识别。 + +- 下载预训练模型 + +首先需要下载PP-OCR v3中英文识别模型文件,下载链接可以在https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/doc/doc_ch/ppocr_introduction.md#6 获取,下载命令: + +```bash +cd ${PaddleOCR_root} +mkdir ckpt +wget -nc -P ckpt https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar +pushd ckpt/ +tar -xvf ch_PP-OCRv3_rec_train.tar +popd +``` + +- 模型评估 + +使用以下命令进行PP-OCRv3评估: + +```bash +python tools/eval.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml \ + -o Global.checkpoints=ckpt/ch_PP-OCRv3_rec_train/best_accuracy \ + Eval.dataset.data_dir=./data \ + Eval.dataset.label_file_list=["./data/val.list"] + +``` + +其中各参数含义如下: + +```bash +-c: 指定使用的配置文件,ch_PP-OCRv3_rec_distillation.yml对应于OCRv3识别模型。 +-o: 覆盖配置文件中参数 +Global.checkpoints: 指定评估使用的模型文件路径 +Eval.dataset.data_dir: 指定评估数据集路径 +Eval.dataset.label_file_list: 指定评估数据集文件列表 +``` + +## 5. 基于合成数据finetune + +### 5.1 Text Renderer数据合成方法 + +#### 5.1.1 下载Text Renderer代码 + +首先从github或gitee下载Text Renderer代码,并安装相关依赖。 + +```bash +git clone https://gitee.com/wowowoll/text_renderer.git + +# 安装依赖库 +cd text_renderer +pip install -r requirements.txt +``` + +使用text renderer合成数据之前需要准备好背景图片、语料以及字体库,下面将逐一介绍各个步骤。 + +#### 5.1.2 准备背景图片 + +观察日常生活中常见的包装生产日期图片,我们可以发现其背景相对简单。为此我们可以从网上找一下图片,截取部分图像块作为背景图像。 + +本项目已准备了部分图像作为背景图片,在第3部分完成数据准备后,可以得到我们准备好的背景图像,示例如下: + +![](https://ai-studio-static-online.cdn.bcebos.com/456ae2acb27d4a94896c478812aee0bc3551c703d7bd40c9be4dc983c7b3fc8a) + + + +背景图像存放于如下位置: + +```shell +PaddleOCR +├── data +| ├── bg # 合成数据所需背景图像 +``` + +#### 5.1.3 准备语料 + +观察测试集生产日期图像,我们可以知道如下数据有如下特点: +1. 由年月日组成,中间可能以“/”、“-”、“:”、“.”或者空格间隔,也可能以汉字年月日分隔 +2. 有些生产日期包含在产品批号中,此时可能包含具体时间、英文字母或数字标识 + +基于以上两点,我们编写语料生成脚本: + +```python +import random +from random import choice +import os + +cropus_num = 2000 #设置语料数量 + +def get_cropus(f): + # 随机生成年份 + year = random.randint(0, 22) + # 随机生成月份 + month = random.randint(1, 12) + # 随机生成日期 + day_dict = {31: [1,3,5,7,8,10,12], 30: [4,6,9,11], 28: [2]} + for item in day_dict: + if month in day_dict[item]: + day = random.randint(0, item) + # 随机生成小时 + hours = random.randint(0, 24) + # 随机生成分钟 + minute = random.randint(0, 60) + # 随机生成秒数 + second = random.randint(0, 60) + + # 随机生成产品标识字符 + length = random.randint(0, 6) + file_id = [] + flag = 0 + my_dict = [i for i in range(48,58)] + [j for j in range(40, 42)] + [k for k in range(65,90)] # 大小写字母 + 括号 + + for i in range(1, length): + if flag: + if i == flag+2: #括号匹配 + file_id.append(')') + flag = 0 + continue + sel = choice(my_dict) + if sel == 41: + continue + if sel == 40: + if i == 1 or i > length-3: + continue + flag = i + my_ascii = chr(sel) + file_id.append(my_ascii) + file_id_str = ''.join(file_id) + + #随机生成产品标识字符 + file_id2 = random.randint(0, 9) + + rad = random.random() + if rad < 0.3: + f.write('20{:02d}{:02d}{:02d} {}'.format(year, month, day, file_id_str)) + elif 0.3 < rad < 0.5: + f.write('20{:02d}年{:02d}月{:02d}日'.format(year, month, day)) + elif 0.5 < rad < 0.7: + f.write('20{:02d}/{:02d}/{:02d}'.format(year, month, day)) + elif 0.7 < rad < 0.8: + f.write('20{:02d}-{:02d}-{:02d}'.format(year, month, day)) + elif 0.8 < rad < 0.9: + f.write('20{:02d}.{:02d}.{:02d}'.format(year, month, day)) + else: + f.write('{:02d}:{:02d}:{:02d} {:02d}'.format(hours, minute, second, file_id2)) + +if __name__ == "__main__": + file_path = '/home/aistudio/text_renderer/my_data/cropus' + if not os.path.exists(file_path): + os.makedirs(file_path) + file_name = os.path.join(file_path, 'books.txt') + f = open(file_name, 'w') + for i in range(cropus_num): + get_cropus(f) + if i < cropus_num-1: + f.write('\n') + + f.close() +``` + +本项目已准备了部分语料,在第3部分完成数据准备后,可以得到我们准备好的语料库,默认位置如下: + +```shell +PaddleOCR +├── data +│ └── corpus #合成数据所需语料 +``` + +#### 5.1.4 下载字体 + +观察包装生产日期,我们可以发现其使用的字体为点阵体。字体可以在如下网址下载: +https://www.fonts.net.cn/fonts-en/tag-dianzhen-1.html + +本项目已准备了部分字体,在第3部分完成数据准备后,可以得到我们准备好的字体,默认位置如下: + +```shell +PaddleOCR +├── data +│ └── fonts #合成数据所需字体 +``` + +下载好字体后,还需要在list文件中指定字体文件存放路径,脚本如下: + +```bash +cd text_renderer/my_data/ +touch fonts.list +ls /home/aistudio/PaddleOCR/data/fonts/* > fonts.list +``` + +#### 5.1.5 运行数据合成命令 + +完成数据准备后,my_data文件结构如下: + +```shell +my_data/ +├── cropus +│ └── books.txt #语料库 +├── eng.txt #字符列表 +└── fonts.list #字体列表 +``` + +在运行合成数据命令之前,还有两处细节需要手动修改: +1. 将默认配置文件`text_renderer/configs/default.yaml`中第9行enable的值设为`true`,即允许合成彩色图像。否则合成的都是灰度图。 + +```yaml + # color boundary is in R,G,B format + font_color: ++ enable: true #false +``` + +2. 将`text_renderer/textrenderer/renderer.py`第184行作如下修改,取消padding。否则图片两端会有一些空白。 + +```python +padding = random.randint(s_bbox_width // 10, s_bbox_width // 8) #修改前 +padding = 0 #修改后 +``` + +运行数据合成命令: + +```bash +cd /home/aistudio/text_renderer/ +python main.py --num_img=3000 \ + --fonts_list='./my_data/fonts.list' \ + --corpus_dir "./my_data/cropus" \ + --corpus_mode "list" \ + --bg_dir "/home/aistudio/PaddleOCR/data/bg/" \ + --img_width 0 +``` + +合成好的数据默认保存在`text_renderer/output`目录下,可进入该目录查看合成的数据。 + + +合成数据示例如下 +![](https://ai-studio-static-online.cdn.bcebos.com/d686a48d465a43d09fbee51924fdca42ee21c50e676646da8559fb9967b94185) + +数据合成好后,还需要生成如下格式的训练所需的标注文件, +``` +图像路径 标签 +``` + +使用如下脚本即可生成标注文件: + +```python +import random + +abspath = '/home/aistudio/text_renderer/output/default/' + +#标注文件生成路径 +fout = open('./render_train.list', 'w', encoding='utf-8') + +with open('./output/default/tmp_labels.txt','r') as f: + lines = f.readlines() + for item in lines: + label = item[9:] + filename = item[:8] + '.jpg' + fout.write(abspath + filename + '\t' + label) + + fout.close() +``` + +经过以上步骤,我们便完成了包装生产日期数据合成。 +数据位于`text_renderer/output`,标注文件位于`text_renderer/render_train.list`。 + +本项目提供了生成好的数据供大家体验,完成步骤3的数据准备后,可得数据路径位于: + +```shell +PaddleOCR +├── data +│ ├── render_images # 合成数据示例 +│ ├── render_train.list #合成数据文件列表 +``` + +### 5.2 模型训练 + +准备好合成数据后,我们可以使用以下命令,利用合成数据进行finetune: +```bash +cd ${PaddleOCR_root} +python tools/train.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml \ + -o Global.pretrained_model=./ckpt/ch_PP-OCRv3_rec_train/best_accuracy \ + Global.epoch_num=20 \ + Global.eval_batch_step='[0, 20]' \ + Train.dataset.data_dir=./data \ + Train.dataset.label_file_list=['./data/render_train.list'] \ + Train.loader.batch_size_per_card=64 \ + Eval.dataset.data_dir=./data \ + Eval.dataset.label_file_list=["./data/val.list"] \ + Eval.loader.batch_size_per_card=64 + +``` + +其中各参数含义如下: + +```txt +-c: 指定使用的配置文件,ch_PP-OCRv3_rec_distillation.yml对应于OCRv3识别模型。 +-o: 覆盖配置文件中参数 +Global.pretrained_model: 指定finetune使用的预训练模型 +Global.epoch_num: 指定训练的epoch数 +Global.eval_batch_step: 间隔多少step做一次评估 +Train.dataset.data_dir: 训练数据集路径 +Train.dataset.label_file_list: 训练集文件列表 +Train.loader.batch_size_per_card: 训练单卡batch size +Eval.dataset.data_dir: 评估数据集路径 +Eval.dataset.label_file_list: 评估数据集文件列表 +Eval.loader.batch_size_per_card: 评估单卡batch size +``` + +## 6. 基于真实数据finetune + + +使用合成数据finetune能提升我们模型的识别精度,但由于合成数据和真实数据之间的分布可能有一定差异,因此作用有限。为进一步提高识别精度,本节介绍如何挖掘真实数据进行模型finetune。 + +数据挖掘的整体思路如下: +1. 使用python爬虫从网上获取大量无标签数据 +2. 使用模型从大量无标签数据中构建出有效训练集 + +### 6.1 python爬虫获取数据 + +- 推荐使用[爬虫工具](https://github.com/Joeclinton1/google-images-download)获取无标签图片。 + +图片获取后,可按如下目录格式组织: + +```txt +sprider +├── file.list +├── data +│ ├── 00000.jpg +│ ├── 00001.jpg +... +``` + +### 6.2 数据挖掘 + +我们使用PaddleOCR对获取到的图片进行挖掘,具体步骤如下: +1. 使用 PP-OCRv3检测模型+svtr-tiny识别模型,对每张图片进行预测。 +2. 使用数据挖掘策略,得到有效图片。 +3. 将有效图片对应的图像区域和标签提取出来,构建训练集。 + + +首先下载预训练模型,PP-OCRv3检测模型下载链接:https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar + +如需获取svtr-tiny高精度中文识别预训练模型,请扫码填写问卷,加入PaddleOCR官方交流群获取全部OCR垂类模型下载链接、《动手学OCR》电子书等全套OCR学习资料🎁 +
+ +
+ + +完成下载后,可将模型存储于如下位置: + +```shell +PaddleOCR +├── data +│ ├── rec_vit_sub_64_363_all/ # svtr_tiny高精度识别模型 +``` + +```bash +# 下载解压PP-OCRv3检测模型 +cd ${PaddleOCR_root} +wget -nc -P ckpt https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar +pushd ckpt +tar -xvf ch_PP-OCRv3_det_infer.tar +popd ckpt +``` + +在使用PPOCRv3检测模型+svtr-tiny识别模型进行预测之前,有如下两处细节需要手动修改: +1. 将`tools/infer/predict_rec.py`中第110行`imgW`修改为`320` + +```python +#imgW = int((imgH * max_wh_ratio)) +imgW = 320 +``` + +2. 将`tools/infer/predict_system.py`第169行添加如下一行,将预测分数也写入结果文件中。 + +```python +"scores": rec_res[idx][1], +``` + +模型预测命令: +```bash +python tools/infer/predict_system.py \ + --image_dir="/home/aistudio/sprider/data" \ + --det_model_dir="./ckpt/ch_PP-OCRv3_det_infer/" \ + --rec_model_dir="/home/aistudio/PaddleOCR/data/rec_vit_sub_64_363_all/" \ + --rec_image_shape="3,32,320" +``` + +获得预测结果后,我们使用数据挖掘策略得到有效图片。具体挖掘策略如下: +1. 预测置信度高于95% +2. 识别结果包含字符‘20’,即年份 +3. 没有中文,或者有中文并且‘日’和'月'同时在识别结果中 + +```python +# 获取有效预测 + +import json +import re + +zh_pattern = re.compile(u'[\u4e00-\u9fa5]+') #正则表达式,筛选字符是否包含中文 + +file_path = '/home/aistudio/PaddleOCR/inference_results/system_results.txt' +out_path = '/home/aistudio/PaddleOCR/selected_results.txt' +f_out = open(out_path, 'w') + +with open(file_path, "r", encoding='utf-8') as fin: + lines = fin.readlines() + + +for line in lines: + flag = False + # 读取文件内容 + file_name, json_file = line.strip().split('\t') + preds = json.loads(json_file) + res = [] + for item in preds: + transcription = item['transcription'] #获取识别结果 + scores = item['scores'] #获取识别得分 + # 挖掘策略 + if scores > 0.95: + if '20' in transcription and len(transcription) > 4 and len(transcription) < 12: + word = transcription + if not(zh_pattern.search(word) and ('日' not in word or '月' not in word)): + flag = True + res.append(item) + save_pred = file_name + "\t" + json.dumps( + res, ensure_ascii=False) + "\n" + if flag ==True: + f_out.write(save_pred) + +f_out.close() +``` + +然后将有效预测对应的图像区域和标签提取出来,构建训练集。具体实现脚本如下: + +```python +import cv2 +import json +import numpy as np + +PATH = '/home/aistudio/PaddleOCR/inference_results/' #数据原始路径 +SAVE_PATH = '/home/aistudio/mining_images/' #裁剪后数据保存路径 +file_list = '/home/aistudio/PaddleOCR/selected_results.txt' #数据预测结果 +label_file = '/home/aistudio/mining_images/mining_train.list' #输出真实数据训练集标签list + +if not os.path.exists(SAVE_PATH): + os.mkdir(SAVE_PATH) + +f_label = open(label_file, 'w') + + +def get_rotate_crop_image(img, points): + """ + 根据检测结果points,从输入图像img中裁剪出相应的区域 + """ + assert len(points) == 4, "shape of points must be 4*2" + img_crop_width = int( + max( + np.linalg.norm(points[0] - points[1]), + np.linalg.norm(points[2] - points[3]))) + img_crop_height = int( + max( + np.linalg.norm(points[0] - points[3]), + np.linalg.norm(points[1] - points[2]))) + pts_std = np.float32([[0, 0], [img_crop_width, 0], + [img_crop_width, img_crop_height], + [0, img_crop_height]]) + M = cv2.getPerspectiveTransform(points, pts_std) + # 形变或倾斜,会做透视变换,reshape成矩形 + dst_img = cv2.warpPerspective( + img, + M, (img_crop_width, img_crop_height), + borderMode=cv2.BORDER_REPLICATE, + flags=cv2.INTER_CUBIC) + dst_img_height, dst_img_width = dst_img.shape[0:2] + if dst_img_height * 1.0 / dst_img_width >= 1.5: + dst_img = np.rot90(dst_img) + return dst_img + +def crop_and_get_filelist(file_list): + with open(file_list, "r", encoding='utf-8') as fin: + lines = fin.readlines() + + img_num = 0 + for line in lines: + img_name, json_file = line.strip().split('\t') + preds = json.loads(json_file) + for item in preds: + transcription = item['transcription'] + points = item['points'] + points = np.array(points).astype('float32') + #print('processing {}...'.format(img_name)) + + img = cv2.imread(PATH+img_name) + dst_img = get_rotate_crop_image(img, points) + h, w, c = dst_img.shape + newWidth = int((32. / h) * w) + newImg = cv2.resize(dst_img, (newWidth, 32)) + new_img_name = '{:05d}.jpg'.format(img_num) + cv2.imwrite(SAVE_PATH+new_img_name, dst_img) + f_label.write(SAVE_PATH+new_img_name+'\t'+transcription+'\n') + img_num += 1 + + +crop_and_get_filelist(file_list) +f_label.close() +``` + +### 6.3 模型训练 + +通过数据挖掘,我们得到了真实场景数据和对应的标签。接下来使用真实数据finetune,观察精度提升效果。 + + +利用真实数据进行finetune: + +```bash +cd ${PaddleOCR_root} +python tools/train.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml \ + -o Global.pretrained_model=./ckpt/ch_PP-OCRv3_rec_train/best_accuracy \ + Global.epoch_num=20 \ + Global.eval_batch_step='[0, 20]' \ + Train.dataset.data_dir=./data \ + Train.dataset.label_file_list=['./data/mining_train.list'] \ + Train.loader.batch_size_per_card=64 \ + Eval.dataset.data_dir=./data \ + Eval.dataset.label_file_list=["./data/val.list"] \ + Eval.loader.batch_size_per_card=64 +``` + +各参数含义参考第6部分合成数据finetune,只需要对训练数据路径做相应的修改: + +```txt +Train.dataset.data_dir: 训练数据集路径 +Train.dataset.label_file_list: 训练集文件列表 +``` + +示例使用我们提供的真实数据进行finetune,如想换成自己的数据,只需要相应的修改`Train.dataset.data_dir`和`Train.dataset.label_file_list`参数即可。 + +由于数据量不大,这里仅训练20个epoch即可。训练完成后,可以得到合成数据finetune后的精度为best acc=**71.33%**。 + +由于数量比较少,精度会比合成数据finetue的略低。 + + +## 7. 基于合成+真实数据finetune + +为进一步提升模型精度,我们结合使用合成数据和挖掘到的真实数据进行finetune。 + +利用合成+真实数据进行finetune,各参数含义参考第6部分合成数据finetune,只需要对训练数据路径做相应的修改: + +```txt +Train.dataset.data_dir: 训练数据集路径 +Train.dataset.label_file_list: 训练集文件列表 +``` + +生成训练list文件: +```bash +# 生成训练集文件list +cat /home/aistudio/PaddleOCR/data/render_train.list /home/aistudio/PaddleOCR/data/mining_train.list > /home/aistudio/PaddleOCR/data/render_mining_train.list +``` + +启动训练: +```bash +cd ${PaddleOCR_root} +python tools/train.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml \ + -o Global.pretrained_model=./ckpt/ch_PP-OCRv3_rec_train/best_accuracy \ + Global.epoch_num=40 \ + Global.eval_batch_step='[0, 20]' \ + Train.dataset.data_dir=./data \ + Train.dataset.label_file_list=['./data/render_mining_train.list'] \ + Train.loader.batch_size_per_card=64 \ + Eval.dataset.data_dir=./data \ + Eval.dataset.label_file_list=["./data/val.list"] \ + Eval.loader.batch_size_per_card=64 +``` + +示例使用我们提供的真实+合成数据进行finetune,如想换成自己的数据,只需要相应的修改Train.dataset.data_dir和Train.dataset.label_file_list参数即可。 + +由于数据量不大,这里仅训练40个epoch即可。训练完成后,可以得到合成数据finetune后的精度为best acc=**86.99%**。 + +可以看到,相较于原始PP-OCRv3的识别精度62.99%,使用合成数据+真实数据finetune后,识别精度能提升24%。 + +如需获取已训练模型,可以同样扫描上方二维码下载,将下载或训练完成的模型放置在对应目录下即可完成模型推理。 + +模型的推理部署方法可以参考repo文档: https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/deploy/README_ch.md diff --git "a/applications/\346\266\262\346\231\266\345\261\217\350\257\273\346\225\260\350\257\206\345\210\253.md" "b/applications/\346\266\262\346\231\266\345\261\217\350\257\273\346\225\260\350\257\206\345\210\253.md" new file mode 100644 index 0000000000000000000000000000000000000000..ff2fb2cb4812f4f8366605b3c26af5b9aaaa290e --- /dev/null +++ "b/applications/\346\266\262\346\231\266\345\261\217\350\257\273\346\225\260\350\257\206\345\210\253.md" @@ -0,0 +1,616 @@ +# 基于PP-OCRv3的液晶屏读数识别 + +- [1. 项目背景及意义](#1-项目背景及意义) +- [2. 项目内容](#2-项目内容) +- [3. 安装环境](#3-安装环境) +- [4. 文字检测](#4-文字检测) + - [4.1 PP-OCRv3检测算法介绍](#41-PP-OCRv3检测算法介绍) + - [4.2 数据准备](#42-数据准备) + - [4.3 模型训练](#43-模型训练) + - [4.3.1 预训练模型直接评估](#431-预训练模型直接评估) + - [4.3.2 预训练模型直接finetune](#432-预训练模型直接finetune) + - [4.3.3 基于预训练模型Finetune_student模型](#433-基于预训练模型Finetune_student模型) + - [4.3.4 基于预训练模型Finetune_teacher模型](#434-基于预训练模型Finetune_teacher模型) + - [4.3.5 采用CML蒸馏进一步提升student模型精度](#435-采用CML蒸馏进一步提升student模型精度) + - [4.3.6 模型导出推理](#436-4.3.6-模型导出推理) +- [5. 文字识别](#5-文字识别) + - [5.1 PP-OCRv3识别算法介绍](#51-PP-OCRv3识别算法介绍) + - [5.2 数据准备](#52-数据准备) + - [5.3 模型训练](#53-模型训练) + - [5.4 模型导出推理](#54-模型导出推理) +- [6. 系统串联](#6-系统串联) + - [6.1 后处理](#61-后处理) +- [7. PaddleServing部署](#7-PaddleServing部署) + + +## 1. 项目背景及意义 +目前光学字符识别(OCR)技术在我们的生活当中被广泛使用,但是大多数模型在通用场景下的准确性还有待提高,针对于此我们借助飞桨提供的PaddleOCR套件较容易的实现了在垂类场景下的应用。 + +该项目以国家质量基础(NQI)为准绳,充分利用大数据、云计算、物联网等高新技术,构建覆盖计量端、实验室端、数据端和硬件端的完整计量解决方案,解决传统计量校准中存在的难题,拓宽计量检测服务体系和服务领域;解决无数传接口或数传接口不统一、不公开的计量设备,以及计量设备所处的环境比较恶劣,不适合人工读取数据。通过OCR技术实现远程计量,引领计量行业向智慧计量转型和发展。 + +## 2. 项目内容 +本项目基于PaddleOCR开源套件,以PP-OCRv3检测和识别模型为基础,针对液晶屏读数识别场景进行优化。 + +Aistudio项目链接:[OCR液晶屏读数识别](https://aistudio.baidu.com/aistudio/projectdetail/4080130) + +## 3. 安装环境 + +```python +# 首先git官方的PaddleOCR项目,安装需要的依赖 +# 第一次运行打开该注释 +# git clone https://gitee.com/PaddlePaddle/PaddleOCR.git +cd PaddleOCR +pip install -r requirements.txt +``` + +## 4. 文字检测 +文本检测的任务是定位出输入图像中的文字区域。近年来学术界关于文本检测的研究非常丰富,一类方法将文本检测视为目标检测中的一个特定场景,基于通用目标检测算法进行改进适配,如TextBoxes[1]基于一阶段目标检测器SSD[2]算法,调整目标框使之适合极端长宽比的文本行,CTPN[3]则是基于Faster RCNN[4]架构改进而来。但是文本检测与目标检测在目标信息以及任务本身上仍存在一些区别,如文本一般长宽比较大,往往呈“条状”,文本行之间可能比较密集,弯曲文本等,因此又衍生了很多专用于文本检测的算法。本项目基于PP-OCRv3算法进行优化。 + +### 4.1 PP-OCRv3检测算法介绍 +PP-OCRv3检测模型是对PP-OCRv2中的CML(Collaborative Mutual Learning) 协同互学习文本检测蒸馏策略进行了升级。如下图所示,CML的核心思想结合了①传统的Teacher指导Student的标准蒸馏与 ②Students网络之间的DML互学习,可以让Students网络互学习的同时,Teacher网络予以指导。PP-OCRv3分别针对教师模型和学生模型进行进一步效果优化。其中,在对教师模型优化时,提出了大感受野的PAN结构LK-PAN和引入了DML(Deep Mutual Learning)蒸馏策略;在对学生模型优化时,提出了残差注意力机制的FPN结构RSE-FPN。 +![](https://ai-studio-static-online.cdn.bcebos.com/c306b2f028364805a55494d435ab553a76cf5ae5dd3f4649a948ea9aeaeb28b8) + +详细优化策略描述请参考[PP-OCRv3优化策略](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/doc/doc_ch/PP-OCRv3_introduction.md#2) + +### 4.2 数据准备 +[计量设备屏幕字符检测数据集](https://aistudio.baidu.com/aistudio/datasetdetail/127845)数据来源于实际项目中各种计量设备的数显屏,以及在网上搜集的一些其他数显屏,包含训练集755张,测试集355张。 + +```python +# 在PaddleOCR下创建新的文件夹train_data +mkdir train_data +# 下载数据集并解压到指定路径下 +unzip icdar2015.zip -d train_data +``` + +```python +# 随机查看文字检测数据集图片 +from PIL import Image +import matplotlib.pyplot as plt +import numpy as np +import os + + +train = './train_data/icdar2015/text_localization/test' +# 从指定目录中选取一张图片 +def get_one_image(train): + plt.figure() + files = os.listdir(train) + n = len(files) + ind = np.random.randint(0,n) + img_dir = os.path.join(train,files[ind]) + image = Image.open(img_dir) + plt.imshow(image) + plt.show() + image = image.resize([208, 208]) + +get_one_image(train) +``` +![det_png](https://ai-studio-static-online.cdn.bcebos.com/0639da09b774458096ae577e82b2c59e89ced6a00f55458f946997ab7472a4f8) + +### 4.3 模型训练 + +#### 4.3.1 预训练模型直接评估 +下载我们需要的PP-OCRv3检测预训练模型,更多选择请自行选择其他的[文字检测模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/doc/doc_ch/models_list.md#1-%E6%96%87%E6%9C%AC%E6%A3%80%E6%B5%8B%E6%A8%A1%E5%9E%8B) + +```python +#使用该指令下载需要的预训练模型 +wget -P ./pretrained_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar +# 解压预训练模型文件 +tar -xf ./pretrained_models/ch_PP-OCRv3_det_distill_train.tar -C pretrained_models +``` + +在训练之前,我们可以直接使用下面命令来评估预训练模型的效果: + +```python +# 评估预训练模型 +python tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model="./pretrained_models/ch_PP-OCRv3_det_distill_train/best_accuracy" +``` + +结果如下: + +| | 方案 |hmeans| +|---|---------------------------|---| +| 0 | PP-OCRv3中英文超轻量检测预训练模型直接预测 |47.5%| + +#### 4.3.2 预训练模型直接finetune +##### 修改配置文件 +我们使用configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml,主要修改训练轮数和学习率参相关参数,设置预训练模型路径,设置数据集路径。 另外,batch_size可根据自己机器显存大小进行调整。 具体修改如下几个地方: +``` +epoch:100 +save_epoch_step:10 +eval_batch_step:[0, 50] +save_model_dir: ./output/ch_PP-OCR_v3_det/ +pretrained_model: ./pretrained_models/ch_PP-OCRv3_det_distill_train/best_accuracy +learning_rate: 0.00025 +num_workers: 0 # 如果单卡训练,建议将Train和Eval的loader部分的num_workers设置为0,否则会出现`/dev/shm insufficient`的报错 +``` + +##### 开始训练 +使用我们上面修改的配置文件configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml,训练命令如下: + +```python +# 开始训练模型 +python tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model=./pretrained_models/ch_PP-OCRv3_det_distill_train/best_accuracy +``` + +评估训练好的模型: + +```python +# 评估训练好的模型 +python tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model="./output/ch_PP-OCR_v3_det/best_accuracy" +``` + +结果如下: +| | 方案 |hmeans| +|---|---------------------------|---| +| 0 | PP-OCRv3中英文超轻量检测预训练模型直接预测 |47.5%| +| 1 | PP-OCRv3中英文超轻量检测预训练模型fintune |65.2%| + +#### 4.3.3 基于预训练模型Finetune_student模型 + +我们使用configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml,主要修改训练轮数和学习率参相关参数,设置预训练模型路径,设置数据集路径。 另外,batch_size可根据自己机器显存大小进行调整。 具体修改如下几个地方: +``` +epoch:100 +save_epoch_step:10 +eval_batch_step:[0, 50] +save_model_dir: ./output/ch_PP-OCR_v3_det_student/ +pretrained_model: ./pretrained_models/ch_PP-OCRv3_det_distill_train/student +learning_rate: 0.00025 +num_workers: 0 # 如果单卡训练,建议将Train和Eval的loader部分的num_workers设置为0,否则会出现`/dev/shm insufficient`的报错 +``` + +训练命令如下: + +```python +python tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml -o Global.pretrained_model=./pretrained_models/ch_PP-OCRv3_det_distill_train/student +``` + +评估训练好的模型: + +```python +# 评估训练好的模型 +python tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml -o Global.pretrained_model="./output/ch_PP-OCR_v3_det_student/best_accuracy" +``` + +结果如下: +| | 方案 |hmeans| +|---|---------------------------|---| +| 0 | PP-OCRv3中英文超轻量检测预训练模型直接预测 |47.5%| +| 1 | PP-OCRv3中英文超轻量检测预训练模型fintune |65.2%| +| 2 | PP-OCRv3中英文超轻量检测预训练模型fintune学生模型 |80.0%| + +#### 4.3.4 基于预训练模型Finetune_teacher模型 + +首先需要从提供的预训练模型best_accuracy.pdparams中提取teacher参数,组合成适合dml训练的初始化模型,提取代码如下: + +```python +cd ./pretrained_models/ +# transform teacher params in best_accuracy.pdparams into teacher_dml.paramers +import paddle + +# load pretrained model +all_params = paddle.load("ch_PP-OCRv3_det_distill_train/best_accuracy.pdparams") +# print(all_params.keys()) + +# keep teacher params +t_params = {key[len("Teacher."):]: all_params[key] for key in all_params if "Teacher." in key} + +# print(t_params.keys()) + +s_params = {"Student." + key: t_params[key] for key in t_params} +s2_params = {"Student2." + key: t_params[key] for key in t_params} +s_params = {**s_params, **s2_params} +# print(s_params.keys()) + +paddle.save(s_params, "ch_PP-OCRv3_det_distill_train/teacher_dml.pdparams") + +``` + +我们使用configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml,主要修改训练轮数和学习率参相关参数,设置预训练模型路径,设置数据集路径。 另外,batch_size可根据自己机器显存大小进行调整。 具体修改如下几个地方: +``` +epoch:100 +save_epoch_step:10 +eval_batch_step:[0, 50] +save_model_dir: ./output/ch_PP-OCR_v3_det_teacher/ +pretrained_model: ./pretrained_models/ch_PP-OCRv3_det_distill_train/teacher_dml +learning_rate: 0.00025 +num_workers: 0 # 如果单卡训练,建议将Train和Eval的loader部分的num_workers设置为0,否则会出现`/dev/shm insufficient`的报错 +``` + +训练命令如下: + +```python +python tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml -o Global.pretrained_model=./pretrained_models/ch_PP-OCRv3_det_distill_train/teacher_dml +``` + +评估训练好的模型: + +```python +# 评估训练好的模型 +python tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml -o Global.pretrained_model="./output/ch_PP-OCR_v3_det_teacher/best_accuracy" +``` + +结果如下: +| | 方案 |hmeans| +|---|---------------------------|---| +| 0 | PP-OCRv3中英文超轻量检测预训练模型直接预测 |47.5%| +| 1 | PP-OCRv3中英文超轻量检测预训练模型fintune |65.2%| +| 2 | PP-OCRv3中英文超轻量检测预训练模型fintune学生模型 |80.0%| +| 3 | PP-OCRv3中英文超轻量检测预训练模型fintune教师模型 |84.8%| + +#### 4.3.5 采用CML蒸馏进一步提升student模型精度 + +需要从4.3.3和4.3.4训练得到的best_accuracy.pdparams中提取各自代表student和teacher的参数,组合成适合cml训练的初始化模型,提取代码如下: + +```python +# transform teacher params and student parameters into cml model +import paddle + +all_params = paddle.load("./pretrained_models/ch_PP-OCRv3_det_distill_train/best_accuracy.pdparams") +# print(all_params.keys()) + +t_params = paddle.load("./output/ch_PP-OCR_v3_det_teacher/best_accuracy.pdparams") +# print(t_params.keys()) + +s_params = paddle.load("./output/ch_PP-OCR_v3_det_student/best_accuracy.pdparams") +# print(s_params.keys()) + +for key in all_params: + # teacher is OK + if "Teacher." in key: + new_key = key.replace("Teacher", "Student") + #print("{} >> {}\n".format(key, new_key)) + assert all_params[key].shape == t_params[new_key].shape + all_params[key] = t_params[new_key] + + if "Student." in key: + new_key = key.replace("Student.", "") + #print("{} >> {}\n".format(key, new_key)) + assert all_params[key].shape == s_params[new_key].shape + all_params[key] = s_params[new_key] + + if "Student2." in key: + new_key = key.replace("Student2.", "") + print("{} >> {}\n".format(key, new_key)) + assert all_params[key].shape == s_params[new_key].shape + all_params[key] = s_params[new_key] + +paddle.save(all_params, "./pretrained_models/ch_PP-OCRv3_det_distill_train/teacher_cml_student.pdparams") +``` + +训练命令如下: + +```python +python tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model=./pretrained_models/ch_PP-OCRv3_det_distill_train/teacher_cml_student Global.save_model_dir=./output/ch_PP-OCR_v3_det_finetune/ +``` + +评估训练好的模型: + +```python +# 评估训练好的模型 +python tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model="./output/ch_PP-OCR_v3_det_finetune/best_accuracy" +``` + +结果如下: +| | 方案 |hmeans| +|---|---------------------------|---| +| 0 | PP-OCRv3中英文超轻量检测预训练模型直接预测 |47.5%| +| 1 | PP-OCRv3中英文超轻量检测预训练模型fintune |65.2%| +| 2 | PP-OCRv3中英文超轻量检测预训练模型fintune学生模型 |80.0%| +| 3 | PP-OCRv3中英文超轻量检测预训练模型fintune教师模型 |84.8%| +| 4 | 基于2和3训练好的模型fintune |82.7%| + +如需获取已训练模型,请扫码填写问卷,加入PaddleOCR官方交流群获取全部OCR垂类模型下载链接、《动手学OCR》电子书等全套OCR学习资料🎁 +
+ +
+将下载或训练完成的模型放置在对应目录下即可完成模型推理。 + +#### 4.3.6 模型导出推理 +训练完成后,可以将训练模型转换成inference模型。inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。 +##### 4.3.6.1 模型导出 +导出命令如下: + +```python +# 转化为推理模型 +python tools/export_model.py \ +-c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml \ +-o Global.pretrained_model=./output/ch_PP-OCR_v3_det_finetune/best_accuracy \ +-o Global.save_inference_dir="./inference/det_ppocrv3" + +``` + +##### 4.3.6.2 模型推理 +导出模型后,可以使用如下命令进行推理预测: + +```python +# 推理预测 +python tools/infer/predict_det.py --image_dir="train_data/icdar2015/text_localization/test/1.jpg" --det_model_dir="./inference/det_ppocrv3/Student" +``` + +## 5. 文字识别 +文本识别的任务是识别出图像中的文字内容,一般输入来自于文本检测得到的文本框截取出的图像文字区域。文本识别一般可以根据待识别文本形状分为规则文本识别和不规则文本识别两大类。规则文本主要指印刷字体、扫描文本等,文本大致处在水平线位置;不规则文本往往不在水平位置,存在弯曲、遮挡、模糊等问题。不规则文本场景具有很大的挑战性,也是目前文本识别领域的主要研究方向。本项目基于PP-OCRv3算法进行优化。 + +### 5.1 PP-OCRv3识别算法介绍 +PP-OCRv3的识别模块是基于文本识别算法[SVTR](https://arxiv.org/abs/2205.00159)优化。SVTR不再采用RNN结构,通过引入Transformers结构更加有效地挖掘文本行图像的上下文信息,从而提升文本识别能力。如下图所示,PP-OCRv3采用了6个优化策略。 +![](https://ai-studio-static-online.cdn.bcebos.com/d4f5344b5b854d50be738671598a89a45689c6704c4d481fb904dd7cf72f2a1a) + +优化策略汇总如下: +* SVTR_LCNet:轻量级文本识别网络 +* GTC:Attention指导CTC训练策略 +* TextConAug:挖掘文字上下文信息的数据增广策略 +* TextRotNet:自监督的预训练模型 +* UDML:联合互学习策略 +* UIM:无标注数据挖掘方案 + +详细优化策略描述请参考[PP-OCRv3优化策略](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/doc/doc_ch/PP-OCRv3_introduction.md#3-%E8%AF%86%E5%88%AB%E4%BC%98%E5%8C%96) + +### 5.2 数据准备 +[计量设备屏幕字符识别数据集](https://aistudio.baidu.com/aistudio/datasetdetail/128714)数据来源于实际项目中各种计量设备的数显屏,以及在网上搜集的一些其他数显屏,包含训练集19912张,测试集4099张。 + +```python +# 解压下载的数据集到指定路径下 +unzip ic15_data.zip -d train_data +``` + +```python +# 随机查看文字检测数据集图片 +from PIL import Image +import matplotlib.pyplot as plt +import numpy as np +import os + +train = './train_data/ic15_data/train' +# 从指定目录中选取一张图片 +def get_one_image(train): + plt.figure() + files = os.listdir(train) + n = len(files) + ind = np.random.randint(0,n) + img_dir = os.path.join(train,files[ind]) + image = Image.open(img_dir) + plt.imshow(image) + plt.show() + image = image.resize([208, 208]) + +get_one_image(train) +``` + +![rec_png](https://ai-studio-static-online.cdn.bcebos.com/3de0d475c69746d0a184029001ef07c85fd68816d66d4beaa10e6ef60030f9b4) + +### 5.3 模型训练 +#### 下载预训练模型 +下载我们需要的PP-OCRv3识别预训练模型,更多选择请自行选择其他的[文字识别模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/doc/doc_ch/models_list.md#2-%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E6%A8%A1%E5%9E%8B) + +```python +# 使用该指令下载需要的预训练模型 +wget -P ./pretrained_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar +# 解压预训练模型文件 +tar -xf ./pretrained_models/ch_PP-OCRv3_rec_train.tar -C pretrained_models +``` + +#### 修改配置文件 +我们使用configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml,主要修改训练轮数和学习率参相关参数,设置预训练模型路径,设置数据集路径。 另外,batch_size可根据自己机器显存大小进行调整。 具体修改如下几个地方: +``` + epoch_num: 100 # 训练epoch数 + save_model_dir: ./output/ch_PP-OCR_v3_rec + save_epoch_step: 10 + eval_batch_step: [0, 100] # 评估间隔,每隔100step评估一次 + cal_metric_during_train: true + pretrained_model: ./pretrained_models/ch_PP-OCRv3_rec_train/best_accuracy # 预训练模型路径 + character_dict_path: ppocr/utils/ppocr_keys_v1.txt + use_space_char: true # 使用空格 + + lr: + name: Cosine # 修改学习率衰减策略为Cosine + learning_rate: 0.0002 # 修改fine-tune的学习率 + warmup_epoch: 2 # 修改warmup轮数 + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ic15_data/ # 训练集图片路径 + ext_op_transform_idx: 1 + label_file_list: + - ./train_data/ic15_data/rec_gt_train.txt # 训练集标签 + ratio_list: + - 1.0 + loader: + shuffle: true + batch_size_per_card: 64 + drop_last: true + num_workers: 4 +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ic15_data/ # 测试集图片路径 + label_file_list: + - ./train_data/ic15_data/rec_gt_test.txt # 测试集标签 + ratio_list: + - 1.0 + loader: + shuffle: false + drop_last: false + batch_size_per_card: 64 + num_workers: 4 +``` + +在训练之前,我们可以直接使用下面命令来评估预训练模型的效果: + +```python +# 评估预训练模型 +python tools/eval.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml -o Global.pretrained_model="./pretrained_models/ch_PP-OCRv3_rec_train/best_accuracy" +``` + +结果如下: +| | 方案 |accuracy| +|---|---------------------------|---| +| 0 | PP-OCRv3中英文超轻量识别预训练模型直接预测 |70.4%| + +#### 开始训练 +我们使用上面修改好的配置文件configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml,预训练模型,数据集路径,学习率,训练轮数等都已经设置完毕后,可以使用下面命令开始训练。 + +```python +# 开始训练识别模型 +python tools/train.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml +``` + +训练完成后,可以对训练模型中最好的进行测试,评估命令如下: + +```python +# 评估finetune效果 +python tools/eval.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml -o Global.checkpoints="./output/ch_PP-OCR_v3_rec/best_accuracy" +``` + +结果如下: +| | 方案 |accuracy| +|---|---------------------------|---| +| 0 | PP-OCRv3中英文超轻量识别预训练模型直接预测 |70.4%| +| 1 | PP-OCRv3中英文超轻量识别预训练模型finetune |82.2%| + +如需获取已训练模型,请扫码填写问卷,加入PaddleOCR官方交流群获取全部OCR垂类模型下载链接、《动手学OCR》电子书等全套OCR学习资料🎁 +
+ +
+将下载或训练完成的模型放置在对应目录下即可完成模型推理。 + +### 5.4 模型导出推理 +训练完成后,可以将训练模型转换成inference模型。inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。 +#### 模型导出 +导出命令如下: + +```python +# 转化为推理模型 +python tools/export_model.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml -o Global.pretrained_model="./output/ch_PP-OCR_v3_rec/best_accuracy" Global.save_inference_dir="./inference/rec_ppocrv3/" +``` + +#### 模型推理 +导出模型后,可以使用如下命令进行推理预测 + +```python +# 推理预测 +python tools/infer/predict_rec.py --image_dir="train_data/ic15_data/test/1_crop_0.jpg" --rec_model_dir="./inference/rec_ppocrv3/Student" +``` + +## 6. 系统串联 +我们将上面训练好的检测和识别模型进行系统串联测试,命令如下: + +```python +#串联测试 +python3 tools/infer/predict_system.py --image_dir="./train_data/icdar2015/text_localization/test/142.jpg" --det_model_dir="./inference/det_ppocrv3/Student" --rec_model_dir="./inference/rec_ppocrv3/Student" +``` + +测试结果保存在`./inference_results/`目录下,可以用下面代码进行可视化 + +```python +%cd /home/aistudio/PaddleOCR +# 显示结果 +import matplotlib.pyplot as plt +from PIL import Image +img_path= "./inference_results/142.jpg" +img = Image.open(img_path) +plt.figure("test_img", figsize=(30,30)) +plt.imshow(img) +plt.show() +``` + +![sys_res_png](https://ai-studio-static-online.cdn.bcebos.com/901ab741cb46441ebec510b37e63b9d8d1b7c95f63cc4e5e8757f35179ae6373) + +### 6.1 后处理 +如果需要获取key-value信息,可以基于启发式的规则,将识别结果与关键字库进行匹配;如果匹配上了,则取该字段为key, 后面一个字段为value。 + +```python +def postprocess(rec_res): + keys = ["型号", "厂家", "版本号", "检定校准分类", "计量器具编号", "烟尘流量", + "累积体积", "烟气温度", "动压", "静压", "时间", "试验台编号", "预测流速", + "全压", "烟温", "流速", "工况流量", "标杆流量", "烟尘直读嘴", "烟尘采样嘴", + "大气压", "计前温度", "计前压力", "干球温度", "湿球温度", "流量", "含湿量"] + key_value = [] + if len(rec_res) > 1: + for i in range(len(rec_res) - 1): + rec_str, _ = rec_res[i] + for key in keys: + if rec_str in key: + key_value.append([rec_str, rec_res[i + 1][0]]) + break + return key_value +key_value = postprocess(filter_rec_res) +``` + +## 7. PaddleServing部署 +首先需要安装PaddleServing部署相关的环境 + +```python +python -m pip install paddle-serving-server-gpu +python -m pip install paddle_serving_client +python -m pip install paddle-serving-app +``` + +### 7.1 转化检测模型 + +```python +cd deploy/pdserving/ +python -m paddle_serving_client.convert --dirname ../../inference/det_ppocrv3/Student/ \ + --model_filename inference.pdmodel \ + --params_filename inference.pdiparams \ + --serving_server ./ppocr_det_v3_serving/ \ + --serving_client ./ppocr_det_v3_client/ +``` + +### 7.2 转化识别模型 + +```python +python -m paddle_serving_client.convert --dirname ../../inference/rec_ppocrv3/Student \ + --model_filename inference.pdmodel \ + --params_filename inference.pdiparams \ + --serving_server ./ppocr_rec_v3_serving/ \ + --serving_client ./ppocr_rec_v3_client/ +``` + + +### 7.3 启动服务 +首先可以将后处理代码加入到web_service.py中,具体修改如下: +``` +# 代码153行后面增加下面代码 +def _postprocess(rec_res): + keys = ["型号", "厂家", "版本号", "检定校准分类", "计量器具编号", "烟尘流量", + "累积体积", "烟气温度", "动压", "静压", "时间", "试验台编号", "预测流速", + "全压", "烟温", "流速", "工况流量", "标杆流量", "烟尘直读嘴", "烟尘采样嘴", + "大气压", "计前温度", "计前压力", "干球温度", "湿球温度", "流量", "含湿量"] + key_value = [] + if len(rec_res) > 1: + for i in range(len(rec_res) - 1): + rec_str, _ = rec_res[i] + for key in keys: + if rec_str in key: + key_value.append([rec_str, rec_res[i + 1][0]]) + break + return key_value +key_value = _postprocess(rec_list) +res = {"result": str(key_value)} +# res = {"result": str(result_list)} +``` + +启动服务端 +```python +python web_service.py 2>&1 >log.txt +``` + +### 7.4 发送请求 +然后再开启一个新的终端,运行下面的客户端代码 + +```python +python pipeline_http_client.py --image_dir ../../train_data/icdar2015/text_localization/test/142.jpg +``` + +可以获取到最终的key-value结果: +``` +大气压, 100.07kPa +干球温度, 0000℃ +计前温度, 0000℃ +湿球温度, 0000℃ +计前压力, -0000kPa +流量, 00.0L/min +静压, 00000kPa +含湿量, 00.0 % +``` diff --git a/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_cml.yml b/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_cml.yml index 3833cb0bad9915a2169b116e7406e01cadd0ef62..df429314cd0ec058aa6779a0ff55656f1b211bbf 100644 --- a/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_cml.yml +++ b/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_cml.yml @@ -28,7 +28,7 @@ Architecture: algorithm: DB Transform: Backbone: - name: ResNet + name: ResNet_vd layers: 18 Neck: name: DBFPN diff --git a/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_distill.yml b/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_distill.yml index b4644244f849abb05d5501c7d2ed2bf92efe916e..d24ee11f3dee9d17a587d6d4d0765abfe459fbc9 100644 --- a/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_distill.yml +++ b/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_distill.yml @@ -45,7 +45,7 @@ Architecture: algorithm: DB Transform: Backbone: - name: ResNet + name: ResNet_vd layers: 18 Neck: name: DBFPN diff --git a/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_dml.yml b/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_dml.yml index f3ad966488dbc2f6f7ca12033bc4a3d35e1b3bd7..8b160f63538d51dc57b08ba83f7ebf019e3c9dbb 100644 --- a/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_dml.yml +++ b/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_dml.yml @@ -65,7 +65,7 @@ Loss: - ["Student", "Teacher"] maps_name: "thrink_maps" weight: 1.0 - act: "softmax" + # act: None model_name_pairs: ["Student", "Teacher"] key: maps - DistillationDBLoss: diff --git a/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml b/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml index 3e77577c17abe2111c501d96ce6b1087ac44f8d6..ef58befd694e26704c734d7fd072ebc3370c8554 100644 --- a/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml +++ b/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml @@ -61,7 +61,7 @@ Architecture: model_type: det algorithm: DB Backbone: - name: ResNet + name: ResNet_vd in_channels: 3 layers: 50 Neck: diff --git a/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml b/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml index 3f30ada13f2f1c3c01ba8886bbfba006da516f17..e85127a2ee37fc4a6c59066e465318792f9a0dd3 100644 --- a/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml +++ b/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml @@ -25,7 +25,7 @@ Architecture: model_type: det algorithm: DB Backbone: - name: ResNet + name: ResNet_vd in_channels: 3 layers: 50 Neck: @@ -40,7 +40,7 @@ Architecture: model_type: det algorithm: DB Backbone: - name: ResNet + name: ResNet_vd in_channels: 3 layers: 50 Neck: @@ -60,7 +60,7 @@ Loss: - ["Student", "Student2"] maps_name: "thrink_maps" weight: 1.0 - act: "softmax" + # act: None model_name_pairs: ["Student", "Student2"] key: maps - DistillationDBLoss: diff --git a/configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml b/configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml index 7b07ef99648956a70b5a71f1e61f09b592226f90..e983c221e2cea87e35b1c5f0a67daed0a55c4257 100644 --- a/configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml +++ b/configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml @@ -20,7 +20,7 @@ Architecture: algorithm: DB Transform: Backbone: - name: ResNet + name: ResNet_vd layers: 18 disable_se: True Neck: diff --git a/configs/det/det_r50_db++_icdar15.yml b/configs/det/det_r50_db++_icdar15.yml new file mode 100644 index 0000000000000000000000000000000000000000..e0cd6012b660573a79ff013a1b6e2309074a3d86 --- /dev/null +++ b/configs/det/det_r50_db++_icdar15.yml @@ -0,0 +1,163 @@ +Global: + debug: false + use_gpu: true + epoch_num: 1000 + log_smooth_window: 20 + print_batch_step: 10 + save_model_dir: ./output/det_r50_icdar15/ + save_epoch_step: 200 + eval_batch_step: + - 0 + - 2000 + cal_metric_during_train: false + pretrained_model: ./pretrain_models/ResNet50_dcn_asf_synthtext_pretrained + checkpoints: null + save_inference_dir: null + use_visualdl: false + infer_img: doc/imgs_en/img_10.jpg + save_res_path: ./checkpoints/det_db/predicts_db.txt +Architecture: + model_type: det + algorithm: DB++ + Transform: null + Backbone: + name: ResNet + layers: 50 + dcn_stage: [False, True, True, True] + Neck: + name: DBFPN + out_channels: 256 + use_asf: True + Head: + name: DBHead + k: 50 +Loss: + name: DBLoss + balance_loss: true + main_loss_type: BCELoss + alpha: 5 + beta: 10 + ohem_ratio: 3 +Optimizer: + name: Momentum + momentum: 0.9 + lr: + name: DecayLearningRate + learning_rate: 0.007 + epochs: 1000 + factor: 0.9 + end_lr: 0 + weight_decay: 0.0001 +PostProcess: + name: DBPostProcess + thresh: 0.3 + box_thresh: 0.6 + max_candidates: 1000 + unclip_ratio: 1.5 +Metric: + name: DetMetric + main_indicator: hmean +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/icdar2015/text_localization/ + label_file_list: + - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt + ratio_list: + - 1.0 + transforms: + - DecodeImage: + img_mode: BGR + channel_first: false + - DetLabelEncode: null + - IaaAugment: + augmenter_args: + - type: Fliplr + args: + p: 0.5 + - type: Affine + args: + rotate: + - -10 + - 10 + - type: Resize + args: + size: + - 0.5 + - 3 + - EastRandomCropData: + size: + - 640 + - 640 + max_tries: 10 + keep_ratio: true + - MakeShrinkMap: + shrink_ratio: 0.4 + min_text_size: 8 + - MakeBorderMap: + shrink_ratio: 0.4 + thresh_min: 0.3 + thresh_max: 0.7 + - NormalizeImage: + scale: 1./255. + mean: + - 0.48109378172549 + - 0.45752457890196 + - 0.40787054090196 + std: + - 1.0 + - 1.0 + - 1.0 + order: hwc + - ToCHWImage: null + - KeepKeys: + keep_keys: + - image + - threshold_map + - threshold_mask + - shrink_map + - shrink_mask + loader: + shuffle: true + drop_last: false + batch_size_per_card: 4 + num_workers: 8 +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/icdar2015/text_localization + label_file_list: + - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt + transforms: + - DecodeImage: + img_mode: BGR + channel_first: false + - DetLabelEncode: null + - DetResizeForTest: + image_shape: + - 1152 + - 2048 + - NormalizeImage: + scale: 1./255. + mean: + - 0.48109378172549 + - 0.45752457890196 + - 0.40787054090196 + std: + - 1.0 + - 1.0 + - 1.0 + order: hwc + - ToCHWImage: null + - KeepKeys: + keep_keys: + - image + - shape + - polys + - ignore_tags + loader: + shuffle: false + drop_last: false + batch_size_per_card: 1 + num_workers: 2 +profiler_options: null diff --git a/configs/det/det_r50_db++_td_tr.yml b/configs/det/det_r50_db++_td_tr.yml new file mode 100644 index 0000000000000000000000000000000000000000..65021bb66184381ba732980ac1b7a65d7bd3a355 --- /dev/null +++ b/configs/det/det_r50_db++_td_tr.yml @@ -0,0 +1,166 @@ +Global: + debug: false + use_gpu: true + epoch_num: 1000 + log_smooth_window: 20 + print_batch_step: 10 + save_model_dir: ./output/det_r50_td_tr/ + save_epoch_step: 200 + eval_batch_step: + - 0 + - 2000 + cal_metric_during_train: false + pretrained_model: ./pretrain_models/ResNet50_dcn_asf_synthtext_pretrained + checkpoints: null + save_inference_dir: null + use_visualdl: false + infer_img: doc/imgs_en/img_10.jpg + save_res_path: ./checkpoints/det_db/predicts_db.txt +Architecture: + model_type: det + algorithm: DB++ + Transform: null + Backbone: + name: ResNet + layers: 50 + dcn_stage: [False, True, True, True] + Neck: + name: DBFPN + out_channels: 256 + use_asf: True + Head: + name: DBHead + k: 50 +Loss: + name: DBLoss + balance_loss: true + main_loss_type: BCELoss + alpha: 5 + beta: 10 + ohem_ratio: 3 +Optimizer: + name: Momentum + momentum: 0.9 + lr: + name: DecayLearningRate + learning_rate: 0.007 + epochs: 1000 + factor: 0.9 + end_lr: 0 + weight_decay: 0.0001 +PostProcess: + name: DBPostProcess + thresh: 0.3 + box_thresh: 0.5 + max_candidates: 1000 + unclip_ratio: 1.5 +Metric: + name: DetMetric + main_indicator: hmean +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ + label_file_list: + - ./train_data/TD_TR/TD500/train_gt_labels.txt + - ./train_data/TD_TR/TR400/gt_labels.txt + ratio_list: + - 1.0 + - 1.0 + transforms: + - DecodeImage: + img_mode: BGR + channel_first: false + - DetLabelEncode: null + - IaaAugment: + augmenter_args: + - type: Fliplr + args: + p: 0.5 + - type: Affine + args: + rotate: + - -10 + - 10 + - type: Resize + args: + size: + - 0.5 + - 3 + - EastRandomCropData: + size: + - 640 + - 640 + max_tries: 10 + keep_ratio: true + - MakeShrinkMap: + shrink_ratio: 0.4 + min_text_size: 8 + - MakeBorderMap: + shrink_ratio: 0.4 + thresh_min: 0.3 + thresh_max: 0.7 + - NormalizeImage: + scale: 1./255. + mean: + - 0.48109378172549 + - 0.45752457890196 + - 0.40787054090196 + std: + - 1.0 + - 1.0 + - 1.0 + order: hwc + - ToCHWImage: null + - KeepKeys: + keep_keys: + - image + - threshold_map + - threshold_mask + - shrink_map + - shrink_mask + loader: + shuffle: true + drop_last: false + batch_size_per_card: 4 + num_workers: 8 +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ + label_file_list: + - ./train_data/TD_TR/TD500/test_gt_labels.txt + transforms: + - DecodeImage: + img_mode: BGR + channel_first: false + - DetLabelEncode: null + - DetResizeForTest: + image_shape: + - 736 + - 736 + keep_ratio: True + - NormalizeImage: + scale: 1./255. + mean: + - 0.48109378172549 + - 0.45752457890196 + - 0.40787054090196 + std: + - 1.0 + - 1.0 + - 1.0 + order: hwc + - ToCHWImage: null + - KeepKeys: + keep_keys: + - image + - shape + - polys + - ignore_tags + loader: + shuffle: false + drop_last: false + batch_size_per_card: 1 + num_workers: 2 +profiler_options: null diff --git a/configs/det/det_r50_vd_db.yml b/configs/det/det_r50_vd_db.yml index ab67786ece2db9c082ad0484e9dd9a71a795c2d7..288dcc8c1a5934b35d329acc38fa85451ebaeb19 100644 --- a/configs/det/det_r50_vd_db.yml +++ b/configs/det/det_r50_vd_db.yml @@ -20,7 +20,7 @@ Architecture: algorithm: DB Transform: Backbone: - name: ResNet + name: ResNet_vd layers: 50 Neck: name: DBFPN diff --git a/configs/det/det_r50_vd_dcn_fce_ctw.yml b/configs/det/det_r50_vd_dcn_fce_ctw.yml index a9f7c4143d4e9380c819f8cbc39d69f0149111b2..3a4075b322a173796f26ebdbe5b83ba98e98e72d 100755 --- a/configs/det/det_r50_vd_dcn_fce_ctw.yml +++ b/configs/det/det_r50_vd_dcn_fce_ctw.yml @@ -21,7 +21,7 @@ Architecture: algorithm: FCE Transform: Backbone: - name: ResNet + name: ResNet_vd layers: 50 dcn_stage: [False, True, True, True] out_indices: [1,2,3] diff --git a/configs/det/det_r50_vd_east.yml b/configs/det/det_r50_vd_east.yml index e84a5fa7a7af34bde5e0abc6fed2e01f6ce42e6b..af90ef0adb929955141ef31779e917e4d73057ee 100644 --- a/configs/det/det_r50_vd_east.yml +++ b/configs/det/det_r50_vd_east.yml @@ -20,7 +20,7 @@ Architecture: algorithm: EAST Transform: Backbone: - name: ResNet + name: ResNet_vd layers: 50 Neck: name: EASTFPN diff --git a/configs/det/det_r50_vd_pse.yml b/configs/det/det_r50_vd_pse.yml index 8e77506c410af5397a04f73674b414cb28a87c4d..1a971564fda2ce89bf091808dedb361f1caeddc3 100644 --- a/configs/det/det_r50_vd_pse.yml +++ b/configs/det/det_r50_vd_pse.yml @@ -20,7 +20,7 @@ Architecture: algorithm: PSE Transform: Backbone: - name: ResNet + name: ResNet_vd layers: 50 Neck: name: FPN diff --git a/configs/det/det_res18_db_v2.0.yml b/configs/det/det_res18_db_v2.0.yml index 7b07ef99648956a70b5a71f1e61f09b592226f90..e983c221e2cea87e35b1c5f0a67daed0a55c4257 100644 --- a/configs/det/det_res18_db_v2.0.yml +++ b/configs/det/det_res18_db_v2.0.yml @@ -20,7 +20,7 @@ Architecture: algorithm: DB Transform: Backbone: - name: ResNet + name: ResNet_vd layers: 18 disable_se: True Neck: diff --git a/configs/kie/kie_unet_sdmgr.yml b/configs/kie/kie_unet_sdmgr.yml index a6968aaa3aa7a717a848416efc5ccc567f774b4d..da2e4fda504fcbff280788b0baf6d803cf75fe4b 100644 --- a/configs/kie/kie_unet_sdmgr.yml +++ b/configs/kie/kie_unet_sdmgr.yml @@ -17,7 +17,7 @@ Global: checkpoints: save_inference_dir: use_visualdl: False - class_path: ./train_data/wildreceipt/class_list.txt + class_path: &class_path ./train_data/wildreceipt/class_list.txt infer_img: ./train_data/wildreceipt/1.txt save_res_path: ./output/sdmgr_kie/predicts_kie.txt img_scale: [ 1024, 512 ] @@ -72,6 +72,7 @@ Train: order: 'hwc' - KieLabelEncode: # Class handling label character_dict_path: ./train_data/wildreceipt/dict.txt + class_path: *class_path - KieResize: - ToCHWImage: - KeepKeys: @@ -88,7 +89,6 @@ Eval: data_dir: ./train_data/wildreceipt label_file_list: - ./train_data/wildreceipt/wildreceipt_test.txt - # - /paddle/data/PaddleOCR/train_data/wildreceipt/1.txt transforms: - DecodeImage: # load image img_mode: RGB diff --git a/configs/table/table_master.yml b/configs/table/table_master.yml new file mode 100755 index 0000000000000000000000000000000000000000..1e6efe32dbc077e910a417a7616db7bcc7f7c825 --- /dev/null +++ b/configs/table/table_master.yml @@ -0,0 +1,136 @@ +Global: + use_gpu: true + epoch_num: 17 + log_smooth_window: 20 + print_batch_step: 100 + save_model_dir: ./output/table_master/ + save_epoch_step: 17 + eval_batch_step: [0, 6259] + cal_metric_during_train: true + pretrained_model: null + checkpoints: + save_inference_dir: output/table_master/infer + use_visualdl: false + infer_img: ppstructure/docs/table/table.jpg + save_res_path: ./output/table_master + character_dict_path: ppocr/utils/dict/table_master_structure_dict.txt + infer_mode: false + max_text_length: 500 + process_total_num: 0 + process_cut_num: 0 + + +Optimizer: + name: Adam + beta1: 0.9 + beta2: 0.999 + lr: + name: MultiStepDecay + learning_rate: 0.001 + milestones: [12, 15] + gamma: 0.1 + warmup_epoch: 0.02 + regularizer: + name: L2 + factor: 0.0 + +Architecture: + model_type: table + algorithm: TableMaster + Backbone: + name: TableResNetExtra + gcb_config: + ratio: 0.0625 + headers: 1 + att_scale: False + fusion_type: channel_add + layers: [False, True, True, True] + layers: [1,2,5,3] + Head: + name: TableMasterHead + hidden_size: 512 + headers: 8 + dropout: 0 + d_ff: 2024 + max_text_length: 500 + +Loss: + name: TableMasterLoss + ignore_index: 42 # set to len of dict + 3 + +PostProcess: + name: TableMasterLabelDecode + box_shape: pad + +Metric: + name: TableMetric + main_indicator: acc + compute_bbox_metric: False + +Train: + dataset: + name: PubTabDataSet + data_dir: train_data/table/pubtabnet/train/ + label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl] + transforms: + - DecodeImage: + img_mode: BGR + channel_first: False + - TableMasterLabelEncode: + learn_empty_box: False + merge_no_span_structure: True + replace_empty_cell_token: True + - ResizeTableImage: + max_len: 480 + resize_bboxes: True + - PaddingTableImage: + size: [480, 480] + - TableBoxEncode: + use_xywh: True + - NormalizeImage: + scale: 1./255. + mean: [0.5, 0.5, 0.5] + std: [0.5, 0.5, 0.5] + order: hwc + - ToCHWImage: null + - KeepKeys: + keep_keys: [image, structure, bboxes, bbox_masks, shape] + loader: + shuffle: True + batch_size_per_card: 10 + drop_last: True + num_workers: 8 + +Eval: + dataset: + name: PubTabDataSet + data_dir: train_data/table/pubtabnet/train/ + label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl] + transforms: + - DecodeImage: + img_mode: BGR + channel_first: False + - TableMasterLabelEncode: + learn_empty_box: False + merge_no_span_structure: True + replace_empty_cell_token: True + - ResizeTableImage: + max_len: 480 + resize_bboxes: True + - PaddingTableImage: + size: [480, 480] + - TableBoxEncode: + use_xywh: True + - NormalizeImage: + scale: 1./255. + mean: [0.5, 0.5, 0.5] + std: [0.5, 0.5, 0.5] + order: hwc + - ToCHWImage: null + - KeepKeys: + keep_keys: [image, structure, bboxes, bbox_masks, shape] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 10 + num_workers: 8 \ No newline at end of file diff --git a/configs/table/table_mv3.yml b/configs/table/table_mv3.yml index 1a91ea95afb4ff91d3fd68fe0df6afaac9304661..66c1c83e124d4e94e1f4036a494dfd80c840f229 100755 --- a/configs/table/table_mv3.yml +++ b/configs/table/table_mv3.yml @@ -4,21 +4,20 @@ Global: log_smooth_window: 20 print_batch_step: 5 save_model_dir: ./output/table_mv3/ - save_epoch_step: 3 + save_epoch_step: 400 # evaluation is run every 400 iterations after the 0th iteration eval_batch_step: [0, 400] cal_metric_during_train: True pretrained_model: - checkpoints: + checkpoints: save_inference_dir: use_visualdl: False - infer_img: doc/table/table.jpg + infer_img: ppstructure/docs/table/table.jpg + save_res_path: output/table_mv3 # for data or label process character_dict_path: ppocr/utils/dict/table_structure_dict.txt character_type: en - max_text_length: 100 - max_elem_length: 800 - max_cell_num: 500 + max_text_length: 800 infer_mode: False process_total_num: 0 process_cut_num: 0 @@ -44,11 +43,8 @@ Architecture: Head: name: TableAttentionHead hidden_size: 256 - l2_decay: 0.00001 loc_type: 2 - max_text_length: 100 - max_elem_length: 800 - max_cell_num: 500 + max_text_length: 800 Loss: name: TableAttentionLoss @@ -61,28 +57,34 @@ PostProcess: Metric: name: TableMetric main_indicator: acc + compute_bbox_metric: false # cost many time, set False for training Train: dataset: name: PubTabDataSet data_dir: train_data/table/pubtabnet/train/ - label_file_path: train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl + label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False + - TableLabelEncode: + learn_empty_box: False + merge_no_span_structure: False + replace_empty_cell_token: False + - TableBoxEncode: - ResizeTableImage: max_len: 488 - - TableLabelEncode: - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - PaddingTableImage: + size: [488, 488] - ToCHWImage: - KeepKeys: - keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask'] + keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ] loader: shuffle: True batch_size_per_card: 32 @@ -92,24 +94,29 @@ Train: Eval: dataset: name: PubTabDataSet - data_dir: train_data/table/pubtabnet/val/ - label_file_path: train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl + data_dir: /home/zhoujun20/table/PubTabNe/pubtabnet/val/ + label_file_list: [/home/zhoujun20/table/PubTabNe/pubtabnet/val_500.jsonl] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False + - TableLabelEncode: + learn_empty_box: False + merge_no_span_structure: False + replace_empty_cell_token: False + - TableBoxEncode: - ResizeTableImage: max_len: 488 - - TableLabelEncode: - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - PaddingTableImage: + size: [488, 488] - ToCHWImage: - KeepKeys: - keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask'] + keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ] loader: shuffle: False drop_last: False diff --git a/configs/vqa/re/layoutlmv2_funsd.yml b/configs/vqa/re/layoutlmv2_funsd.yml new file mode 100644 index 0000000000000000000000000000000000000000..1c3d8f7854cab2fe71a2c22738c0ea1252753998 --- /dev/null +++ b/configs/vqa/re/layoutlmv2_funsd.yml @@ -0,0 +1,125 @@ +Global: + use_gpu: True + epoch_num: &epoch_num 200 + log_smooth_window: 10 + print_batch_step: 10 + save_model_dir: ./output/re_layoutlmv2_funsd + save_epoch_step: 2000 + # evaluation is run every 10 iterations after the 0th iteration + eval_batch_step: [ 0, 57 ] + cal_metric_during_train: False + save_inference_dir: + use_visualdl: False + seed: 2022 + infer_img: train_data/FUNSD/testing_data/images/83624198.png + save_res_path: ./output/re_layoutlmv2_funsd/res/ + +Architecture: + model_type: vqa + algorithm: &algorithm "LayoutLMv2" + Transform: + Backbone: + name: LayoutLMv2ForRe + pretrained: True + checkpoints: + +Loss: + name: LossFromOutput + key: loss + reduction: mean + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + clip_norm: 10 + lr: + learning_rate: 0.00005 + warmup_epoch: 10 + regularizer: + name: L2 + factor: 0.00000 + +PostProcess: + name: VQAReTokenLayoutLMPostProcess + +Metric: + name: VQAReTokenMetric + main_indicator: hmean + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/FUNSD/training_data/images/ + label_file_list: + - ./train_data/FUNSD/train.json + ratio_list: [ 1.0 ] + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: True + algorithm: *algorithm + class_path: &class_path train_data/FUNSD/class_list.txt + - VQATokenPad: + max_seq_len: &max_seq_len 512 + return_attention_mask: True + - VQAReTokenRelation: + - VQAReTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1./255. + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'entities', 'relations'] + loader: + shuffle: True + drop_last: False + batch_size_per_card: 8 + num_workers: 8 + collate_fn: ListCollator + +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/FUNSD/testing_data/images/ + label_file_list: + - ./train_data/FUNSD/test.json + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: True + algorithm: *algorithm + class_path: *class_path + - VQATokenPad: + max_seq_len: *max_seq_len + return_attention_mask: True + - VQAReTokenRelation: + - VQAReTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1./255. + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'entities', 'relations'] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 8 + num_workers: 8 + collate_fn: ListCollator diff --git a/configs/vqa/re/layoutlmv2.yml b/configs/vqa/re/layoutlmv2_xund_zh.yml similarity index 80% rename from configs/vqa/re/layoutlmv2.yml rename to configs/vqa/re/layoutlmv2_xund_zh.yml index 2fa5fd1165c20bbfa8d8505bbb53d48744daebef..986b9b5cef17bf6b8347ee47f7e045ac0ed13124 100644 --- a/configs/vqa/re/layoutlmv2.yml +++ b/configs/vqa/re/layoutlmv2_xund_zh.yml @@ -3,16 +3,16 @@ Global: epoch_num: &epoch_num 200 log_smooth_window: 10 print_batch_step: 10 - save_model_dir: ./output/re_layoutlmv2/ + save_model_dir: ./output/re_layoutlmv2_xfund_zh save_epoch_step: 2000 # evaluation is run every 10 iterations after the 0th iteration - eval_batch_step: [ 0, 19 ] + eval_batch_step: [ 0, 57 ] cal_metric_during_train: False save_inference_dir: use_visualdl: False seed: 2048 - infer_img: doc/vqa/input/zh_val_21.jpg - save_res_path: ./output/re/ + infer_img: ppstructure/docs/vqa/input/zh_val_21.jpg + save_res_path: ./output/re_layoutlmv2_xfund_zh/res/ Architecture: model_type: vqa @@ -21,7 +21,7 @@ Architecture: Backbone: name: LayoutLMv2ForRe pretrained: True - checkpoints: + checkpoints: Loss: name: LossFromOutput @@ -52,7 +52,7 @@ Train: name: SimpleDataSet data_dir: train_data/XFUND/zh_train/image label_file_list: - - train_data/XFUND/zh_train/xfun_normalize_train.json + - train_data/XFUND/zh_train/train.json ratio_list: [ 1.0 ] transforms: - DecodeImage: # load image @@ -61,7 +61,7 @@ Train: - VQATokenLabelEncode: # Class handling label contains_re: True algorithm: *algorithm - class_path: &class_path ppstructure/vqa/labels/labels_ser.txt + class_path: &class_path train_data/XFUND/class_list_xfun.txt - VQATokenPad: max_seq_len: &max_seq_len 512 return_attention_mask: True @@ -77,7 +77,7 @@ Train: order: 'hwc' - ToCHWImage: - KeepKeys: - keep_keys: [ 'input_ids', 'bbox', 'image', 'attention_mask', 'token_type_ids','entities', 'relations'] # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids','image', 'entities', 'relations'] # dataloader will return list in this order loader: shuffle: True drop_last: False @@ -90,7 +90,7 @@ Eval: name: SimpleDataSet data_dir: train_data/XFUND/zh_val/image label_file_list: - - train_data/XFUND/zh_val/xfun_normalize_val.json + - train_data/XFUND/zh_val/val.json transforms: - DecodeImage: # load image img_mode: RGB @@ -114,7 +114,7 @@ Eval: order: 'hwc' - ToCHWImage: - KeepKeys: - keep_keys: [ 'input_ids', 'bbox', 'image', 'attention_mask', 'token_type_ids','entities', 'relations'] # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image','entities', 'relations'] # dataloader will return list in this order loader: shuffle: False drop_last: False diff --git a/configs/vqa/re/layoutxlm_funsd.yml b/configs/vqa/re/layoutxlm_funsd.yml new file mode 100644 index 0000000000000000000000000000000000000000..af28be10d6e0390f106d0f06d5e9c26b20dcabb8 --- /dev/null +++ b/configs/vqa/re/layoutxlm_funsd.yml @@ -0,0 +1,129 @@ +Global: + use_gpu: True + epoch_num: &epoch_num 200 + log_smooth_window: 10 + print_batch_step: 10 + save_model_dir: ./output/re_layoutxlm_funsd + save_epoch_step: 2000 + # evaluation is run every 10 iterations after the 0th iteration + eval_batch_step: [ 0, 57 ] + cal_metric_during_train: False + save_inference_dir: + use_visualdl: False + seed: 2022 + infer_img: train_data/FUNSD/testing_data/images/83624198.png + save_res_path: ./output/re_layoutxlm_funsd/res/ + +Architecture: + model_type: vqa + algorithm: &algorithm "LayoutXLM" + Transform: + Backbone: + name: LayoutXLMForRe + pretrained: True + checkpoints: + +Loss: + name: LossFromOutput + key: loss + reduction: mean + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + clip_norm: 10 + lr: + learning_rate: 0.00005 + warmup_epoch: 10 + regularizer: + name: L2 + factor: 0.00000 + +PostProcess: + name: VQAReTokenLayoutLMPostProcess + +Metric: + name: VQAReTokenMetric + main_indicator: hmean + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/FUNSD/training_data/images/ + label_file_list: + - ./train_data/FUNSD/train_v4.json + # - ./train_data/FUNSD/train.json + ratio_list: [ 1.0 ] + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: True + algorithm: *algorithm + class_path: &class_path ./train_data/FUNSD/class_list.txt + use_textline_bbox_info: &use_textline_bbox_info True + - VQATokenPad: + max_seq_len: &max_seq_len 512 + return_attention_mask: True + - VQAReTokenRelation: + - VQAReTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'entities', 'relations'] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 8 + num_workers: 16 + collate_fn: ListCollator + +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/FUNSD/testing_data/images/ + label_file_list: + - ./train_data/FUNSD/test_v4.json + # - ./train_data/FUNSD/test.json + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: True + algorithm: *algorithm + class_path: *class_path + use_textline_bbox_info: *use_textline_bbox_info + - VQATokenPad: + max_seq_len: *max_seq_len + return_attention_mask: True + - VQAReTokenRelation: + - VQAReTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'entities', 'relations'] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 8 + num_workers: 8 + collate_fn: ListCollator diff --git a/configs/vqa/re/layoutxlm.yml b/configs/vqa/re/layoutxlm_xfund_zh.yml similarity index 84% rename from configs/vqa/re/layoutxlm.yml rename to configs/vqa/re/layoutxlm_xfund_zh.yml index ff16120ac1be92e989ebfda6af3ccf346dde89cd..d8585bb72593d55578ff3c6cd1401b5a843bb683 100644 --- a/configs/vqa/re/layoutxlm.yml +++ b/configs/vqa/re/layoutxlm_xfund_zh.yml @@ -11,7 +11,7 @@ Global: save_inference_dir: use_visualdl: False seed: 2022 - infer_img: doc/vqa/input/zh_val_21.jpg + infer_img: ppstructure/docs/vqa/input/zh_val_21.jpg save_res_path: ./output/re/ Architecture: @@ -52,7 +52,7 @@ Train: name: SimpleDataSet data_dir: train_data/XFUND/zh_train/image label_file_list: - - train_data/XFUND/zh_train/xfun_normalize_train.json + - train_data/XFUND/zh_train/train.json ratio_list: [ 1.0 ] transforms: - DecodeImage: # load image @@ -61,7 +61,7 @@ Train: - VQATokenLabelEncode: # Class handling label contains_re: True algorithm: *algorithm - class_path: &class_path ppstructure/vqa/labels/labels_ser.txt + class_path: &class_path train_data/XFUND/class_list_xfun.txt - VQATokenPad: max_seq_len: &max_seq_len 512 return_attention_mask: True @@ -77,7 +77,7 @@ Train: order: 'hwc' - ToCHWImage: - KeepKeys: - keep_keys: [ 'input_ids', 'bbox', 'image', 'attention_mask', 'token_type_ids','entities', 'relations'] # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox','attention_mask', 'token_type_ids', 'image', 'entities', 'relations'] # dataloader will return list in this order loader: shuffle: True drop_last: False @@ -90,7 +90,7 @@ Eval: name: SimpleDataSet data_dir: train_data/XFUND/zh_val/image label_file_list: - - train_data/XFUND/zh_val/xfun_normalize_val.json + - train_data/XFUND/zh_val/val.json transforms: - DecodeImage: # load image img_mode: RGB @@ -114,7 +114,7 @@ Eval: order: 'hwc' - ToCHWImage: - KeepKeys: - keep_keys: [ 'input_ids', 'bbox', 'image', 'attention_mask', 'token_type_ids','entities', 'relations'] # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'entities', 'relations'] # dataloader will return list in this order loader: shuffle: False drop_last: False diff --git a/configs/vqa/ser/layoutlm_funsd.yml b/configs/vqa/ser/layoutlm_funsd.yml new file mode 100644 index 0000000000000000000000000000000000000000..0ef3502bc8923df6a04662f6eca032f064896a6b --- /dev/null +++ b/configs/vqa/ser/layoutlm_funsd.yml @@ -0,0 +1,124 @@ +Global: + use_gpu: True + epoch_num: &epoch_num 200 + log_smooth_window: 10 + print_batch_step: 10 + save_model_dir: ./output/ser_layoutlm_funsd + save_epoch_step: 2000 + # evaluation is run every 10 iterations after the 0th iteration + eval_batch_step: [ 0, 57 ] + cal_metric_during_train: False + save_inference_dir: + use_visualdl: False + seed: 2022 + infer_img: train_data/FUNSD/testing_data/images/83624198.png + save_res_path: ./output/ser_layoutlm_funsd/res/ + +Architecture: + model_type: vqa + algorithm: &algorithm "LayoutLM" + Transform: + Backbone: + name: LayoutLMForSer + pretrained: True + checkpoints: + num_classes: &num_classes 7 + +Loss: + name: VQASerTokenLayoutLMLoss + num_classes: *num_classes + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + lr: + name: Linear + learning_rate: 0.00005 + epochs: *epoch_num + warmup_epoch: 2 + regularizer: + name: L2 + factor: 0.00000 + +PostProcess: + name: VQASerTokenLayoutLMPostProcess + class_path: &class_path ./train_data/FUNSD/class_list.txt + +Metric: + name: VQASerTokenMetric + main_indicator: hmean + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/FUNSD/training_data/images/ + label_file_list: + - ./train_data/FUNSD/train.json + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + use_textline_bbox_info: &use_textline_bbox_info True + - VQATokenPad: + max_seq_len: &max_seq_len 512 + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: True + drop_last: False + batch_size_per_card: 8 + num_workers: 4 + +Eval: + dataset: + name: SimpleDataSet + data_dir: train_data/FUNSD/testing_data/images/ + label_file_list: + - ./train_data/FUNSD/test.json + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + use_textline_bbox_info: *use_textline_bbox_info + - VQATokenPad: + max_seq_len: *max_seq_len + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 8 + num_workers: 4 diff --git a/configs/vqa/ser/layoutlm_sroie.yml b/configs/vqa/ser/layoutlm_sroie.yml new file mode 100644 index 0000000000000000000000000000000000000000..6abb1151e5102710d54fc163283ab7ec14f85ff4 --- /dev/null +++ b/configs/vqa/ser/layoutlm_sroie.yml @@ -0,0 +1,124 @@ +Global: + use_gpu: True + epoch_num: &epoch_num 200 + log_smooth_window: 10 + print_batch_step: 10 + save_model_dir: ./output/ser_layoutlm_sroie + save_epoch_step: 2000 + # evaluation is run every 10 iterations after the 0th iteration + eval_batch_step: [ 0, 200 ] + cal_metric_during_train: False + save_inference_dir: + use_visualdl: False + seed: 2022 + infer_img: train_data/SROIE/test/X00016469670.jpg + save_res_path: ./output/ser_layoutlm_sroie/res/ + +Architecture: + model_type: vqa + algorithm: &algorithm "LayoutLM" + Transform: + Backbone: + name: LayoutLMForSer + pretrained: True + checkpoints: + num_classes: &num_classes 9 + +Loss: + name: VQASerTokenLayoutLMLoss + num_classes: *num_classes + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + lr: + name: Linear + learning_rate: 0.00005 + epochs: *epoch_num + warmup_epoch: 2 + regularizer: + name: L2 + factor: 0.00000 + +PostProcess: + name: VQASerTokenLayoutLMPostProcess + class_path: &class_path ./train_data/SROIE/class_list.txt + +Metric: + name: VQASerTokenMetric + main_indicator: hmean + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/SROIE/train + label_file_list: + - ./train_data/SROIE/train.txt + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + use_textline_bbox_info: &use_textline_bbox_info True + - VQATokenPad: + max_seq_len: &max_seq_len 512 + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: True + drop_last: False + batch_size_per_card: 8 + num_workers: 4 + +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/SROIE/test + label_file_list: + - ./train_data/SROIE/test.txt + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + use_textline_bbox_info: *use_textline_bbox_info + - VQATokenPad: + max_seq_len: *max_seq_len + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 8 + num_workers: 4 diff --git a/configs/vqa/ser/layoutlm.yml b/configs/vqa/ser/layoutlm_xfund_zh.yml similarity index 80% rename from configs/vqa/ser/layoutlm.yml rename to configs/vqa/ser/layoutlm_xfund_zh.yml index 87131170c9daabd8553269b900893ac26fb32bc8..99763c1963e92a010e5f2d2dc795d0ab90755426 100644 --- a/configs/vqa/ser/layoutlm.yml +++ b/configs/vqa/ser/layoutlm_xfund_zh.yml @@ -3,16 +3,16 @@ Global: epoch_num: &epoch_num 200 log_smooth_window: 10 print_batch_step: 10 - save_model_dir: ./output/ser_layoutlm/ + save_model_dir: ./output/ser_layoutlm_xfund_zh save_epoch_step: 2000 # evaluation is run every 10 iterations after the 0th iteration - eval_batch_step: [ 0, 19 ] + eval_batch_step: [ 0, 57 ] cal_metric_during_train: False save_inference_dir: use_visualdl: False seed: 2022 - infer_img: doc/vqa/input/zh_val_0.jpg - save_res_path: ./output/ser/ + infer_img: ppstructure/docs/vqa/input/zh_val_42.jpg + save_res_path: ./output/ser_layoutlm_xfund_zh/res/ Architecture: model_type: vqa @@ -43,7 +43,7 @@ Optimizer: PostProcess: name: VQASerTokenLayoutLMPostProcess - class_path: &class_path ppstructure/vqa/labels/labels_ser.txt + class_path: &class_path train_data/XFUND/class_list_xfun.txt Metric: name: VQASerTokenMetric @@ -54,7 +54,7 @@ Train: name: SimpleDataSet data_dir: train_data/XFUND/zh_train/image label_file_list: - - train_data/XFUND/zh_train/xfun_normalize_train.json + - train_data/XFUND/zh_train/train.json transforms: - DecodeImage: # load image img_mode: RGB @@ -77,7 +77,7 @@ Train: order: 'hwc' - ToCHWImage: - KeepKeys: - keep_keys: [ 'input_ids','labels', 'bbox', 'image', 'attention_mask', 'token_type_ids'] # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] # dataloader will return list in this order loader: shuffle: True drop_last: False @@ -89,7 +89,7 @@ Eval: name: SimpleDataSet data_dir: train_data/XFUND/zh_val/image label_file_list: - - train_data/XFUND/zh_val/xfun_normalize_val.json + - train_data/XFUND/zh_val/val.json transforms: - DecodeImage: # load image img_mode: RGB @@ -112,7 +112,7 @@ Eval: order: 'hwc' - ToCHWImage: - KeepKeys: - keep_keys: [ 'input_ids', 'labels', 'bbox', 'image', 'attention_mask', 'token_type_ids'] # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] # dataloader will return list in this order loader: shuffle: False drop_last: False diff --git a/configs/vqa/ser/layoutlmv2_funsd.yml b/configs/vqa/ser/layoutlmv2_funsd.yml new file mode 100644 index 0000000000000000000000000000000000000000..438edc1aa7148a641645a00493ad9073e9239eab --- /dev/null +++ b/configs/vqa/ser/layoutlmv2_funsd.yml @@ -0,0 +1,123 @@ +Global: + use_gpu: True + epoch_num: &epoch_num 200 + log_smooth_window: 10 + print_batch_step: 10 + save_model_dir: ./output/ser_layoutlmv2_funsd + save_epoch_step: 2000 + # evaluation is run every 10 iterations after the 0th iteration + eval_batch_step: [ 0, 100 ] + cal_metric_during_train: False + save_inference_dir: + use_visualdl: False + seed: 2022 + infer_img: train_data/FUNSD/testing_data/images/83624198.png + save_res_path: ./output/ser_layoutlmv2_funsd/res/ + +Architecture: + model_type: vqa + algorithm: &algorithm "LayoutLMv2" + Transform: + Backbone: + name: LayoutLMv2ForSer + pretrained: True + checkpoints: + num_classes: &num_classes 7 + +Loss: + name: VQASerTokenLayoutLMLoss + num_classes: *num_classes + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + lr: + name: Linear + learning_rate: 0.00005 + epochs: *epoch_num + warmup_epoch: 2 + regularizer: + + name: L2 + factor: 0.00000 + +PostProcess: + name: VQASerTokenLayoutLMPostProcess + class_path: &class_path train_data/FUNSD/class_list.txt + +Metric: + name: VQASerTokenMetric + main_indicator: hmean + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/FUNSD/training_data/images/ + label_file_list: + - ./train_data/FUNSD/train.json + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + - VQATokenPad: + max_seq_len: &max_seq_len 512 + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: True + drop_last: False + batch_size_per_card: 8 + num_workers: 4 + +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/FUNSD/testing_data/images/ + label_file_list: + - ./train_data/FUNSD/test.json + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + - VQATokenPad: + max_seq_len: *max_seq_len + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 8 + num_workers: 4 diff --git a/configs/vqa/ser/layoutlmv2_sroie.yml b/configs/vqa/ser/layoutlmv2_sroie.yml new file mode 100644 index 0000000000000000000000000000000000000000..549beb8ec520483fe59db0e6caf509339fb90f76 --- /dev/null +++ b/configs/vqa/ser/layoutlmv2_sroie.yml @@ -0,0 +1,123 @@ +Global: + use_gpu: True + epoch_num: &epoch_num 200 + log_smooth_window: 10 + print_batch_step: 10 + save_model_dir: ./output/ser_layoutlmv2_sroie + save_epoch_step: 2000 + # evaluation is run every 10 iterations after the 0th iteration + eval_batch_step: [ 0, 200 ] + cal_metric_during_train: False + save_inference_dir: + use_visualdl: False + seed: 2022 + infer_img: train_data/SROIE/test/X00016469670.jpg + save_res_path: ./output/ser_layoutlmv2_sroie/res/ + +Architecture: + model_type: vqa + algorithm: &algorithm "LayoutLMv2" + Transform: + Backbone: + name: LayoutLMv2ForSer + pretrained: True + checkpoints: + num_classes: &num_classes 9 + +Loss: + name: VQASerTokenLayoutLMLoss + num_classes: *num_classes + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + lr: + name: Linear + learning_rate: 0.00005 + epochs: *epoch_num + warmup_epoch: 2 + regularizer: + + name: L2 + factor: 0.00000 + +PostProcess: + name: VQASerTokenLayoutLMPostProcess + class_path: &class_path ./train_data/SROIE/class_list.txt + +Metric: + name: VQASerTokenMetric + main_indicator: hmean + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/SROIE/train + label_file_list: + - ./train_data/SROIE/train.txt + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + - VQATokenPad: + max_seq_len: &max_seq_len 512 + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: True + drop_last: False + batch_size_per_card: 8 + num_workers: 4 + +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/SROIE/test + label_file_list: + - ./train_data/SROIE/test.txt + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + - VQATokenPad: + max_seq_len: *max_seq_len + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 8 + num_workers: 4 diff --git a/configs/vqa/ser/layoutlmv2.yml b/configs/vqa/ser/layoutlmv2_xfund_zh.yml similarity index 81% rename from configs/vqa/ser/layoutlmv2.yml rename to configs/vqa/ser/layoutlmv2_xfund_zh.yml index 33406252b31adf4175d7ea2f57772b0faf33cdab..ebdc5f31695d74d13219c65b420e3da3e1adfe92 100644 --- a/configs/vqa/ser/layoutlmv2.yml +++ b/configs/vqa/ser/layoutlmv2_xfund_zh.yml @@ -3,7 +3,7 @@ Global: epoch_num: &epoch_num 200 log_smooth_window: 10 print_batch_step: 10 - save_model_dir: ./output/ser_layoutlmv2/ + save_model_dir: ./output/ser_layoutlmv2_xfund_zh/ save_epoch_step: 2000 # evaluation is run every 10 iterations after the 0th iteration eval_batch_step: [ 0, 19 ] @@ -11,8 +11,8 @@ Global: save_inference_dir: use_visualdl: False seed: 2022 - infer_img: doc/vqa/input/zh_val_0.jpg - save_res_path: ./output/ser/ + infer_img: ppstructure/docs/vqa/input/zh_val_42.jpg + save_res_path: ./output/ser_layoutlmv2_xfund_zh/res/ Architecture: model_type: vqa @@ -44,7 +44,7 @@ Optimizer: PostProcess: name: VQASerTokenLayoutLMPostProcess - class_path: &class_path ppstructure/vqa/labels/labels_ser.txt + class_path: &class_path train_data/XFUND/class_list_xfun.txt Metric: name: VQASerTokenMetric @@ -55,7 +55,7 @@ Train: name: SimpleDataSet data_dir: train_data/XFUND/zh_train/image label_file_list: - - train_data/XFUND/zh_train/xfun_normalize_train.json + - train_data/XFUND/zh_train/train.json transforms: - DecodeImage: # load image img_mode: RGB @@ -78,7 +78,7 @@ Train: order: 'hwc' - ToCHWImage: - KeepKeys: - keep_keys: [ 'input_ids','labels', 'bbox', 'image', 'attention_mask', 'token_type_ids'] # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] # dataloader will return list in this order loader: shuffle: True drop_last: False @@ -90,7 +90,7 @@ Eval: name: SimpleDataSet data_dir: train_data/XFUND/zh_val/image label_file_list: - - train_data/XFUND/zh_val/xfun_normalize_val.json + - train_data/XFUND/zh_val/val.json transforms: - DecodeImage: # load image img_mode: RGB @@ -113,7 +113,7 @@ Eval: order: 'hwc' - ToCHWImage: - KeepKeys: - keep_keys: [ 'input_ids', 'labels', 'bbox', 'image', 'attention_mask', 'token_type_ids'] # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] # dataloader will return list in this order loader: shuffle: False drop_last: False diff --git a/configs/vqa/ser/layoutxlm_funsd.yml b/configs/vqa/ser/layoutxlm_funsd.yml new file mode 100644 index 0000000000000000000000000000000000000000..be1e9d4f1e986864fc57891d56b4a459df63fd78 --- /dev/null +++ b/configs/vqa/ser/layoutxlm_funsd.yml @@ -0,0 +1,123 @@ +Global: + use_gpu: True + epoch_num: &epoch_num 200 + log_smooth_window: 10 + print_batch_step: 10 + save_model_dir: ./output/ser_layoutxlm_funsd + save_epoch_step: 2000 + # evaluation is run every 10 iterations after the 0th iteration + eval_batch_step: [ 0, 57 ] + cal_metric_during_train: False + save_inference_dir: + use_visualdl: False + seed: 2022 + infer_img: train_data/FUNSD/testing_data/images/83624198.png + save_res_path: output/ser_layoutxlm_funsd/res/ + +Architecture: + model_type: vqa + algorithm: &algorithm "LayoutXLM" + Transform: + Backbone: + name: LayoutXLMForSer + pretrained: True + checkpoints: + num_classes: &num_classes 7 + +Loss: + name: VQASerTokenLayoutLMLoss + num_classes: *num_classes + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + lr: + name: Linear + learning_rate: 0.00005 + epochs: *epoch_num + warmup_epoch: 2 + regularizer: + name: L2 + factor: 0.00000 + +PostProcess: + name: VQASerTokenLayoutLMPostProcess + class_path: &class_path ./train_data/FUNSD/class_list.txt + +Metric: + name: VQASerTokenMetric + main_indicator: hmean + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/FUNSD/training_data/images/ + label_file_list: + - ./train_data/FUNSD/train.json + ratio_list: [ 1.0 ] + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + - VQATokenPad: + max_seq_len: &max_seq_len 512 + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: True + drop_last: False + batch_size_per_card: 8 + num_workers: 4 + +Eval: + dataset: + name: SimpleDataSet + data_dir: train_data/FUNSD/testing_data/images/ + label_file_list: + - ./train_data/FUNSD/test.json + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + - VQATokenPad: + max_seq_len: *max_seq_len + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 8 + num_workers: 4 diff --git a/configs/vqa/ser/layoutxlm_sroie.yml b/configs/vqa/ser/layoutxlm_sroie.yml new file mode 100644 index 0000000000000000000000000000000000000000..dd63d888d0110d98314858c9189ebcefca16e8e2 --- /dev/null +++ b/configs/vqa/ser/layoutxlm_sroie.yml @@ -0,0 +1,123 @@ +Global: + use_gpu: True + epoch_num: &epoch_num 200 + log_smooth_window: 10 + print_batch_step: 10 + save_model_dir: ./output/ser_layoutxlm_sroie + save_epoch_step: 2000 + # evaluation is run every 10 iterations after the 0th iteration + eval_batch_step: [ 0, 200 ] + cal_metric_during_train: False + save_inference_dir: + use_visualdl: False + seed: 2022 + infer_img: train_data/SROIE/test/X00016469670.jpg + save_res_path: res_img_aug_with_gt + +Architecture: + model_type: vqa + algorithm: &algorithm "LayoutXLM" + Transform: + Backbone: + name: LayoutXLMForSer + pretrained: True + checkpoints: + num_classes: &num_classes 9 + +Loss: + name: VQASerTokenLayoutLMLoss + num_classes: *num_classes + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + lr: + name: Linear + learning_rate: 0.00005 + epochs: *epoch_num + warmup_epoch: 2 + regularizer: + name: L2 + factor: 0.00000 + +PostProcess: + name: VQASerTokenLayoutLMPostProcess + class_path: &class_path ./train_data/SROIE/class_list.txt + +Metric: + name: VQASerTokenMetric + main_indicator: hmean + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/SROIE/train + label_file_list: + - ./train_data/SROIE/train.txt + ratio_list: [ 1.0 ] + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + - VQATokenPad: + max_seq_len: &max_seq_len 512 + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: True + drop_last: False + batch_size_per_card: 8 + num_workers: 4 + +Eval: + dataset: + name: SimpleDataSet + data_dir: train_data/SROIE/test + label_file_list: + - ./train_data/SROIE/test.txt + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + - VQATokenPad: + max_seq_len: *max_seq_len + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 8 + num_workers: 4 diff --git a/configs/vqa/ser/layoutxlm_wildreceipt.yml b/configs/vqa/ser/layoutxlm_wildreceipt.yml new file mode 100644 index 0000000000000000000000000000000000000000..92c039429646f6a4bee6fb0d5dd94e142246b526 --- /dev/null +++ b/configs/vqa/ser/layoutxlm_wildreceipt.yml @@ -0,0 +1,123 @@ +Global: + use_gpu: True + epoch_num: &epoch_num 100 + log_smooth_window: 10 + print_batch_step: 10 + save_model_dir: ./output/ser_layoutxlm_wildreceipt + save_epoch_step: 2000 + # evaluation is run every 10 iterations after the 0th iteration + eval_batch_step: [ 0, 200 ] + cal_metric_during_train: False + save_inference_dir: + use_visualdl: False + seed: 2022 + infer_img: train_data//wildreceipt/image_files/Image_12/10/845be0dd6f5b04866a2042abd28d558032ef2576.jpeg + save_res_path: ./output/ser_layoutxlm_wildreceipt/res + +Architecture: + model_type: vqa + algorithm: &algorithm "LayoutXLM" + Transform: + Backbone: + name: LayoutXLMForSer + pretrained: True + checkpoints: + num_classes: &num_classes 51 + +Loss: + name: VQASerTokenLayoutLMLoss + num_classes: *num_classes + +Optimizer: + name: AdamW + beta1: 0.9 + beta2: 0.999 + lr: + name: Linear + learning_rate: 0.00005 + epochs: *epoch_num + warmup_epoch: 2 + regularizer: + name: L2 + factor: 0.00000 + +PostProcess: + name: VQASerTokenLayoutLMPostProcess + class_path: &class_path ./train_data/wildreceipt/class_list.txt + +Metric: + name: VQASerTokenMetric + main_indicator: hmean + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/wildreceipt/ + label_file_list: + - ./train_data/wildreceipt/wildreceipt_train.txt + ratio_list: [ 1.0 ] + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + - VQATokenPad: + max_seq_len: &max_seq_len 512 + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: True + drop_last: False + batch_size_per_card: 8 + num_workers: 4 + +Eval: + dataset: + name: SimpleDataSet + data_dir: train_data/wildreceipt + label_file_list: + - ./train_data/wildreceipt/wildreceipt_test.txt + transforms: + - DecodeImage: # load image + img_mode: RGB + channel_first: False + - VQATokenLabelEncode: # Class handling label + contains_re: False + algorithm: *algorithm + class_path: *class_path + - VQATokenPad: + max_seq_len: *max_seq_len + return_attention_mask: True + - VQASerTokenChunk: + max_seq_len: *max_seq_len + - Resize: + size: [224,224] + - NormalizeImage: + scale: 1 + mean: [ 123.675, 116.28, 103.53 ] + std: [ 58.395, 57.12, 57.375 ] + order: 'hwc' + - ToCHWImage: + - KeepKeys: + # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 8 + num_workers: 4 diff --git a/configs/vqa/ser/layoutxlm.yml b/configs/vqa/ser/layoutxlm_xfund_zh.yml similarity index 81% rename from configs/vqa/ser/layoutxlm.yml rename to configs/vqa/ser/layoutxlm_xfund_zh.yml index eb1cca5a215dd65ef9c302441d05b482f2622a79..68df7d9f035bf1359951fb3a6fb30b47a929717a 100644 --- a/configs/vqa/ser/layoutxlm.yml +++ b/configs/vqa/ser/layoutxlm_xfund_zh.yml @@ -3,7 +3,7 @@ Global: epoch_num: &epoch_num 200 log_smooth_window: 10 print_batch_step: 10 - save_model_dir: ./output/ser_layoutxlm/ + save_model_dir: ./output/ser_layoutxlm_xfund_zh save_epoch_step: 2000 # evaluation is run every 10 iterations after the 0th iteration eval_batch_step: [ 0, 19 ] @@ -11,8 +11,8 @@ Global: save_inference_dir: use_visualdl: False seed: 2022 - infer_img: doc/vqa/input/zh_val_42.jpg - save_res_path: ./output/ser + infer_img: ppstructure/docs/vqa/input/zh_val_42.jpg + save_res_path: ./output/ser_layoutxlm_xfund_zh/res Architecture: model_type: vqa @@ -43,7 +43,7 @@ Optimizer: PostProcess: name: VQASerTokenLayoutLMPostProcess - class_path: &class_path ppstructure/vqa/labels/labels_ser.txt + class_path: &class_path train_data/XFUND/class_list_xfun.txt Metric: name: VQASerTokenMetric @@ -54,7 +54,7 @@ Train: name: SimpleDataSet data_dir: train_data/XFUND/zh_train/image label_file_list: - - train_data/XFUND/zh_train/xfun_normalize_train.json + - train_data/XFUND/zh_train/train.json ratio_list: [ 1.0 ] transforms: - DecodeImage: # load image @@ -78,7 +78,7 @@ Train: order: 'hwc' - ToCHWImage: - KeepKeys: - keep_keys: [ 'input_ids','labels', 'bbox', 'image', 'attention_mask', 'token_type_ids'] # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] # dataloader will return list in this order loader: shuffle: True drop_last: False @@ -90,7 +90,7 @@ Eval: name: SimpleDataSet data_dir: train_data/XFUND/zh_val/image label_file_list: - - train_data/XFUND/zh_val/xfun_normalize_val.json + - train_data/XFUND/zh_val/val.json transforms: - DecodeImage: # load image img_mode: RGB @@ -113,7 +113,7 @@ Eval: order: 'hwc' - ToCHWImage: - KeepKeys: - keep_keys: [ 'input_ids', 'labels', 'bbox', 'image', 'attention_mask', 'token_type_ids'] # dataloader will return list in this order + keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] # dataloader will return list in this order loader: shuffle: False drop_last: False diff --git a/deploy/avh/README.md b/deploy/avh/README.md index 922fb4da920391d1baf98d82b94569321df9a2bc..0087103146584523c5f2f35e83a992204d93b542 100644 --- a/deploy/avh/README.md +++ b/deploy/avh/README.md @@ -15,20 +15,24 @@ -Running PaddleOCR text recognition model via TVM on bare metal Arm(R) Cortex(R)-M55 CPU and CMSIS-NN -=============================================================== +English | [简体中文](README_ch.md) -This folder contains an example of how to use TVM to run a PaddleOCR model -on bare metal Cortex(R)-M55 CPU and CMSIS-NN. +Running PaddleOCR text recognition model on bare metal Arm(R) Cortex(R)-M55 CPU using Arm Virtual Hardware +====================================================================== -Prerequisites +This folder contains an example of how to run a PaddleOCR model on bare metal [Cortex(R)-M55 CPU](https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m55) using [Arm Virtual Hardware](https://www.arm.com/products/development-tools/simulation/virtual-hardware). + + +Running environment and prerequisites ------------- -If the demo is run in the ci_cpu Docker container provided with TVM, then the following -software will already be installed. +Case 1: If the demo is run in Arm Virtual Hardware Amazon Machine Image(AMI) instance hosted by [AWS](https://aws.amazon.com/marketplace/pp/prodview-urbpq7yo5va7g?sr=0-1&ref_=beagle&applicationId=AWSMPContessa)/[AWS China](https://awsmarketplace.amazonaws.cn/marketplace/pp/prodview-2y7nefntbmybu), the following software will be installed through [configure_avh.sh](./configure_avh.sh) script. It will install automatically when you run the application through [run_demo.sh](./run_demo.sh) script. +You can refer to this [guide](https://arm-software.github.io/AVH/main/examples/html/MicroSpeech.html#amilaunch) to launch an Arm Virtual Hardware AMI instance. + +Case 2: If the demo is run in the [ci_cpu Docker container](https://github.com/apache/tvm/blob/main/docker/Dockerfile.ci_cpu) provided with [TVM](https://github.com/apache/tvm), then the following software will already be installed. -If the demo is not run in the ci_cpu Docker container, then you will need the following: +Case 3: If the demo is not run in the ci_cpu Docker container, then you will need the following: - Software required to build and run the demo (These can all be installed by running - https://github.com/apache/tvm/blob/main/docker/install/ubuntu_install_ethosu_driver_stack.sh .) + tvm/docker/install/ubuntu_install_ethosu_driver_stack.sh.) - [Fixed Virtual Platform (FVP) based on Arm(R) Corstone(TM)-300 software](https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps) - [cmake 3.19.5](https://github.com/Kitware/CMake/releases/) - [GCC toolchain from Arm(R)](https://developer.arm.com/-/media/Files/downloads/gnu-rm/10-2020q4/gcc-arm-none-eabi-10-2020-q4-major-x86_64-linux.tar.bz2) @@ -40,19 +44,22 @@ If the demo is not run in the ci_cpu Docker container, then you will need the fo pip install -r ./requirements.txt ``` +In case2 and case3: + +You will need to update your PATH environment variable to include the path to cmake 3.19.5 and the FVP. +For example if you've installed these in ```/opt/arm``` , then you would do the following: +```bash +export PATH=/opt/arm/FVP_Corstone_SSE-300/models/Linux64_GCC-6.4:/opt/arm/cmake/bin:$PATH +``` + You will also need TVM which can either be: + - Installed from TLCPack(see [TLCPack](https://tlcpack.ai/)) - Built from source (see [Install from Source](https://tvm.apache.org/docs/install/from_source.html)) - When building from source, the following need to be set in config.cmake: - set(USE_CMSISNN ON) - set(USE_MICRO ON) - set(USE_LLVM ON) - - Installed from TLCPack nightly(see [TLCPack](https://tlcpack.ai/)) -You will need to update your PATH environment variable to include the path to cmake 3.19.5 and the FVP. -For example if you've installed these in ```/opt/arm``` , then you would do the following: -```bash -export PATH=/opt/arm/FVP_Corstone_SSE-300/models/Linux64_GCC-6.4:/opt/arm/cmake/bin:$PATH -``` Running the demo application ---------------------------- @@ -62,6 +69,12 @@ Type the following command to run the bare metal text recognition application ([ ./run_demo.sh ``` +If you are not able to use Arm Virtual Hardware Amazon Machine Image(AMI) instance hosted by AWS/AWS China, specify argument --enable_FVP to 1 to make the application run on local Fixed Virtual Platforms (FVPs) executables. + +```bash +./run_demo.sh --enable_FVP 1 +``` + If the Ethos(TM)-U platform and/or CMSIS have not been installed in /opt/arm/ethosu then the locations for these can be specified as arguments to run_demo.sh, for example: @@ -70,13 +83,14 @@ the locations for these can be specified as arguments to run_demo.sh, for exampl --ethosu_platform_path /home/tvm-user/ethosu/core_platform ``` -This will: +With [run_demo.sh](./run_demo.sh) to run the demo application, it will: +- Set up running environment by installing the required prerequisites automatically if running in Arm Virtual Hardware Amazon AMI instance(not specify --enable_FVP to 1) - Download a PaddleOCR text recognition model - Use tvmc to compile the text recognition model for Cortex(R)-M55 CPU and CMSIS-NN - Create a C header file inputs.c containing the image data as a C array - Create a C header file outputs.c containing a C array where the output of inference will be stored - Build the demo application -- Run the demo application on a Fixed Virtual Platform (FVP) based on Arm(R) Corstone(TM)-300 software +- Run the demo application on a Arm Virtual Hardware based on Arm(R) Corstone(TM)-300 software - The application will report the text on the image and the corresponding score. Using your own image @@ -92,9 +106,11 @@ python3 ./convert_image.py path/to/image Model description ----------------- -In this demo, the model we use is an English recognition model based on [PP-OCRv3](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/PP-OCRv3_introduction.md). PP-OCRv3 is the third version of the PP-OCR series model released by [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR). This series of models has the following features: +The example is built on [PP-OCRv3](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/PP-OCRv3_introduction.md) English recognition model released by [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR). Since Arm(R) Cortex(R)-M55 CPU does not support rnn operator, we delete the unsupported operator based on the PP-OCRv3 text recognition model to obtain the current 2.7M English recognition model. + +PP-OCRv3 is the third version of the PP-OCR series model. This series of models has the following features: - PP-OCRv3: ultra-lightweight OCR system: detection (3.6M) + direction classifier (1.4M) + recognition (12M) = 17.0M - Support more than 80 kinds of multi-language recognition models, including English, Chinese, French, German, Arabic, Korean, Japanese and so on. For details - Support vertical text recognition, and long text recognition -The text recognition model in PP-OCRv3 supports more than 80 languages. In the process of model development, since Arm(R) Cortex(R)-M55 CPU does not support rnn operator, we delete the unsupported operator based on the PP-OCRv3 text recognition model to obtain the current model. \ No newline at end of file + diff --git a/deploy/avh/README_ch.md b/deploy/avh/README_ch.md index 7e6272ae1258e11aeea7a21dd01400a5bff614ba..35cc9f2b7c141226b3c0a56c50368e09b2f0cdb6 100644 --- a/deploy/avh/README_ch.md +++ b/deploy/avh/README_ch.md @@ -14,6 +14,7 @@ +[English](README.md) | 简体中文 通过TVM在 Arm(R) Cortex(R)-M55 CPU 上运行 PaddleOCR文 本能识别模型 =============================================================== @@ -85,9 +86,9 @@ export PATH=/opt/arm/FVP_Corstone_SSE-300/models/Linux64_GCC-6.4:/opt/arm/cmake/ 模型描述 ----------------- -在这个demo中,我们使用的模型是基于[PP-OCRv3](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/PP-OCRv3_introduction.md)的英文识别模型。 PP-OCRv3是[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)发布的PP-OCR系列模型的第三个版本。 该系列模型具有以下特点: +在这个demo中,我们使用的模型是基于[PP-OCRv3](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/PP-OCRv3_introduction.md)的英文识别模型。由于Arm(R) Cortex(R)-M55 CPU不支持rnn算子,我们在PP-OCRv3原始文本识别模型的基础上进行适配,最终模型大小为2.7M。 + +PP-OCRv3是[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)发布的PP-OCR系列模型的第三个版本,该系列模型具有以下特点: - 超轻量级OCR系统:检测(3.6M)+方向分类器(1.4M)+识别(12M)=17.0M。 - 支持80多种多语言识别模型,包括英文、中文、法文、德文、阿拉伯文、韩文、日文等。 - 支持竖排文本识别,长文本识别。 - -PP-OCRv3 中的文本识别模型支持 80 多种语言。 在模型开发过程中,由于Arm(R) Cortex(R)-M55 CPU不支持rnn算子,我们在PP-OCRv3文本识别模型的基础上删除了不支持的算子,得到当前模型。 \ No newline at end of file diff --git a/deploy/avh/configure_avh.sh b/deploy/avh/configure_avh.sh new file mode 100755 index 0000000000000000000000000000000000000000..8042fd81d2379c6f7489d90372dffd2dc10e145e --- /dev/null +++ b/deploy/avh/configure_avh.sh @@ -0,0 +1,79 @@ +#!/bin/bash +# Copyright (c) 2022 Arm Limited and Contributors. All rights reserved. +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +set -e +set -u +set -o pipefail + +# Show usage +function show_usage() { + cat <&2 + show_usage >&2 + exit 1 + fi + ;; -*|--*) echo "Error: Unknown flag: $1" >&2 @@ -100,17 +122,27 @@ while (( $# )); do esac done +# Choose running environment: cloud(default) or local environment +Platform="VHT_Corstone_SSE-300_Ethos-U55" +if [ $FVP_enable == "1" ]; then + Platform="FVP_Corstone_SSE-300_Ethos-U55" + echo -e "\e[36mRun application on local Fixed Virtual Platforms (FVPs)\e[0m" +else + if [ ! -d "/opt/arm/" ]; then + sudo ./configure_avh.sh + fi +fi # Directories script_dir="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )" - # Make build directory -rm -rf build make cleanall mkdir -p build cd build +# Get PaddlePaddle inference model +echo -e "\e[36mDownload PaddlePaddle inference model\e[0m" wget https://paddleocr.bj.bcebos.com/tvm/ocr_en.tar tar -xf ocr_en.tar @@ -144,9 +176,9 @@ cd ${script_dir} echo ${script_dir} make -# Run demo executable on the FVP -FVP_Corstone_SSE-300_Ethos-U55 -C cpu0.CFGDTCMSZ=15 \ +# Run demo executable on the AVH +$Platform -C cpu0.CFGDTCMSZ=15 \ -C cpu0.CFGITCMSZ=15 -C mps3_board.uart0.out_file=\"-\" -C mps3_board.uart0.shutdown_tag=\"EXITTHESIM\" \ -C mps3_board.visualisation.disable-visualisation=1 -C mps3_board.telnetterminal0.start_telnet=0 \ -C mps3_board.telnetterminal1.start_telnet=0 -C mps3_board.telnetterminal2.start_telnet=0 -C mps3_board.telnetterminal5.start_telnet=0 \ -./build/demo \ No newline at end of file +./build/demo --stat diff --git a/deploy/lite/crnn_process.cc b/deploy/lite/crnn_process.cc index 6d5fc1504e7b1b3faa35a80662442f60d2e30499..7cd95cddb528e8571d8bab67517ae0140492c536 100644 --- a/deploy/lite/crnn_process.cc +++ b/deploy/lite/crnn_process.cc @@ -34,12 +34,13 @@ cv::Mat CrnnResizeImg(cv::Mat img, float wh_ratio, int rec_image_height) { resize_w = imgW; else resize_w = int(ceilf(imgH * ratio)); - + cv::Mat resize_img; cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f, cv::INTER_LINEAR); cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, int(imgW - resize_img.cols), cv::BORDER_CONSTANT, {127, 127, 127}); + return resize_img; } std::vector ReadDict(std::string path) { diff --git a/deploy/lite/ocr_db_crnn.cc b/deploy/lite/ocr_db_crnn.cc index cb2bf7791a4307d4e8d2167197d41d903410e0b4..fde0d07d6c1af769610865da1697e6eef0442899 100644 --- a/deploy/lite/ocr_db_crnn.cc +++ b/deploy/lite/ocr_db_crnn.cc @@ -474,7 +474,7 @@ void system(char **argv){ std::vector rec_times; RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score, - charactor_dict, cls_predictor, use_direction_classify, &rec_times); + charactor_dict, cls_predictor, use_direction_classify, &rec_times, rec_image_height); //// visualization auto img_vis = Visualization(srcimg, boxes); diff --git a/doc/doc_ch/algorithm.md b/doc/doc_ch/algorithm.md index 3056f35d5260812686447367f7cbddc1e1cad531..d50a5aa4e80336036424bddace9579db98c699c3 100644 --- a/doc/doc_ch/algorithm.md +++ b/doc/doc_ch/algorithm.md @@ -5,9 +5,10 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,已支持的 - [文本检测算法](./algorithm_overview.md#11-%E6%96%87%E6%9C%AC%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95) - [文本识别算法](./algorithm_overview.md#12-%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95) - [端到端算法](./algorithm_overview.md#2-%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95) +- [表格识别]](./algorithm_overview.md#3-%E8%A1%A8%E6%A0%BC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95) **欢迎广大开发者合作共建,贡献更多算法,合入有奖🎁!具体可查看[社区常规赛](https://github.com/PaddlePaddle/PaddleOCR/issues/4982)。** 新增算法可参考如下教程: -- [使用PaddleOCR架构添加新算法](./add_new_algorithm.md) \ No newline at end of file +- [使用PaddleOCR架构添加新算法](./add_new_algorithm.md) diff --git a/doc/doc_ch/algorithm_det_db.md b/doc/doc_ch/algorithm_det_db.md index 90837c2ac1ebbc04ee47cbb74ed6466352710e88..5401132061e507773ae77be49555ba754d1cba15 100644 --- a/doc/doc_ch/algorithm_det_db.md +++ b/doc/doc_ch/algorithm_det_db.md @@ -1,4 +1,4 @@ -# DB +# DB与DB++ - [1. 算法简介](#1) - [2. 环境配置](#2) @@ -21,12 +21,24 @@ > Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang > AAAI, 2020 +> [Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion](https://arxiv.org/abs/2202.10304) +> Liao, Minghui and Zou, Zhisheng and Wan, Zhaoyi and Yao, Cong and Bai, Xiang +> TPAMI, 2022 + + 在ICDAR2015文本检测公开数据集上,算法复现效果如下: |模型|骨干网络|配置文件|precision|recall|Hmean|下载链接| | --- | --- | --- | --- | --- | --- | --- | |DB|ResNet50_vd|[configs/det/det_r50_vd_db.yml](../../configs/det/det_r50_vd_db.yml)|86.41%|78.72%|82.38%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)| |DB|MobileNetV3|[configs/det/det_mv3_db.yml](../../configs/det/det_mv3_db.yml)|77.29%|73.08%|75.12%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)| +|DB++|ResNet50|[configs/det/det_r50_db++_icdar15.yml](../../configs/det/det_r50_db++_icdar15.yml)|90.89%|82.66%|86.58%|[合成数据预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_icdar15_train.tar)| + +在TD_TR文本检测公开数据集上,算法复现效果如下: + +|模型|骨干网络|配置文件|precision|recall|Hmean|下载链接| +| --- | --- | --- | --- | --- | --- | --- | +|DB++|ResNet50|[configs/det/det_r50_db++_td_tr.yml](../../configs/det/det_r50_db++_td_tr.yml)|92.92%|86.48%|89.58%|[合成数据预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_td_tr_train.tar)| @@ -54,7 +66,7 @@ python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrai DB文本检测模型推理,可以执行如下命令: ```shell -python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/" +python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/" --det_algorithm="DB" ``` 可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下: @@ -96,4 +108,12 @@ DB模型还支持以下推理部署方式: pages={11474--11481}, year={2020} } -``` \ No newline at end of file + +@article{liao2022real, + title={Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion}, + author={Liao, Minghui and Zou, Zhisheng and Wan, Zhaoyi and Yao, Cong and Bai, Xiang}, + journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, + year={2022}, + publisher={IEEE} +} +``` diff --git a/doc/doc_ch/algorithm_det_fcenet.md b/doc/doc_ch/algorithm_det_fcenet.md index bd2e734204d32bbf575ddea9f889953a72582c59..a70caa29fb590c7b7bf8d587a40676757a2ba4ce 100644 --- a/doc/doc_ch/algorithm_det_fcenet.md +++ b/doc/doc_ch/algorithm_det_fcenet.md @@ -1,17 +1,15 @@ # FCENet -- [1. 算法简介](#1) -- [2. 环境配置](#2) -- [3. 模型训练、评估、预测](#3) - - [3.1 训练](#3-1) - - [3.2 评估](#3-2) - - [3.3 预测](#3-3) -- [4. 推理部署](#4) - - [4.1 Python推理](#4-1) - - [4.2 C++推理](#4-2) - - [4.3 Serving服务化部署](#4-3) - - [4.4 更多推理部署](#4-4) -- [5. FAQ](#5) +- [1. 算法简介](#1-算法简介) +- [2. 环境配置](#2-环境配置) +- [3. 模型训练、评估、预测](#3-模型训练评估预测) +- [4. 推理部署](#4-推理部署) + - [4.1 Python推理](#41-python推理) + - [4.2 C++推理](#42-c推理) + - [4.3 Serving服务化部署](#43-serving服务化部署) + - [4.4 更多推理部署](#44-更多推理部署) +- [5. FAQ](#5-faq) +- [引用](#引用) ## 1. 算法简介 diff --git a/doc/doc_ch/algorithm_overview.md b/doc/doc_ch/algorithm_overview.md index eb81e4cd6dae2542dd07d0e25fe543419f798c9b..5c7adc715f1a5e728d9320c62dc15c578d9f18bf 100755 --- a/doc/doc_ch/algorithm_overview.md +++ b/doc/doc_ch/algorithm_overview.md @@ -1,9 +1,10 @@ # OCR算法 -- [1. 两阶段算法](#1-两阶段算法) - - [1.1 文本检测算法](#11-文本检测算法) - - [1.2 文本识别算法](#12-文本识别算法) -- [2. 端到端算法](#2-端到端算法) +- [1. 两阶段算法](#1) + - [1.1 文本检测算法](#11) + - [1.2 文本识别算法](#12) +- [2. 端到端算法](#2) +- [3. 表格识别算法](#3) 本文给出了PaddleOCR已支持的OCR算法列表,以及每个算法在**英文公开数据集**上的模型和指标,主要用于算法简介和算法性能对比,更多包括中文在内的其他数据集上的模型请参考[PP-OCR v2.0 系列模型下载](./models_list.md)。 @@ -86,8 +87,9 @@ |SAR|Resnet31| 87.20% | rec_r31_sar | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) | |SEED|Aster_Resnet| 85.35% | rec_resnet_stn_bilstm_att | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) | |SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) | -|ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ce_en | [训练模型](https://paddleocr.bj.bcebos.com/rec_vitstr_none_ce_train.tar) | -|ABINet|Resnet45| 90.75% | rec_r45_abinet_en | [训练模型](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar) | +|ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ce | [训练模型](https://paddleocr.bj.bcebos.com/rec_vitstr_none_ce_train.tar) | +|ABINet|Resnet45| 90.75% | rec_r45_abinet | [训练模型](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar) | + @@ -95,3 +97,16 @@ 已支持的端到端OCR算法列表(戳链接获取使用教程): - [x] [PGNet](./algorithm_e2e_pgnet.md) + + + +## 3. 表格识别算法 + +已支持的表格识别算法列表(戳链接获取使用教程): +- [x] [TableMaster](./algorithm_table_master.md) + +在PubTabNet表格识别公开数据集上,算法效果如下: + +|模型|骨干网络|配置文件|acc|下载链接| +|---|---|---|---|---| +|TableMaster|TableResNetExtra|[configs/table/table_master.yml](../../configs/table/table_master.yml)|77.47%|[训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_train.tar) / [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_infer.tar)| diff --git a/doc/doc_ch/algorithm_table_master.md b/doc/doc_ch/algorithm_table_master.md new file mode 100644 index 0000000000000000000000000000000000000000..36455ed9f94581c31fb849ebe121a3d7ecdb7acb --- /dev/null +++ b/doc/doc_ch/algorithm_table_master.md @@ -0,0 +1,114 @@ +# 表格识别算法-TableMASTER + +- [1. 算法简介](#1-算法简介) +- [2. 环境配置](#2-环境配置) +- [3. 模型训练、评估、预测](#3-模型训练评估预测) +- [4. 推理部署](#4-推理部署) + - [4.1 Python推理](#41-python推理) + - [4.2 C++推理部署](#42-c推理部署) + - [4.3 Serving服务化部署](#43-serving服务化部署) + - [4.4 更多推理部署](#44-更多推理部署) +- [5. FAQ](#5-faq) +- [引用](#引用) + + +## 1. 算法简介 + +论文信息: +> [TableMaster: PINGAN-VCGROUP’S SOLUTION FOR ICDAR 2021 COMPETITION ON SCIENTIFIC LITERATURE PARSING TASK B: TABLE RECOGNITION TO HTML](https://arxiv.org/pdf/2105.01848.pdf) +> Ye, Jiaquan and Qi, Xianbiao and He, Yelin and Chen, Yihao and Gu, Dengyi and Gao, Peng and Xiao, Rong +> 2021 + +在PubTabNet表格识别公开数据集上,算法复现效果如下: + +|模型|骨干网络|配置文件|acc|下载链接| +| --- | --- | --- | --- | --- | +|TableMaster|TableResNetExtra|[configs/table/table_master.yml](../../configs/table/table_master.yml)|77.47%|[训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_train.tar)/[推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_infer.tar)| + + + +## 2. 环境配置 +请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。 + + + +## 3. 模型训练、评估、预测 + +上述TableMaster模型使用PubTabNet表格识别公开数据集训练得到,数据集下载可参考 [table_datasets](./dataset/table_datasets.md)。 + +数据下载完成后,请参考[文本识别教程](./recognition.md)进行训练。PaddleOCR对代码进行了模块化,训练不同的模型只需要**更换配置文件**即可。 + + +## 4. 推理部署 + + +### 4.1 Python推理 +首先将训练得到best模型,转换成inference model。以基于TableResNetExtra骨干网络,在PubTabNet数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/contribution/table_master.tar)),可以使用如下命令进行转换: + +```shell +# 注意将pretrained_model的路径设置为本地路径。 +python3 tools/export_model.py -c configs/table/table_master.yml -o Global.pretrained_model=output/table_master/best_accuracy Global.save_inference_dir=./inference/table_master +``` + +**注意:** +- 如果您是在自己的数据集上训练的模型,并且调整了字典文件,请注意修改配置文件中的`character_dict_path`是否为所正确的字典文件。 + +转换成功后,在目录下有三个文件: +``` +./inference/table_master/ + ├── inference.pdiparams # 识别inference模型的参数文件 + ├── inference.pdiparams.info # 识别inference模型的参数信息,可忽略 + └── inference.pdmodel # 识别inference模型的program文件 +``` + + +执行如下命令进行模型推理: + +```shell +cd ppstructure/ +python3.7 table/predict_structure.py --table_model_dir=../output/table_master/table_structure_tablemaster_infer/ --table_algorithm=TableMaster --table_char_dict_path=../ppocr/utils/dict/table_master_structure_dict.txt --table_max_len=480 --image_dir=docs/table/table.jpg +# 预测文件夹下所有图像时,可修改image_dir为文件夹,如 --image_dir='docs/table'。 +``` + +执行命令后,上面图像的预测结果(结构信息和表格中每个单元格的坐标)会打印到屏幕上,同时会保存单元格坐标的可视化结果。示例如下: +结果如下: +```shell +[2022/06/16 13:06:54] ppocr INFO: result: ['', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '
', '', ''], [[72.17591094970703, 10.759100914001465, 60.29658508300781, 16.6805362701416], [161.85562133789062, 10.884308815002441, 14.9495210647583, 16.727018356323242], [277.79876708984375, 29.54340362548828, 31.490320205688477, 18.143272399902344], +... +[336.11724853515625, 280.3601989746094, 39.456939697265625, 18.121286392211914]] +[2022/06/16 13:06:54] ppocr INFO: save vis result to ./output/table.jpg +[2022/06/16 13:06:54] ppocr INFO: Predict time of docs/table/table.jpg: 17.36806297302246 +``` + +**注意**: + +- TableMaster在推理时比较慢,建议使用GPU进行使用。 + + +### 4.2 C++推理部署 + +由于C++预处理后处理还未支持TableMaster,所以暂未支持 + + +### 4.3 Serving服务化部署 + +暂不支持 + + +### 4.4 更多推理部署 + +暂不支持 + + +## 5. FAQ + +## 引用 + +```bibtex +@article{ye2021pingan, + title={PingAn-VCGroup's Solution for ICDAR 2021 Competition on Scientific Literature Parsing Task B: Table Recognition to HTML}, + author={Ye, Jiaquan and Qi, Xianbiao and He, Yelin and Chen, Yihao and Gu, Dengyi and Gao, Peng and Xiao, Rong}, + journal={arXiv preprint arXiv:2105.01848}, + year={2021} +} +``` diff --git a/doc/doc_ch/dataset/ocr_datasets.md b/doc/doc_ch/dataset/ocr_datasets.md index c6ff2e170f7c30a29e98ed2b1349cae2b84cf441..b7666fd63e6f17b734a17e2d11a0c8614d225964 100644 --- a/doc/doc_ch/dataset/ocr_datasets.md +++ b/doc/doc_ch/dataset/ocr_datasets.md @@ -34,6 +34,7 @@ json.dumps编码前的图像标注信息是包含多个字典的list,字典中 | ICDAR 2015 |https://rrc.cvc.uab.es/?ch=4&com=downloads| [train](https://paddleocr.bj.bcebos.com/dataset/train_icdar2015_label.txt) / [test](https://paddleocr.bj.bcebos.com/dataset/test_icdar2015_label.txt) | | ctw1500 |https://paddleocr.bj.bcebos.com/dataset/ctw1500.zip| 图片下载地址中已包含 | | total text |https://paddleocr.bj.bcebos.com/dataset/total_text.tar| 图片下载地址中已包含 | +| td tr |https://paddleocr.bj.bcebos.com/dataset/TD_TR.tar| 图片下载地址中已包含 | #### 1.2.1 ICDAR 2015 ICDAR 2015 数据集包含1000张训练图像和500张测试图像。ICDAR 2015 数据集可以从上表中链接下载,首次下载需注册。 diff --git a/doc/doc_ch/inference_ppocr.md b/doc/doc_ch/inference_ppocr.md index 472c0003f963d6f65fa2d0babbf6b9c7d0ec9b80..622ac995d37ce290ee51af06164b0c2aef8b5a14 100644 --- a/doc/doc_ch/inference_ppocr.md +++ b/doc/doc_ch/inference_ppocr.md @@ -7,7 +7,8 @@ - [1. 文本检测模型推理](#1-文本检测模型推理) - [2. 文本识别模型推理](#2-文本识别模型推理) - [2.1 超轻量中文识别模型推理](#21-超轻量中文识别模型推理) - - [2.2 多语言模型的推理](#22-多语言模型的推理) + - [2.2 英文识别模型推理](#22-英文识别模型推理) + - [2.3 多语言模型的推理](#23-多语言模型的推理) - [3. 方向分类模型推理](#3-方向分类模型推理) - [4. 文本检测、方向分类和文字识别串联推理](#4-文本检测方向分类和文字识别串联推理) @@ -78,9 +79,29 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.9956803321838379) ``` + + +### 2.2 英文识别模型推理 + +英文识别模型推理,可以执行如下命令, 注意修改字典路径: + +``` +# 下载英文数字识别模型: +wget https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar +tar xf en_PP-OCRv3_det_infer.tar +python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./en_PP-OCRv3_det_infer/" --rec_char_dict_path="ppocr/utils/en_dict.txt" +``` + +![](../imgs_words/en/word_1.png) + +执行命令后,上图的预测结果为: + +``` +Predicts of ./doc/imgs_words/en/word_1.png: ('JOINT', 0.998160719871521) +``` -### 2.2 多语言模型的推理 +### 2.3 多语言模型的推理 如果您需要预测的是其他语言模型,可以在[此链接](./models_list.md#%E5%A4%9A%E8%AF%AD%E8%A8%80%E8%AF%86%E5%88%AB%E6%A8%A1%E5%9E%8B)中找到对应语言的inference模型,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径, 同时为了得到正确的可视化结果,需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/fonts/` 路径下有默认提供的小语种字体,例如韩文识别: ``` diff --git a/doc/doc_en/algorithm_en.md b/doc/doc_en/algorithm_en.md index fa7887eb2681271f2b02296516221b00f9cf4626..c880336b4ad528eab2cce479edf11fce0b43f435 100644 --- a/doc/doc_en/algorithm_en.md +++ b/doc/doc_en/algorithm_en.md @@ -6,5 +6,6 @@ PaddleOCR will add cutting-edge OCR algorithms and models continuously. Check ou - [text detection algorithms](./algorithm_overview_en.md#11) - [text recognition algorithms](./algorithm_overview_en.md#12) - [end-to-end algorithms](./algorithm_overview_en.md#2) +- [table recognition algorithms](./algorithm_overview_en.md#3) -Developers are welcome to contribute more algorithms! Please refer to [add new algorithm](./add_new_algorithm_en.md) guideline. \ No newline at end of file +Developers are welcome to contribute more algorithms! Please refer to [add new algorithm](./add_new_algorithm_en.md) guideline. diff --git a/doc/doc_en/algorithm_overview_en.md b/doc/doc_en/algorithm_overview_en.md index 28aca7c0d171008156104fbcc786707538fd49ef..f3c96b620c94c3b5f795b6117a7c6bcfcfa43b7a 100755 --- a/doc/doc_en/algorithm_overview_en.md +++ b/doc/doc_en/algorithm_overview_en.md @@ -1,9 +1,10 @@ # OCR Algorithms - [1. Two-stage Algorithms](#1) - * [1.1 Text Detection Algorithms](#11) - * [1.2 Text Recognition Algorithms](#12) + - [1.1 Text Detection Algorithms](#11) + - [1.2 Text Recognition Algorithms](#12) - [2. End-to-end Algorithms](#2) +- [3. Table Recognition Algorithms](#3) This tutorial lists the OCR algorithms supported by PaddleOCR, as well as the models and metrics of each algorithm on **English public datasets**. It is mainly used for algorithm introduction and algorithm performance comparison. For more models on other datasets including Chinese, please refer to [PP-OCR v2.0 models list](./models_list_en.md). @@ -85,8 +86,9 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r |SAR|Resnet31| 87.20% | rec_r31_sar | [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) | |SEED|Aster_Resnet| 85.35% | rec_resnet_stn_bilstm_att | [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) | |SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) | -|ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ce_en | [trained model](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar) | -|ABINet|Resnet45| 90.75% | rec_r45_abinet_en | [trained model](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar) | +|ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ce | [trained model](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar) | +|ABINet|Resnet45| 90.75% | rec_r45_abinet | [trained model](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar) | + @@ -94,3 +96,15 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r Supported end-to-end algorithms (Click the link to get the tutorial): - [x] [PGNet](./algorithm_e2e_pgnet_en.md) + + +## 3. Table Recognition Algorithms + +Supported table recognition algorithms (Click the link to get the tutorial): +- [x] [TableMaster](./algorithm_table_master_en.md) + +On the PubTabNet dataset, the algorithm result is as follows: + +|Model|Backbone|Config|Acc|Download link| +|---|---|---|---|---| +|TableMaster|TableResNetExtra|[configs/table/table_master.yml](../../configs/table/table_master.yml)|77.47%|[trained](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_train.tar) / [inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_infer.tar)| diff --git a/doc/doc_en/algorithm_table_master_en.md b/doc/doc_en/algorithm_table_master_en.md new file mode 100644 index 0000000000000000000000000000000000000000..e9249a2a05d3e79f4358366d46cf02a14a223f5f --- /dev/null +++ b/doc/doc_en/algorithm_table_master_en.md @@ -0,0 +1,112 @@ +# Table Recognition Algorithm-TableMASTER + +- [1. Introduction](#1-introduction) +- [2. Environment](#2-environment) +- [3. Model Training / Evaluation / Prediction](#3-model-training--evaluation--prediction) +- [4. Inference and Deployment](#4-inference-and-deployment) + - [4.1 Python Inference](#41-python-inference) + - [4.2 C++ Inference](#42-c-inference) + - [4.3 Serving](#43-serving) + - [4.4 More](#44-more) +- [5. FAQ](#5-faq) +- [Citation](#citation) + + +## 1. Introduction + +Paper: +> [TableMaster: PINGAN-VCGROUP’S SOLUTION FOR ICDAR 2021 COMPETITION ON SCIENTIFIC LITERATURE PARSING TASK B: TABLE RECOGNITION TO HTML](https://arxiv.org/pdf/2105.01848.pdf) +> Ye, Jiaquan and Qi, Xianbiao and He, Yelin and Chen, Yihao and Gu, Dengyi and Gao, Peng and Xiao, Rong +> 2021 + + +On the PubTabNet table recognition public data set, the algorithm reproduction acc is as follows: + +|Model|Backbone|Cnnfig|Acc|Download link| +| --- | --- | --- | --- | --- | +|TableMaster|TableResNetExtra|[configs/table/table_master.yml](../../configs/table/table_master.yml)|77.47%|[trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_train.tar)/[inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_infer.tar)| + + + +## 2. Environment +Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code. + + + +## 3. Model Training / Evaluation / Prediction + +The above TableMaster model is trained using the PubTabNet table recognition public dataset. For the download of the dataset, please refer to [table_datasets](./dataset/table_datasets_en.md). + +After the data download is complete, please refer to [Text Recognition Training Tutorial](./recognition_en.md) for training. PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different models. + + + +## 4. Inference and Deployment + + +### 4.1 Python Inference + +First, convert the model saved in the TableMaster table recognition training process into an inference model. Taking the model based on the TableResNetExtra backbone network and trained on the PubTabNet dataset as example ([model download link](https://paddleocr.bj.bcebos.com/contribution/table_master.tar)), you can use the following command to convert: + + +```shell +python3 tools/export_model.py -c configs/table/table_master.yml -o Global.pretrained_model=output/table_master/best_accuracy Global.save_inference_dir=./inference/table_master +``` + +**Note: ** +- If you trained the model on your own dataset and adjusted the dictionary file, please pay attention to whether the `character_dict_path` in the modified configuration file is the correct dictionary file + + +Execute the following command for model inference: + +```shell +cd ppstructure/ +# When predicting all images in a folder, you can modify image_dir to a folder, such as --image_dir='docs/table'. +python3.7 table/predict_structure.py --table_model_dir=../output/table_master/table_structure_tablemaster_infer/ --table_algorithm=TableMaster --table_char_dict_path=../ppocr/utils/dict/table_master_structure_dict.txt --table_max_len=480 --image_dir=docs/table/table.jpg + +``` + +After executing the command, the prediction results of the above image (structural information and the coordinates of each cell in the table) are printed to the screen, and the visualization of the cell coordinates is also saved. An example is as follows: + +result: +```shell +[2022/06/16 13:06:54] ppocr INFO: result: ['', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '
', '', ''], [[72.17591094970703, 10.759100914001465, 60.29658508300781, 16.6805362701416], [161.85562133789062, 10.884308815002441, 14.9495210647583, 16.727018356323242], [277.79876708984375, 29.54340362548828, 31.490320205688477, 18.143272399902344], +... +[336.11724853515625, 280.3601989746094, 39.456939697265625, 18.121286392211914]] +[2022/06/16 13:06:54] ppocr INFO: save vis result to ./output/table.jpg +[2022/06/16 13:06:54] ppocr INFO: Predict time of docs/table/table.jpg: 17.36806297302246 +``` + +**Note**: + +- TableMaster is relatively slow during inference, and it is recommended to use GPU for use. + + +### 4.2 C++ Inference + +Since the post-processing is not written in CPP, the TableMaster does not support CPP inference. + + + +### 4.3 Serving + +Not supported + + +### 4.4 More + +Not supported + + +## 5. FAQ + +## Citation + +```bibtex +@article{ye2021pingan, + title={PingAn-VCGroup's Solution for ICDAR 2021 Competition on Scientific Literature Parsing Task B: Table Recognition to HTML}, + author={Ye, Jiaquan and Qi, Xianbiao and He, Yelin and Chen, Yihao and Gu, Dengyi and Gao, Peng and Xiao, Rong}, + journal={arXiv preprint arXiv:2105.01848}, + year={2021} +} +``` diff --git a/doc/doc_en/inference_ppocr_en.md b/doc/doc_en/inference_ppocr_en.md index 935f92f5144f582630a45edcc886b609ecdc82da..0f57b0ba6b226c19ecb1e0b60afdfa34302b8e78 100755 --- a/doc/doc_en/inference_ppocr_en.md +++ b/doc/doc_en/inference_ppocr_en.md @@ -8,7 +8,8 @@ This article introduces the use of the Python inference engine for the PP-OCR mo - [Text Detection Model Inference](#text-detection-model-inference) - [Text Recognition Model Inference](#text-recognition-model-inference) - [1. Lightweight Chinese Recognition Model Inference](#1-lightweight-chinese-recognition-model-inference) - - [2. Multilingual Model Inference](#2-multilingual-model-inference) + - [2. English Recognition Model Inference](#2-english-recognition-model-inference) + - [3. Multilingual Model Inference](#3-multilingual-model-inference) - [Angle Classification Model Inference](#angle-classification-model-inference) - [Text Detection Angle Classification and Recognition Inference Concatenation](#text-detection-angle-classification-and-recognition-inference-concatenation) @@ -76,10 +77,31 @@ After executing the command, the prediction results (recognized text and score) ```bash Predicts of ./doc/imgs_words_en/word_10.png:('PAIN', 0.988671) ``` + +### 2. English Recognition Model Inference - +For English recognition model inference, you can execute the following commands,you need to specify the dictionary path used by `--rec_char_dict_path`: -### 2. Multilingual Model Inference +``` +# download en model: +wget https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar +tar xf en_PP-OCRv3_det_infer.tar +python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./en_PP-OCRv3_det_infer/" --rec_char_dict_path="ppocr/utils/en_dict.txt" +``` + +![](../imgs_words/en/word_1.png) + + +After executing the command, the prediction result of the above figure is: + +``` +Predicts of ./doc/imgs_words/en/word_1.png: ('JOINT', 0.998160719871521) +``` + + + + +### 3. Multilingual Model Inference If you need to predict [other language models](./models_list_en.md#Multilingual), when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results, You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/fonts` path, such as Korean recognition: diff --git a/ppocr/data/imaug/__init__.py b/ppocr/data/imaug/__init__.py index 63dfda91f8d0eb200d3c635fda43670039375784..d82176282839bf76d34ed8a60d5e2e13ac6bbce6 100644 --- a/ppocr/data/imaug/__init__.py +++ b/ppocr/data/imaug/__init__.py @@ -23,9 +23,10 @@ from .random_crop_data import EastRandomCropData, RandomCropImgMask from .make_pse_gt import MakePseGt -from .rec_img_aug import RecAug, RecConAug, RecResizeImg, ClsResizeImg, \ - SRNRecResizeImg, GrayRecResizeImg, SARRecResizeImg, PRENResizeImg, \ - ABINetRecResizeImg, SVTRRecResizeImg, ABINetRecAug + +from .rec_img_aug import BaseDataAugmentation, RecAug, RecConAug, RecResizeImg, ClsResizeImg, \ + SRNRecResizeImg, GrayRecResizeImg, SARRecResizeImg, PRENResizeImg, \ + ABINetRecResizeImg, SVTRRecResizeImg, ABINetRecAug from .ssl_img_aug import SSLRotateResize from .randaugment import RandAugment from .copy_paste import CopyPaste @@ -36,7 +37,7 @@ from .label_ops import * from .east_process import * from .sast_process import * from .pg_process import * -from .gen_table_mask import * +from .table_ops import * from .vqa import * diff --git a/ppocr/data/imaug/label_ops.py b/ppocr/data/imaug/label_ops.py index 312d6dc9ad25bfa73aa9009f932fe6f3d3ca7644..a4087d53287fcd57f9c4992ba712c700f33b9981 100644 --- a/ppocr/data/imaug/label_ops.py +++ b/ppocr/data/imaug/label_ops.py @@ -259,15 +259,26 @@ class E2ELabelEncodeTrain(object): class KieLabelEncode(object): - def __init__(self, character_dict_path, norm=10, directed=False, **kwargs): + def __init__(self, + character_dict_path, + class_path, + norm=10, + directed=False, + **kwargs): super(KieLabelEncode, self).__init__() self.dict = dict({'': 0}) + self.label2classid_map = dict() with open(character_dict_path, 'r', encoding='utf-8') as fr: idx = 1 for line in fr: char = line.strip() self.dict[char] = idx idx += 1 + with open(class_path, "r") as fin: + lines = fin.readlines() + for idx, line in enumerate(lines): + line = line.strip("\n") + self.label2classid_map[line] = idx self.norm = norm self.directed = directed @@ -408,7 +419,7 @@ class KieLabelEncode(object): text_ind = [self.dict[c] for c in text if c in self.dict] text_inds.append(text_ind) if 'label' in ann.keys(): - labels.append(ann['label']) + labels.append(self.label2classid_map[ann['label']]) elif 'key_cls' in ann.keys(): labels.append(ann['key_cls']) else: @@ -551,171 +562,210 @@ class SRNLabelEncode(BaseRecLabelEncode): return idx -class TableLabelEncode(object): +class TableLabelEncode(AttnLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length, - max_elem_length, - max_cell_num, character_dict_path, - span_weight=1.0, + replace_empty_cell_token=False, + merge_no_span_structure=False, + learn_empty_box=False, + point_num=2, **kwargs): - self.max_text_length = max_text_length - self.max_elem_length = max_elem_length - self.max_cell_num = max_cell_num - list_character, list_elem = self.load_char_elem_dict( - character_dict_path) - list_character = self.add_special_char(list_character) - list_elem = self.add_special_char(list_elem) - self.dict_character = {} - for i, char in enumerate(list_character): - self.dict_character[char] = i - self.dict_elem = {} - for i, elem in enumerate(list_elem): - self.dict_elem[elem] = i - self.span_weight = span_weight - - def load_char_elem_dict(self, character_dict_path): - list_character = [] - list_elem = [] + self.max_text_len = max_text_length + self.lower = False + self.learn_empty_box = learn_empty_box + self.merge_no_span_structure = merge_no_span_structure + self.replace_empty_cell_token = replace_empty_cell_token + + dict_character = [] with open(character_dict_path, "rb") as fin: lines = fin.readlines() - substr = lines[0].decode('utf-8').strip("\r\n").split("\t") - character_num = int(substr[0]) - elem_num = int(substr[1]) - for cno in range(1, 1 + character_num): - character = lines[cno].decode('utf-8').strip("\r\n") - list_character.append(character) - for eno in range(1 + character_num, 1 + character_num + elem_num): - elem = lines[eno].decode('utf-8').strip("\r\n") - list_elem.append(elem) - return list_character, list_elem - - def add_special_char(self, list_character): - self.beg_str = "sos" - self.end_str = "eos" - list_character = [self.beg_str] + list_character + [self.end_str] - return list_character + for line in lines: + line = line.decode('utf-8').strip("\n").strip("\r\n") + dict_character.append(line) - def get_span_idx_list(self): - span_idx_list = [] - for elem in self.dict_elem: - if 'span' in elem: - span_idx_list.append(self.dict_elem[elem]) - return span_idx_list + dict_character = self.add_special_char(dict_character) + self.dict = {} + for i, char in enumerate(dict_character): + self.dict[char] = i + self.idx2char = {v: k for k, v in self.dict.items()} + + self.character = dict_character + self.point_num = point_num + self.pad_idx = self.dict[self.beg_str] + self.start_idx = self.dict[self.beg_str] + self.end_idx = self.dict[self.end_str] + + self.td_token = ['', '', ''] + self.empty_bbox_token_dict = { + "[]": '', + "[' ']": '', + "['', ' ', '']": '', + "['\\u2028', '\\u2028']": '', + "['', ' ', '']": '', + "['', '']": '', + "['', ' ', '']": '', + "['', '', '', '']": '', + "['', '', ' ', '', '']": '', + "['', '']": '', + "['', ' ', '\\u2028', ' ', '\\u2028', ' ', '']": + '', + } + + @property + def _max_text_len(self): + return self.max_text_len + 2 def __call__(self, data): cells = data['cells'] - structure = data['structure']['tokens'] - structure = self.encode(structure, 'elem') + structure = data['structure'] + if self.merge_no_span_structure: + structure = self._merge_no_span_structure(structure) + if self.replace_empty_cell_token: + structure = self._replace_empty_cell_token(structure, cells) + # remove empty token and add " " to span token + new_structure = [] + for token in structure: + if token != '': + if 'span' in token and token[0] != ' ': + token = ' ' + token + new_structure.append(token) + # encode structure + structure = self.encode(new_structure) if structure is None: return None - elem_num = len(structure) - structure = [0] + structure + [len(self.dict_elem) - 1] - structure = structure + [0] * (self.max_elem_length + 2 - len(structure) - ) + + structure = [self.start_idx] + structure + [self.end_idx + ] # add sos abd eos + structure = structure + [self.pad_idx] * (self._max_text_len - + len(structure)) # pad structure = np.array(structure) data['structure'] = structure - elem_char_idx1 = self.dict_elem[''] - elem_char_idx2 = self.dict_elem[' 0: - span_weight = len(td_idx_list) * 1.0 / len(span_idx_list) - span_weight = min(max(span_weight, 1.0), self.span_weight) - for cno in range(len(cells)): - if 'bbox' in cells[cno]: - bbox = cells[cno]['bbox'].copy() - bbox[0] = bbox[0] * 1.0 / img_width - bbox[1] = bbox[1] * 1.0 / img_height - bbox[2] = bbox[2] * 1.0 / img_width - bbox[3] = bbox[3] * 1.0 / img_height - td_idx = td_idx_list[cno] - bbox_list[td_idx] = bbox - bbox_list_mask[td_idx] = 1.0 - cand_span_idx = td_idx + 1 - if cand_span_idx < (self.max_elem_length + 2): - if structure[cand_span_idx] in span_idx_list: - structure_mask[cand_span_idx] = span_weight - - data['bbox_list'] = bbox_list - data['bbox_list_mask'] = bbox_list_mask - data['structure_mask'] = structure_mask - char_beg_idx = self.get_beg_end_flag_idx('beg', 'char') - char_end_idx = self.get_beg_end_flag_idx('end', 'char') - elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem') - elem_end_idx = self.get_beg_end_flag_idx('end', 'elem') - data['sp_tokens'] = np.array([ - char_beg_idx, char_end_idx, elem_beg_idx, elem_end_idx, - elem_char_idx1, elem_char_idx2, self.max_text_length, - self.max_elem_length, self.max_cell_num, elem_num - ]) + + if len(structure) > self._max_text_len: + return None + + # encode box + bboxes = np.zeros( + (self._max_text_len, self.point_num * 2), dtype=np.float32) + bbox_masks = np.zeros((self._max_text_len, 1), dtype=np.float32) + + bbox_idx = 0 + + for i, token in enumerate(structure): + if self.idx2char[token] in self.td_token: + if 'bbox' in cells[bbox_idx] and len(cells[bbox_idx][ + 'tokens']) > 0: + bbox = cells[bbox_idx]['bbox'].copy() + bbox = np.array(bbox, dtype=np.float32).reshape(-1) + bboxes[i] = bbox + bbox_masks[i] = 1.0 + if self.learn_empty_box: + bbox_masks[i] = 1.0 + bbox_idx += 1 + data['bboxes'] = bboxes + data['bbox_masks'] = bbox_masks return data - def encode(self, text, char_or_elem): - """convert text-label into text-index. + def _merge_no_span_structure(self, structure): """ - if char_or_elem == "char": - max_len = self.max_text_length - current_dict = self.dict_character - else: - max_len = self.max_elem_length - current_dict = self.dict_elem - if len(text) > max_len: - return None - if len(text) == 0: - if char_or_elem == "char": - return [self.dict_character['space']] - else: - return None - text_list = [] - for char in text: - if char not in current_dict: - return None - text_list.append(current_dict[char]) - if len(text_list) == 0: - if char_or_elem == "char": - return [self.dict_character['space']] + This code is refer from: + https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py + """ + new_structure = [] + i = 0 + while i < len(structure): + token = structure[i] + if token == '': + token = '' + i += 1 + new_structure.append(token) + i += 1 + return new_structure + + def _replace_empty_cell_token(self, token_list, cells): + """ + This fun code is refer from: + https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py + """ + + bbox_idx = 0 + add_empty_bbox_token_list = [] + for token in token_list: + if token in ['', '']: + if 'bbox' not in cells[bbox_idx].keys(): + content = str(cells[bbox_idx]['tokens']) + token = self.empty_bbox_token_dict[content] + add_empty_bbox_token_list.append(token) + bbox_idx += 1 else: - return None - return text_list + add_empty_bbox_token_list.append(token) + return add_empty_bbox_token_list - def get_ignored_tokens(self, char_or_elem): - beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem) - end_idx = self.get_beg_end_flag_idx("end", char_or_elem) - return [beg_idx, end_idx] - def get_beg_end_flag_idx(self, beg_or_end, char_or_elem): - if char_or_elem == "char": - if beg_or_end == "beg": - idx = np.array(self.dict_character[self.beg_str]) - elif beg_or_end == "end": - idx = np.array(self.dict_character[self.end_str]) - else: - assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \ - % beg_or_end - elif char_or_elem == "elem": - if beg_or_end == "beg": - idx = np.array(self.dict_elem[self.beg_str]) - elif beg_or_end == "end": - idx = np.array(self.dict_elem[self.end_str]) - else: - assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \ - % beg_or_end - else: - assert False, "Unsupport type %s in char_or_elem" \ - % char_or_elem - return idx +class TableMasterLabelEncode(TableLabelEncode): + """ Convert between text-label and text-index """ + + def __init__(self, + max_text_length, + character_dict_path, + replace_empty_cell_token=False, + merge_no_span_structure=False, + learn_empty_box=False, + point_num=2, + **kwargs): + super(TableMasterLabelEncode, self).__init__( + max_text_length, character_dict_path, replace_empty_cell_token, + merge_no_span_structure, learn_empty_box, point_num, **kwargs) + self.pad_idx = self.dict[self.pad_str] + self.unknown_idx = self.dict[self.unknown_str] + + @property + def _max_text_len(self): + return self.max_text_len + + def add_special_char(self, dict_character): + self.beg_str = '' + self.end_str = '' + self.unknown_str = '' + self.pad_str = '' + dict_character = dict_character + dict_character = dict_character + [ + self.unknown_str, self.beg_str, self.end_str, self.pad_str + ] + return dict_character + + +class TableBoxEncode(object): + def __init__(self, use_xywh=False, **kwargs): + self.use_xywh = use_xywh + + def __call__(self, data): + img_height, img_width = data['image'].shape[:2] + bboxes = data['bboxes'] + if self.use_xywh and bboxes.shape[1] == 4: + bboxes = self.xyxy2xywh(bboxes) + bboxes[:, 0::2] /= img_width + bboxes[:, 1::2] /= img_height + data['bboxes'] = bboxes + return data + + def xyxy2xywh(self, bboxes): + """ + Convert coord (x1,y1,x2,y2) to (x,y,w,h). + where (x1,y1) is top-left, (x2,y2) is bottom-right. + (x,y) is bbox center and (w,h) is width and height. + :param bboxes: (x1, y1, x2, y2) + :return: + """ + new_bboxes = np.empty_like(bboxes) + new_bboxes[:, 0] = (bboxes[:, 0] + bboxes[:, 2]) / 2 # x center + new_bboxes[:, 1] = (bboxes[:, 1] + bboxes[:, 3]) / 2 # y center + new_bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0] # width + new_bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1] # height + return new_bboxes class SARLabelEncode(BaseRecLabelEncode): @@ -819,6 +869,7 @@ class VQATokenLabelEncode(object): contains_re=False, add_special_ids=False, algorithm='LayoutXLM', + use_textline_bbox_info=True, infer_mode=False, ocr_engine=None, **kwargs): @@ -847,11 +898,51 @@ class VQATokenLabelEncode(object): self.add_special_ids = add_special_ids self.infer_mode = infer_mode self.ocr_engine = ocr_engine + self.use_textline_bbox_info = use_textline_bbox_info + + def split_bbox(self, bbox, text, tokenizer): + words = text.split() + token_bboxes = [] + curr_word_idx = 0 + x1, y1, x2, y2 = bbox + unit_w = (x2 - x1) / len(text) + for idx, word in enumerate(words): + curr_w = len(word) * unit_w + word_bbox = [x1, y1, x1 + curr_w, y2] + token_bboxes.extend([word_bbox] * len(tokenizer.tokenize(word))) + x1 += (len(word) + 1) * unit_w + return token_bboxes + + def filter_empty_contents(self, ocr_info): + """ + find out the empty texts and remove the links + """ + new_ocr_info = [] + empty_index = [] + for idx, info in enumerate(ocr_info): + if len(info["transcription"]) > 0: + new_ocr_info.append(copy.deepcopy(info)) + else: + empty_index.append(info["id"]) + + for idx, info in enumerate(new_ocr_info): + new_link = [] + for link in info["linking"]: + if link[0] in empty_index or link[1] in empty_index: + continue + new_link.append(link) + new_ocr_info[idx]["linking"] = new_link + return new_ocr_info def __call__(self, data): # load bbox and label info ocr_info = self._load_ocr_info(data) + # for re + train_re = self.contains_re and not self.infer_mode + if train_re: + ocr_info = self.filter_empty_contents(ocr_info) + height, width, _ = data['image'].shape words_list = [] @@ -863,8 +954,6 @@ class VQATokenLabelEncode(object): entities = [] - # for re - train_re = self.contains_re and not self.infer_mode if train_re: relations = [] id2label = {} @@ -874,17 +963,19 @@ class VQATokenLabelEncode(object): data['ocr_info'] = copy.deepcopy(ocr_info) for info in ocr_info: + text = info["transcription"] + if len(text) <= 0: + continue if train_re: # for re - if len(info["text"]) == 0: + if len(text) == 0: empty_entity.add(info["id"]) continue id2label[info["id"]] = info["label"] relations.extend([tuple(sorted(l)) for l in info["linking"]]) # smooth_box - bbox = self._smooth_box(info["bbox"], height, width) + info["bbox"] = self.trans_poly_to_bbox(info["points"]) - text = info["text"] encode_res = self.tokenizer.encode( text, pad_to_max_seq_len=False, return_attention_mask=True) @@ -895,6 +986,19 @@ class VQATokenLabelEncode(object): -1] encode_res["attention_mask"] = encode_res["attention_mask"][1: -1] + + if self.use_textline_bbox_info: + bbox = [info["bbox"]] * len(encode_res["input_ids"]) + else: + bbox = self.split_bbox(info["bbox"], info["transcription"], + self.tokenizer) + if len(bbox) <= 0: + continue + bbox = self._smooth_box(bbox, height, width) + if self.add_special_ids: + bbox.insert(0, [0, 0, 0, 0]) + bbox.append([0, 0, 0, 0]) + # parse label if not self.infer_mode: label = info['label'] @@ -919,7 +1023,7 @@ class VQATokenLabelEncode(object): }) input_ids_list.extend(encode_res["input_ids"]) token_type_ids_list.extend(encode_res["token_type_ids"]) - bbox_list.extend([bbox] * len(encode_res["input_ids"])) + bbox_list.extend(bbox) words_list.append(text) segment_offset_id.append(len(input_ids_list)) if not self.infer_mode: @@ -944,40 +1048,42 @@ class VQATokenLabelEncode(object): data['entity_id_to_index_map'] = entity_id_to_index_map return data - def _load_ocr_info(self, data): - def trans_poly_to_bbox(poly): - x1 = np.min([p[0] for p in poly]) - x2 = np.max([p[0] for p in poly]) - y1 = np.min([p[1] for p in poly]) - y2 = np.max([p[1] for p in poly]) - return [x1, y1, x2, y2] + def trans_poly_to_bbox(self, poly): + x1 = np.min([p[0] for p in poly]) + x2 = np.max([p[0] for p in poly]) + y1 = np.min([p[1] for p in poly]) + y2 = np.max([p[1] for p in poly]) + return [x1, y1, x2, y2] + def _load_ocr_info(self, data): if self.infer_mode: ocr_result = self.ocr_engine.ocr(data['image'], cls=False) ocr_info = [] for res in ocr_result: ocr_info.append({ - "text": res[1][0], - "bbox": trans_poly_to_bbox(res[0]), - "poly": res[0], + "transcription": res[1][0], + "bbox": self.trans_poly_to_bbox(res[0]), + "points": res[0], }) return ocr_info else: info = data['label'] # read text info info_dict = json.loads(info) - return info_dict["ocr_info"] + return info_dict - def _smooth_box(self, bbox, height, width): - bbox[0] = int(bbox[0] * 1000.0 / width) - bbox[2] = int(bbox[2] * 1000.0 / width) - bbox[1] = int(bbox[1] * 1000.0 / height) - bbox[3] = int(bbox[3] * 1000.0 / height) - return bbox + def _smooth_box(self, bboxes, height, width): + bboxes = np.array(bboxes) + bboxes[:, 0] = bboxes[:, 0] * 1000 / width + bboxes[:, 2] = bboxes[:, 2] * 1000 / width + bboxes[:, 1] = bboxes[:, 1] * 1000 / height + bboxes[:, 3] = bboxes[:, 3] * 1000 / height + bboxes = bboxes.astype("int64").tolist() + return bboxes def _parse_label(self, label, encode_res): gt_label = [] - if label.lower() == "other": + if label.lower() in ["other", "others", "ignore"]: gt_label.extend([0] * len(encode_res["input_ids"])) else: gt_label.append(self.label2id_map[("b-" + label).upper()]) @@ -1001,7 +1107,6 @@ class MultiLabelEncode(BaseRecLabelEncode): use_space_char, **kwargs) def __call__(self, data): - data_ctc = copy.deepcopy(data) data_sar = copy.deepcopy(data) data_out = dict() diff --git a/ppocr/data/imaug/operators.py b/ppocr/data/imaug/operators.py index 5397d71ccb466235e64f85e1eb9365ba03d2aa17..04cc2848fb4d25baaf553c6eda235ddb0e86511f 100644 --- a/ppocr/data/imaug/operators.py +++ b/ppocr/data/imaug/operators.py @@ -205,9 +205,12 @@ class DetResizeForTest(object): def __init__(self, **kwargs): super(DetResizeForTest, self).__init__() self.resize_type = 0 + self.keep_ratio = False if 'image_shape' in kwargs: self.image_shape = kwargs['image_shape'] self.resize_type = 1 + if 'keep_ratio' in kwargs: + self.keep_ratio = kwargs['keep_ratio'] elif 'limit_side_len' in kwargs: self.limit_side_len = kwargs['limit_side_len'] self.limit_type = kwargs.get('limit_type', 'min') @@ -237,6 +240,10 @@ class DetResizeForTest(object): def resize_image_type1(self, img): resize_h, resize_w = self.image_shape ori_h, ori_w = img.shape[:2] # (h, w, c) + if self.keep_ratio is True: + resize_w = ori_w * resize_h / ori_h + N = math.ceil(resize_w / 32) + resize_w = N * 32 ratio_h = float(resize_h) / ori_h ratio_w = float(resize_w) / ori_w img = cv2.resize(img, (int(resize_w), int(resize_h))) diff --git a/ppocr/data/imaug/gen_table_mask.py b/ppocr/data/imaug/table_ops.py similarity index 77% rename from ppocr/data/imaug/gen_table_mask.py rename to ppocr/data/imaug/table_ops.py index 08e35d5d1df7f9663b4e008451308d0ee409cf5a..8d139190ab4b22c553036ddc8e31cfbc7ec3423d 100644 --- a/ppocr/data/imaug/gen_table_mask.py +++ b/ppocr/data/imaug/table_ops.py @@ -32,7 +32,7 @@ class GenTableMask(object): self.shrink_h_max = 5 self.shrink_w_max = 5 self.mask_type = mask_type - + def projection(self, erosion, h, w, spilt_threshold=0): # 水平投影 projection_map = np.ones_like(erosion) @@ -48,10 +48,12 @@ class GenTableMask(object): in_text = False # 是否遍历到了字符区内 box_list = [] for i in range(len(project_val_array)): - if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了 + if in_text == False and project_val_array[ + i] > spilt_threshold: # 进入字符区了 in_text = True start_idx = i - elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了 + elif project_val_array[ + i] <= spilt_threshold and in_text == True: # 进入空白区了 end_idx = i in_text = False if end_idx - start_idx <= 2: @@ -70,7 +72,8 @@ class GenTableMask(object): box_gray_img = cv2.cvtColor(box_img, cv2.COLOR_BGR2GRAY) h, w = box_gray_img.shape # 灰度图片进行二值化处理 - ret, thresh1 = cv2.threshold(box_gray_img, 200, 255, cv2.THRESH_BINARY_INV) + ret, thresh1 = cv2.threshold(box_gray_img, 200, 255, + cv2.THRESH_BINARY_INV) # 纵向腐蚀 if h < w: kernel = np.ones((2, 1), np.uint8) @@ -95,10 +98,12 @@ class GenTableMask(object): box_list = [] spilt_threshold = 0 for i in range(len(project_val_array)): - if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了 + if in_text == False and project_val_array[ + i] > spilt_threshold: # 进入字符区了 in_text = True start_idx = i - elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了 + elif project_val_array[ + i] <= spilt_threshold and in_text == True: # 进入空白区了 end_idx = i in_text = False if end_idx - start_idx <= 2: @@ -120,7 +125,8 @@ class GenTableMask(object): h_end = h word_img = erosion[h_start:h_end + 1, :] word_h, word_w = word_img.shape - w_split_list, w_projection_map = self.projection(word_img.T, word_w, word_h) + w_split_list, w_projection_map = self.projection(word_img.T, + word_w, word_h) w_start, w_end = w_split_list[0][0], w_split_list[-1][1] if h_start > 0: h_start -= 1 @@ -170,75 +176,54 @@ class GenTableMask(object): for sno in range(len(split_bbox_list)): left, top, right, bottom = split_bbox_list[sno] - left, top, right, bottom = self.shrink_bbox([left, top, right, bottom]) + left, top, right, bottom = self.shrink_bbox( + [left, top, right, bottom]) if self.mask_type == 1: mask_img[top:bottom, left:right] = 1.0 data['mask_img'] = mask_img else: - mask_img[top:bottom, left:right, :] = (255, 255, 255) + mask_img[top:bottom, left:right, :] = (255, 255, 255) data['image'] = mask_img return data + class ResizeTableImage(object): - def __init__(self, max_len, **kwargs): + def __init__(self, max_len, resize_bboxes=False, infer_mode=False, + **kwargs): super(ResizeTableImage, self).__init__() self.max_len = max_len + self.resize_bboxes = resize_bboxes + self.infer_mode = infer_mode - def get_img_bbox(self, cells): - bbox_list = [] - if len(cells) == 0: - return bbox_list - cell_num = len(cells) - for cno in range(cell_num): - if "bbox" in cells[cno]: - bbox = cells[cno]['bbox'] - bbox_list.append(bbox) - return bbox_list - - def resize_img_table(self, img, bbox_list, max_len): + def __call__(self, data): + img = data['image'] height, width = img.shape[0:2] - ratio = max_len / (max(height, width) * 1.0) + ratio = self.max_len / (max(height, width) * 1.0) resize_h = int(height * ratio) resize_w = int(width * ratio) - img_new = cv2.resize(img, (resize_w, resize_h)) - bbox_list_new = [] - for bno in range(len(bbox_list)): - left, top, right, bottom = bbox_list[bno].copy() - left = int(left * ratio) - top = int(top * ratio) - right = int(right * ratio) - bottom = int(bottom * ratio) - bbox_list_new.append([left, top, right, bottom]) - return img_new, bbox_list_new - - def __call__(self, data): - img = data['image'] - if 'cells' not in data: - cells = [] - else: - cells = data['cells'] - bbox_list = self.get_img_bbox(cells) - img_new, bbox_list_new = self.resize_img_table(img, bbox_list, self.max_len) - data['image'] = img_new - cell_num = len(cells) - bno = 0 - for cno in range(cell_num): - if "bbox" in data['cells'][cno]: - data['cells'][cno]['bbox'] = bbox_list_new[bno] - bno += 1 + resize_img = cv2.resize(img, (resize_w, resize_h)) + if self.resize_bboxes and not self.infer_mode: + data['bboxes'] = data['bboxes'] * ratio + data['image'] = resize_img + data['src_img'] = img + data['shape'] = np.array([resize_h, resize_w, ratio, ratio]) data['max_len'] = self.max_len return data + class PaddingTableImage(object): - def __init__(self, **kwargs): + def __init__(self, size, **kwargs): super(PaddingTableImage, self).__init__() - + self.size = size + def __call__(self, data): img = data['image'] - max_len = data['max_len'] - padding_img = np.zeros((max_len, max_len, 3), dtype=np.float32) + pad_h, pad_w = self.size + padding_img = np.zeros((pad_h, pad_w, 3), dtype=np.float32) height, width = img.shape[0:2] padding_img[0:height, 0:width, :] = img.copy() data['image'] = padding_img + shape = data['shape'].tolist() + shape.extend([pad_h, pad_w]) + data['shape'] = np.array(shape) return data - \ No newline at end of file diff --git a/ppocr/data/imaug/vqa/__init__.py b/ppocr/data/imaug/vqa/__init__.py index a5025e7985198e7ee40d6c92d8e1814eb1797032..bde175115536a3f644750260082204fe5f10dc05 100644 --- a/ppocr/data/imaug/vqa/__init__.py +++ b/ppocr/data/imaug/vqa/__init__.py @@ -13,7 +13,12 @@ # limitations under the License. from .token import VQATokenPad, VQASerTokenChunk, VQAReTokenChunk, VQAReTokenRelation +from .augment import DistortBBox __all__ = [ - 'VQATokenPad', 'VQASerTokenChunk', 'VQAReTokenChunk', 'VQAReTokenRelation' + 'VQATokenPad', + 'VQASerTokenChunk', + 'VQAReTokenChunk', + 'VQAReTokenRelation', + 'DistortBBox', ] diff --git a/ppocr/data/imaug/vqa/augment.py b/ppocr/data/imaug/vqa/augment.py new file mode 100644 index 0000000000000000000000000000000000000000..fcdc9685e9855c3a2d8e9f6f5add270f95f15a6c --- /dev/null +++ b/ppocr/data/imaug/vqa/augment.py @@ -0,0 +1,37 @@ +# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import sys +import numpy as np +import random + + +class DistortBBox: + def __init__(self, prob=0.5, max_scale=1, **kwargs): + """Random distort bbox + """ + self.prob = prob + self.max_scale = max_scale + + def __call__(self, data): + if random.random() > self.prob: + return data + bbox = np.array(data['bbox']) + rnd_scale = (np.random.rand(*bbox.shape) - 0.5) * 2 * self.max_scale + bbox = np.round(bbox + rnd_scale).astype(bbox.dtype) + data['bbox'] = np.clip(data['bbox'], 0, 1000) + data['bbox'] = bbox.tolist() + sys.stdout.flush() + return data diff --git a/ppocr/data/pubtab_dataset.py b/ppocr/data/pubtab_dataset.py index 671cda76fb4c36f3ac6bcc7da5a7fc4de241c0e2..642d3eb1961cbf0e829e6fb122f38c6af99df1c5 100644 --- a/ppocr/data/pubtab_dataset.py +++ b/ppocr/data/pubtab_dataset.py @@ -16,6 +16,7 @@ import os import random from paddle.io import Dataset import json +from copy import deepcopy from .imaug import transform, create_operators @@ -29,33 +30,63 @@ class PubTabDataSet(Dataset): dataset_config = config[mode]['dataset'] loader_config = config[mode]['loader'] - label_file_path = dataset_config.pop('label_file_path') + label_file_list = dataset_config.pop('label_file_list') + data_source_num = len(label_file_list) + ratio_list = dataset_config.get("ratio_list", [1.0]) + if isinstance(ratio_list, (float, int)): + ratio_list = [float(ratio_list)] * int(data_source_num) + + assert len( + ratio_list + ) == data_source_num, "The length of ratio_list should be the same as the file_list." self.data_dir = dataset_config['data_dir'] self.do_shuffle = loader_config['shuffle'] - self.do_hard_select = False - if 'hard_select' in loader_config: - self.do_hard_select = loader_config['hard_select'] - self.hard_prob = loader_config['hard_prob'] - if self.do_hard_select: - self.img_select_prob = self.load_hard_select_prob() - self.table_select_type = None - if 'table_select_type' in loader_config: - self.table_select_type = loader_config['table_select_type'] - self.table_select_prob = loader_config['table_select_prob'] self.seed = seed - logger.info("Initialize indexs of datasets:%s" % label_file_path) - with open(label_file_path, "rb") as f: - self.data_lines = f.readlines() - self.data_idx_order_list = list(range(len(self.data_lines))) - if mode.lower() == "train": + self.mode = mode.lower() + logger.info("Initialize indexs of datasets:%s" % label_file_list) + self.data_lines = self.get_image_info_list(label_file_list, ratio_list) + # self.check(config['Global']['max_text_length']) + + if mode.lower() == "train" and self.do_shuffle: self.shuffle_data_random() self.ops = create_operators(dataset_config['transforms'], global_config) - - ratio_list = dataset_config.get("ratio_list", [1.0]) self.need_reset = True in [x < 1 for x in ratio_list] + def get_image_info_list(self, file_list, ratio_list): + if isinstance(file_list, str): + file_list = [file_list] + data_lines = [] + for idx, file in enumerate(file_list): + with open(file, "rb") as f: + lines = f.readlines() + if self.mode == "train" or ratio_list[idx] < 1.0: + random.seed(self.seed) + lines = random.sample(lines, + round(len(lines) * ratio_list[idx])) + data_lines.extend(lines) + return data_lines + + def check(self, max_text_length): + data_lines = [] + for line in self.data_lines: + data_line = line.decode('utf-8').strip("\n") + info = json.loads(data_line) + file_name = info['filename'] + cells = info['html']['cells'].copy() + structure = info['html']['structure']['tokens'].copy() + + img_path = os.path.join(self.data_dir, file_name) + if not os.path.exists(img_path): + self.logger.warning("{} does not exist!".format(img_path)) + continue + if len(structure) == 0 or len(structure) > max_text_length: + continue + # data = {'img_path': img_path, 'cells': cells, 'structure':structure,'file_name':file_name} + data_lines.append(line) + self.data_lines = data_lines + def shuffle_data_random(self): if self.do_shuffle: random.seed(self.seed) @@ -68,47 +99,35 @@ class PubTabDataSet(Dataset): data_line = data_line.decode('utf-8').strip("\n") info = json.loads(data_line) file_name = info['filename'] - select_flag = True - if self.do_hard_select: - prob = self.img_select_prob[file_name] - if prob < random.uniform(0, 1): - select_flag = False - - if self.table_select_type: - structure = info['html']['structure']['tokens'].copy() - structure_str = ''.join(structure) - table_type = "simple" - if 'colspan' in structure_str or 'rowspan' in structure_str: - table_type = "complex" - if table_type == "complex": - if self.table_select_prob < random.uniform(0, 1): - select_flag = False - - if select_flag: - cells = info['html']['cells'].copy() - structure = info['html']['structure'].copy() - img_path = os.path.join(self.data_dir, file_name) - data = { - 'img_path': img_path, - 'cells': cells, - 'structure': structure - } - if not os.path.exists(img_path): - raise Exception("{} does not exist!".format(img_path)) - with open(data['img_path'], 'rb') as f: - img = f.read() - data['image'] = img - outs = transform(data, self.ops) - else: - outs = None - except Exception as e: + cells = info['html']['cells'].copy() + structure = info['html']['structure']['tokens'].copy() + + img_path = os.path.join(self.data_dir, file_name) + if not os.path.exists(img_path): + raise Exception("{} does not exist!".format(img_path)) + data = { + 'img_path': img_path, + 'cells': cells, + 'structure': structure, + 'file_name': file_name + } + + with open(data['img_path'], 'rb') as f: + img = f.read() + data['image'] = img + outs = transform(data, self.ops) + except: + import traceback + err = traceback.format_exc() self.logger.error( "When parsing line {}, error happened with msg: {}".format( - data_line, e)) + data_line, err)) outs = None if outs is None: - return self.__getitem__(np.random.randint(self.__len__())) + rnd_idx = np.random.randint(self.__len__( + )) if self.mode == "train" else (idx + 1) % self.__len__() + return self.__getitem__(rnd_idx) return outs def __len__(self): - return len(self.data_idx_order_list) + return len(self.data_lines) diff --git a/ppocr/losses/__init__.py b/ppocr/losses/__init__.py index 7bea87f62f335a9a47c881d4bc789ce34aaa734a..62e0544ea94daaaff7d019e6a48e65a2d508aca0 100755 --- a/ppocr/losses/__init__.py +++ b/ppocr/losses/__init__.py @@ -51,7 +51,7 @@ from .combined_loss import CombinedLoss # table loss from .table_att_loss import TableAttentionLoss - +from .table_master_loss import TableMasterLoss # vqa token loss from .vqa_token_layoutlm_loss import VQASerTokenLayoutLMLoss @@ -61,7 +61,8 @@ def build_loss(config): 'DBLoss', 'PSELoss', 'EASTLoss', 'SASTLoss', 'FCELoss', 'CTCLoss', 'ClsLoss', 'AttentionLoss', 'SRNLoss', 'PGLoss', 'CombinedLoss', 'CELoss', 'TableAttentionLoss', 'SARLoss', 'AsterLoss', 'SDMGRLoss', - 'VQASerTokenLayoutLMLoss', 'LossFromOutput', 'PRENLoss', 'MultiLoss' + 'VQASerTokenLayoutLMLoss', 'LossFromOutput', 'PRENLoss', 'MultiLoss', + 'TableMasterLoss' ] config = copy.deepcopy(config) module_name = config.pop('name') diff --git a/ppocr/losses/basic_loss.py b/ppocr/losses/basic_loss.py index 2df96ea2642d10a50eb892d738f89318dc5e0f4c..74490791c2af0be54dab8ab30ac323790fcac657 100644 --- a/ppocr/losses/basic_loss.py +++ b/ppocr/losses/basic_loss.py @@ -57,17 +57,24 @@ class CELoss(nn.Layer): class KLJSLoss(object): def __init__(self, mode='kl'): assert mode in ['kl', 'js', 'KL', 'JS' - ], "mode can only be one of ['kl', 'js', 'KL', 'JS']" + ], "mode can only be one of ['kl', 'KL', 'js', 'JS']" self.mode = mode def __call__(self, p1, p2, reduction="mean"): - loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5)) - - if self.mode.lower() == "js": + if self.mode.lower() == 'kl': + loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5)) + loss += paddle.multiply( + p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5)) + loss *= 0.5 + elif self.mode.lower() == "js": + loss = paddle.multiply(p2, paddle.log((2*p2 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5)) loss += paddle.multiply( - p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5)) + p1, paddle.log((2*p1 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5)) loss *= 0.5 + else: + raise ValueError("The mode.lower() if KLJSLoss should be one of ['kl', 'js']") + if reduction == "mean": loss = paddle.mean(loss, axis=[1, 2]) elif reduction == "none" or reduction is None: @@ -95,7 +102,7 @@ class DMLLoss(nn.Layer): self.act = None self.use_log = use_log - self.jskl_loss = KLJSLoss(mode="js") + self.jskl_loss = KLJSLoss(mode="kl") def _kldiv(self, x, target): eps = 1.0e-10 diff --git a/ppocr/losses/table_att_loss.py b/ppocr/losses/table_att_loss.py index 51377efa2b5e802fe9f9fc1973c74deb00fc4816..3496c9072553d839017eaa017fe47dfb66fb9d3b 100644 --- a/ppocr/losses/table_att_loss.py +++ b/ppocr/losses/table_att_loss.py @@ -20,15 +20,21 @@ import paddle from paddle import nn from paddle.nn import functional as F + class TableAttentionLoss(nn.Layer): - def __init__(self, structure_weight, loc_weight, use_giou=False, giou_weight=1.0, **kwargs): + def __init__(self, + structure_weight, + loc_weight, + use_giou=False, + giou_weight=1.0, + **kwargs): super(TableAttentionLoss, self).__init__() self.loss_func = nn.CrossEntropyLoss(weight=None, reduction='none') self.structure_weight = structure_weight self.loc_weight = loc_weight self.use_giou = use_giou self.giou_weight = giou_weight - + def giou_loss(self, preds, bbox, eps=1e-7, reduction='mean'): ''' :param preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,] @@ -47,9 +53,10 @@ class TableAttentionLoss(nn.Layer): inters = iw * ih # union - uni = (preds[:, 2] - preds[:, 0] + 1e-3) * (preds[:, 3] - preds[:, 1] + 1e-3 - ) + (bbox[:, 2] - bbox[:, 0] + 1e-3) * ( - bbox[:, 3] - bbox[:, 1] + 1e-3) - inters + eps + uni = (preds[:, 2] - preds[:, 0] + 1e-3) * ( + preds[:, 3] - preds[:, 1] + 1e-3) + (bbox[:, 2] - bbox[:, 0] + 1e-3 + ) * (bbox[:, 3] - bbox[:, 1] + + 1e-3) - inters + eps # ious ious = inters / uni @@ -79,30 +86,34 @@ class TableAttentionLoss(nn.Layer): structure_probs = predicts['structure_probs'] structure_targets = batch[1].astype("int64") structure_targets = structure_targets[:, 1:] - if len(batch) == 6: - structure_mask = batch[5].astype("int64") - structure_mask = structure_mask[:, 1:] - structure_mask = paddle.reshape(structure_mask, [-1]) - structure_probs = paddle.reshape(structure_probs, [-1, structure_probs.shape[-1]]) + structure_probs = paddle.reshape(structure_probs, + [-1, structure_probs.shape[-1]]) structure_targets = paddle.reshape(structure_targets, [-1]) structure_loss = self.loss_func(structure_probs, structure_targets) - - if len(batch) == 6: - structure_loss = structure_loss * structure_mask - -# structure_loss = paddle.sum(structure_loss) * self.structure_weight + structure_loss = paddle.mean(structure_loss) * self.structure_weight - + loc_preds = predicts['loc_preds'] loc_targets = batch[2].astype("float32") - loc_targets_mask = batch[4].astype("float32") + loc_targets_mask = batch[3].astype("float32") loc_targets = loc_targets[:, 1:, :] loc_targets_mask = loc_targets_mask[:, 1:, :] - loc_loss = F.mse_loss(loc_preds * loc_targets_mask, loc_targets) * self.loc_weight + loc_loss = F.mse_loss(loc_preds * loc_targets_mask, + loc_targets) * self.loc_weight if self.use_giou: - loc_loss_giou = self.giou_loss(loc_preds * loc_targets_mask, loc_targets) * self.giou_weight + loc_loss_giou = self.giou_loss(loc_preds * loc_targets_mask, + loc_targets) * self.giou_weight total_loss = structure_loss + loc_loss + loc_loss_giou - return {'loss':total_loss, "structure_loss":structure_loss, "loc_loss":loc_loss, "loc_loss_giou":loc_loss_giou} + return { + 'loss': total_loss, + "structure_loss": structure_loss, + "loc_loss": loc_loss, + "loc_loss_giou": loc_loss_giou + } else: - total_loss = structure_loss + loc_loss - return {'loss':total_loss, "structure_loss":structure_loss, "loc_loss":loc_loss} \ No newline at end of file + total_loss = structure_loss + loc_loss + return { + 'loss': total_loss, + "structure_loss": structure_loss, + "loc_loss": loc_loss + } diff --git a/ppocr/losses/table_master_loss.py b/ppocr/losses/table_master_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..dca982dbd43e2c14f15503e1e98d6fe6c18878c5 --- /dev/null +++ b/ppocr/losses/table_master_loss.py @@ -0,0 +1,70 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This code is refer from: +https://github.com/JiaquanYe/TableMASTER-mmocr/tree/master/mmocr/models/textrecog/losses +""" + +import paddle +from paddle import nn + + +class TableMasterLoss(nn.Layer): + def __init__(self, ignore_index=-1): + super(TableMasterLoss, self).__init__() + self.structure_loss = nn.CrossEntropyLoss( + ignore_index=ignore_index, reduction='mean') + self.box_loss = nn.L1Loss(reduction='sum') + self.eps = 1e-12 + + def forward(self, predicts, batch): + # structure_loss + structure_probs = predicts['structure_probs'] + structure_targets = batch[1] + structure_targets = structure_targets[:, 1:] + structure_probs = structure_probs.reshape( + [-1, structure_probs.shape[-1]]) + structure_targets = structure_targets.reshape([-1]) + + structure_loss = self.structure_loss(structure_probs, structure_targets) + structure_loss = structure_loss.mean() + losses = dict(structure_loss=structure_loss) + + # box loss + bboxes_preds = predicts['loc_preds'] + bboxes_targets = batch[2][:, 1:, :] + bbox_masks = batch[3][:, 1:] + # mask empty-bbox or non-bbox structure token's bbox. + + masked_bboxes_preds = bboxes_preds * bbox_masks + masked_bboxes_targets = bboxes_targets * bbox_masks + + # horizon loss (x and width) + horizon_sum_loss = self.box_loss(masked_bboxes_preds[:, :, 0::2], + masked_bboxes_targets[:, :, 0::2]) + horizon_loss = horizon_sum_loss / (bbox_masks.sum() + self.eps) + # vertical loss (y and height) + vertical_sum_loss = self.box_loss(masked_bboxes_preds[:, :, 1::2], + masked_bboxes_targets[:, :, 1::2]) + vertical_loss = vertical_sum_loss / (bbox_masks.sum() + self.eps) + + horizon_loss = horizon_loss.mean() + vertical_loss = vertical_loss.mean() + all_loss = structure_loss + horizon_loss + vertical_loss + losses.update({ + 'loss': all_loss, + 'horizon_bbox_loss': horizon_loss, + 'vertical_bbox_loss': vertical_loss + }) + return losses diff --git a/ppocr/losses/vqa_token_layoutlm_loss.py b/ppocr/losses/vqa_token_layoutlm_loss.py index 244893d97d0e422c5ca270bdece689e13aba2b07..f9cd4634731a26dd990d6ffac3d8defc8cdf7e97 100755 --- a/ppocr/losses/vqa_token_layoutlm_loss.py +++ b/ppocr/losses/vqa_token_layoutlm_loss.py @@ -27,8 +27,8 @@ class VQASerTokenLayoutLMLoss(nn.Layer): self.ignore_index = self.loss_class.ignore_index def forward(self, predicts, batch): - labels = batch[1] - attention_mask = batch[4] + labels = batch[5] + attention_mask = batch[2] if attention_mask is not None: active_loss = attention_mask.reshape([-1, ]) == 1 active_outputs = predicts.reshape( diff --git a/ppocr/metrics/eval_det_iou.py b/ppocr/metrics/eval_det_iou.py index bc05e7df7d1d21abfb9d9fbd224ecd7254d9f393..c144886b3f84a458a88931d6beb2153054eba7d0 100644 --- a/ppocr/metrics/eval_det_iou.py +++ b/ppocr/metrics/eval_det_iou.py @@ -83,14 +83,10 @@ class DetectionIoUEvaluator(object): evaluationLog = "" - # print(len(gt)) for n in range(len(gt)): points = gt[n]['points'] - # transcription = gt[n]['text'] dontCare = gt[n]['ignore'] - # points = Polygon(points) - # points = points.buffer(0) - if not Polygon(points).is_valid or not Polygon(points).is_simple: + if not Polygon(points).is_valid: continue gtPol = points @@ -105,9 +101,7 @@ class DetectionIoUEvaluator(object): for n in range(len(pred)): points = pred[n]['points'] - # points = Polygon(points) - # points = points.buffer(0) - if not Polygon(points).is_valid or not Polygon(points).is_simple: + if not Polygon(points).is_valid: continue detPol = points @@ -191,8 +185,6 @@ class DetectionIoUEvaluator(object): methodHmean = 0 if methodRecall + methodPrecision == 0 else 2 * \ methodRecall * methodPrecision / ( methodRecall + methodPrecision) - # print(methodRecall, methodPrecision, methodHmean) - # sys.exit(-1) methodMetrics = { 'precision': methodPrecision, 'recall': methodRecall, diff --git a/ppocr/metrics/table_metric.py b/ppocr/metrics/table_metric.py index ca4d6474202b4e85cadf86ccb2fe2726c7fa9aeb..fd2631e442b8d111c64d5cf4b34ea9063d8c60dd 100644 --- a/ppocr/metrics/table_metric.py +++ b/ppocr/metrics/table_metric.py @@ -12,29 +12,30 @@ # See the License for the specific language governing permissions and # limitations under the License. import numpy as np +from ppocr.metrics.det_metric import DetMetric -class TableMetric(object): - def __init__(self, main_indicator='acc', **kwargs): +class TableStructureMetric(object): + def __init__(self, main_indicator='acc', eps=1e-6, **kwargs): self.main_indicator = main_indicator - self.eps = 1e-5 + self.eps = eps self.reset() - def __call__(self, pred, batch, *args, **kwargs): - structure_probs = pred['structure_probs'].numpy() - structure_labels = batch[1] + def __call__(self, pred_label, batch=None, *args, **kwargs): + preds, labels = pred_label + pred_structure_batch_list = preds['structure_batch_list'] + gt_structure_batch_list = labels['structure_batch_list'] correct_num = 0 all_num = 0 - structure_probs = np.argmax(structure_probs, axis=2) - structure_labels = structure_labels[:, 1:] - batch_size = structure_probs.shape[0] - for bno in range(batch_size): - all_num += 1 - if (structure_probs[bno] == structure_labels[bno]).all(): + for (pred, pred_conf), target in zip(pred_structure_batch_list, + gt_structure_batch_list): + pred_str = ''.join(pred) + target_str = ''.join(target) + if pred_str == target_str: correct_num += 1 + all_num += 1 self.correct_num += correct_num self.all_num += all_num - return {'acc': correct_num * 1.0 / (all_num + self.eps), } def get_metric(self): """ @@ -49,3 +50,89 @@ class TableMetric(object): def reset(self): self.correct_num = 0 self.all_num = 0 + self.len_acc_num = 0 + self.token_nums = 0 + self.anys_dict = dict() + + +class TableMetric(object): + def __init__(self, + main_indicator='acc', + compute_bbox_metric=False, + point_num=2, + **kwargs): + """ + + @param sub_metrics: configs of sub_metric + @param main_matric: main_matric for save best_model + @param kwargs: + """ + self.structure_metric = TableStructureMetric() + self.bbox_metric = DetMetric() if compute_bbox_metric else None + self.main_indicator = main_indicator + self.point_num = point_num + self.reset() + + def __call__(self, pred_label, batch=None, *args, **kwargs): + self.structure_metric(pred_label) + if self.bbox_metric is not None: + self.bbox_metric(*self.prepare_bbox_metric_input(pred_label)) + + def prepare_bbox_metric_input(self, pred_label): + pred_bbox_batch_list = [] + gt_ignore_tags_batch_list = [] + gt_bbox_batch_list = [] + preds, labels = pred_label + + batch_num = len(preds['bbox_batch_list']) + for batch_idx in range(batch_num): + # pred + pred_bbox_list = [ + self.format_box(pred_box) + for pred_box in preds['bbox_batch_list'][batch_idx] + ] + pred_bbox_batch_list.append({'points': pred_bbox_list}) + + # gt + gt_bbox_list = [] + gt_ignore_tags_list = [] + for gt_box in labels['bbox_batch_list'][batch_idx]: + gt_bbox_list.append(self.format_box(gt_box)) + gt_ignore_tags_list.append(0) + gt_bbox_batch_list.append(gt_bbox_list) + gt_ignore_tags_batch_list.append(gt_ignore_tags_list) + + return [ + pred_bbox_batch_list, + [0, 0, gt_bbox_batch_list, gt_ignore_tags_batch_list] + ] + + def get_metric(self): + structure_metric = self.structure_metric.get_metric() + if self.bbox_metric is None: + return structure_metric + bbox_metric = self.bbox_metric.get_metric() + if self.main_indicator == self.bbox_metric.main_indicator: + output = bbox_metric + for sub_key in structure_metric: + output["structure_metric_{}".format( + sub_key)] = structure_metric[sub_key] + else: + output = structure_metric + for sub_key in bbox_metric: + output["bbox_metric_{}".format(sub_key)] = bbox_metric[sub_key] + return output + + def reset(self): + self.structure_metric.reset() + if self.bbox_metric is not None: + self.bbox_metric.reset() + + def format_box(self, box): + if self.point_num == 2: + x1, y1, x2, y2 = box + box = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]] + elif self.point_num == 4: + x1, y1, x2, y2, x3, y3, x4, y4 = box + box = [[x1, y1], [x2, y2], [x3, y3], [x4, y4]] + return box diff --git a/ppocr/metrics/vqa_token_re_metric.py b/ppocr/metrics/vqa_token_re_metric.py index 8a13bc081298284194d365933cd67d5633957ee8..f84387d8beb729bcc4b420ceea24a5e9b2993c64 100644 --- a/ppocr/metrics/vqa_token_re_metric.py +++ b/ppocr/metrics/vqa_token_re_metric.py @@ -37,23 +37,26 @@ class VQAReTokenMetric(object): gt_relations = [] for b in range(len(self.relations_list)): rel_sent = [] - for head, tail in zip(self.relations_list[b]["head"], - self.relations_list[b]["tail"]): - rel = {} - rel["head_id"] = head - rel["head"] = (self.entities_list[b]["start"][rel["head_id"]], - self.entities_list[b]["end"][rel["head_id"]]) - rel["head_type"] = self.entities_list[b]["label"][rel[ - "head_id"]] - - rel["tail_id"] = tail - rel["tail"] = (self.entities_list[b]["start"][rel["tail_id"]], - self.entities_list[b]["end"][rel["tail_id"]]) - rel["tail_type"] = self.entities_list[b]["label"][rel[ - "tail_id"]] - - rel["type"] = 1 - rel_sent.append(rel) + if "head" in self.relations_list[b]: + for head, tail in zip(self.relations_list[b]["head"], + self.relations_list[b]["tail"]): + rel = {} + rel["head_id"] = head + rel["head"] = ( + self.entities_list[b]["start"][rel["head_id"]], + self.entities_list[b]["end"][rel["head_id"]]) + rel["head_type"] = self.entities_list[b]["label"][rel[ + "head_id"]] + + rel["tail_id"] = tail + rel["tail"] = ( + self.entities_list[b]["start"][rel["tail_id"]], + self.entities_list[b]["end"][rel["tail_id"]]) + rel["tail_type"] = self.entities_list[b]["label"][rel[ + "tail_id"]] + + rel["type"] = 1 + rel_sent.append(rel) gt_relations.append(rel_sent) re_metrics = self.re_score( self.pred_relations_list, gt_relations, mode="boundaries") diff --git a/ppocr/modeling/backbones/__init__.py b/ppocr/modeling/backbones/__init__.py index f8959e263ecffb301dff227ff22e5e913375f919..f4094d796b1f14c955e5962936e86bd6b3f5ec78 100755 --- a/ppocr/modeling/backbones/__init__.py +++ b/ppocr/modeling/backbones/__init__.py @@ -18,9 +18,13 @@ __all__ = ["build_backbone"] def build_backbone(config, model_type): if model_type == "det" or model_type == "table": from .det_mobilenet_v3 import MobileNetV3 - from .det_resnet_vd import ResNet + from .det_resnet import ResNet + from .det_resnet_vd import ResNet_vd from .det_resnet_vd_sast import ResNet_SAST - support_dict = ["MobileNetV3", "ResNet", "ResNet_SAST"] + support_dict = ["MobileNetV3", "ResNet", "ResNet_vd", "ResNet_SAST"] + if model_type == "table": + from .table_master_resnet import TableResNetExtra + support_dict.append('TableResNetExtra') elif model_type == "rec" or model_type == "cls": from .rec_mobilenet_v3 import MobileNetV3 from .rec_resnet_vd import ResNet diff --git a/ppocr/modeling/backbones/det_resnet.py b/ppocr/modeling/backbones/det_resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..87eef11cf0e33c24c0f539c8074b21f589345282 --- /dev/null +++ b/ppocr/modeling/backbones/det_resnet.py @@ -0,0 +1,236 @@ +# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import numpy as np +import paddle +from paddle import ParamAttr +import paddle.nn as nn +import paddle.nn.functional as F +from paddle.nn import Conv2D, BatchNorm, Linear, Dropout +from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D +from paddle.nn.initializer import Uniform + +import math + +from paddle.vision.ops import DeformConv2D +from paddle.regularizer import L2Decay +from paddle.nn.initializer import Normal, Constant, XavierUniform +from .det_resnet_vd import DeformableConvV2, ConvBNLayer + + +class BottleneckBlock(nn.Layer): + def __init__(self, + num_channels, + num_filters, + stride, + shortcut=True, + is_dcn=False): + super(BottleneckBlock, self).__init__() + + self.conv0 = ConvBNLayer( + in_channels=num_channels, + out_channels=num_filters, + kernel_size=1, + act="relu", ) + self.conv1 = ConvBNLayer( + in_channels=num_filters, + out_channels=num_filters, + kernel_size=3, + stride=stride, + act="relu", + is_dcn=is_dcn, + dcn_groups=1, ) + self.conv2 = ConvBNLayer( + in_channels=num_filters, + out_channels=num_filters * 4, + kernel_size=1, + act=None, ) + + if not shortcut: + self.short = ConvBNLayer( + in_channels=num_channels, + out_channels=num_filters * 4, + kernel_size=1, + stride=stride, ) + + self.shortcut = shortcut + + self._num_channels_out = num_filters * 4 + + def forward(self, inputs): + y = self.conv0(inputs) + conv1 = self.conv1(y) + conv2 = self.conv2(conv1) + + if self.shortcut: + short = inputs + else: + short = self.short(inputs) + + y = paddle.add(x=short, y=conv2) + y = F.relu(y) + return y + + +class BasicBlock(nn.Layer): + def __init__(self, + num_channels, + num_filters, + stride, + shortcut=True, + name=None): + super(BasicBlock, self).__init__() + self.stride = stride + self.conv0 = ConvBNLayer( + in_channels=num_channels, + out_channels=num_filters, + kernel_size=3, + stride=stride, + act="relu") + self.conv1 = ConvBNLayer( + in_channels=num_filters, + out_channels=num_filters, + kernel_size=3, + act=None) + + if not shortcut: + self.short = ConvBNLayer( + in_channels=num_channels, + out_channels=num_filters, + kernel_size=1, + stride=stride) + + self.shortcut = shortcut + + def forward(self, inputs): + y = self.conv0(inputs) + conv1 = self.conv1(y) + + if self.shortcut: + short = inputs + else: + short = self.short(inputs) + y = paddle.add(x=short, y=conv1) + y = F.relu(y) + return y + + +class ResNet(nn.Layer): + def __init__(self, + in_channels=3, + layers=50, + out_indices=None, + dcn_stage=None): + super(ResNet, self).__init__() + + self.layers = layers + self.input_image_channel = in_channels + + supported_layers = [18, 34, 50, 101, 152] + assert layers in supported_layers, \ + "supported layers are {} but input layer is {}".format( + supported_layers, layers) + + if layers == 18: + depth = [2, 2, 2, 2] + elif layers == 34 or layers == 50: + depth = [3, 4, 6, 3] + elif layers == 101: + depth = [3, 4, 23, 3] + elif layers == 152: + depth = [3, 8, 36, 3] + num_channels = [64, 256, 512, + 1024] if layers >= 50 else [64, 64, 128, 256] + num_filters = [64, 128, 256, 512] + + self.dcn_stage = dcn_stage if dcn_stage is not None else [ + False, False, False, False + ] + self.out_indices = out_indices if out_indices is not None else [ + 0, 1, 2, 3 + ] + + self.conv = ConvBNLayer( + in_channels=self.input_image_channel, + out_channels=64, + kernel_size=7, + stride=2, + act="relu", ) + self.pool2d_max = MaxPool2D( + kernel_size=3, + stride=2, + padding=1, ) + + self.stages = [] + self.out_channels = [] + if layers >= 50: + for block in range(len(depth)): + shortcut = False + block_list = [] + is_dcn = self.dcn_stage[block] + for i in range(depth[block]): + if layers in [101, 152] and block == 2: + if i == 0: + conv_name = "res" + str(block + 2) + "a" + else: + conv_name = "res" + str(block + 2) + "b" + str(i) + else: + conv_name = "res" + str(block + 2) + chr(97 + i) + bottleneck_block = self.add_sublayer( + conv_name, + BottleneckBlock( + num_channels=num_channels[block] + if i == 0 else num_filters[block] * 4, + num_filters=num_filters[block], + stride=2 if i == 0 and block != 0 else 1, + shortcut=shortcut, + is_dcn=is_dcn)) + block_list.append(bottleneck_block) + shortcut = True + if block in self.out_indices: + self.out_channels.append(num_filters[block] * 4) + self.stages.append(nn.Sequential(*block_list)) + else: + for block in range(len(depth)): + shortcut = False + block_list = [] + for i in range(depth[block]): + conv_name = "res" + str(block + 2) + chr(97 + i) + basic_block = self.add_sublayer( + conv_name, + BasicBlock( + num_channels=num_channels[block] + if i == 0 else num_filters[block], + num_filters=num_filters[block], + stride=2 if i == 0 and block != 0 else 1, + shortcut=shortcut)) + block_list.append(basic_block) + shortcut = True + if block in self.out_indices: + self.out_channels.append(num_filters[block]) + self.stages.append(nn.Sequential(*block_list)) + + def forward(self, inputs): + y = self.conv(inputs) + y = self.pool2d_max(y) + out = [] + for i, block in enumerate(self.stages): + y = block(y) + if i in self.out_indices: + out.append(y) + return out diff --git a/ppocr/modeling/backbones/det_resnet_vd.py b/ppocr/modeling/backbones/det_resnet_vd.py index 8c955a4af377374f21e7c09f0d10952f2fe1ceed..a421da0ab440e9b87c1c7efc7d2448f8f76ad205 100644 --- a/ppocr/modeling/backbones/det_resnet_vd.py +++ b/ppocr/modeling/backbones/det_resnet_vd.py @@ -25,7 +25,7 @@ from paddle.vision.ops import DeformConv2D from paddle.regularizer import L2Decay from paddle.nn.initializer import Normal, Constant, XavierUniform -__all__ = ["ResNet"] +__all__ = ["ResNet_vd", "ConvBNLayer", "DeformableConvV2"] class DeformableConvV2(nn.Layer): @@ -104,6 +104,7 @@ class ConvBNLayer(nn.Layer): kernel_size, stride=1, groups=1, + dcn_groups=1, is_vd_mode=False, act=None, is_dcn=False): @@ -128,7 +129,7 @@ class ConvBNLayer(nn.Layer): kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2, - groups=2, #groups, + groups=dcn_groups, #groups, bias_attr=False) self._batch_norm = nn.BatchNorm(out_channels, act=act) @@ -162,7 +163,8 @@ class BottleneckBlock(nn.Layer): kernel_size=3, stride=stride, act='relu', - is_dcn=is_dcn) + is_dcn=is_dcn, + dcn_groups=2) self.conv2 = ConvBNLayer( in_channels=out_channels, out_channels=out_channels * 4, @@ -238,14 +240,14 @@ class BasicBlock(nn.Layer): return y -class ResNet(nn.Layer): +class ResNet_vd(nn.Layer): def __init__(self, in_channels=3, layers=50, dcn_stage=None, out_indices=None, **kwargs): - super(ResNet, self).__init__() + super(ResNet_vd, self).__init__() self.layers = layers supported_layers = [18, 34, 50, 101, 152, 200] @@ -321,7 +323,6 @@ class ResNet(nn.Layer): for block in range(len(depth)): block_list = [] shortcut = False - # is_dcn = self.dcn_stage[block] for i in range(depth[block]): basic_block = self.add_sublayer( 'bb_%d_%d' % (block, i), diff --git a/ppocr/modeling/backbones/table_master_resnet.py b/ppocr/modeling/backbones/table_master_resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..dacf5ed26e5374b3c93c1a983be1d7b5b4c471fc --- /dev/null +++ b/ppocr/modeling/backbones/table_master_resnet.py @@ -0,0 +1,369 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This code is refer from: +https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/mmocr/models/textrecog/backbones/table_resnet_extra.py +""" + +import paddle +import paddle.nn as nn +import paddle.nn.functional as F + + +class BasicBlock(nn.Layer): + expansion = 1 + + def __init__(self, + inplanes, + planes, + stride=1, + downsample=None, + gcb_config=None): + super(BasicBlock, self).__init__() + self.conv1 = nn.Conv2D( + inplanes, + planes, + kernel_size=3, + stride=stride, + padding=1, + bias_attr=False) + self.bn1 = nn.BatchNorm2D(planes, momentum=0.9) + self.relu = nn.ReLU() + self.conv2 = nn.Conv2D( + planes, planes, kernel_size=3, stride=1, padding=1, bias_attr=False) + self.bn2 = nn.BatchNorm2D(planes, momentum=0.9) + self.downsample = downsample + self.stride = stride + self.gcb_config = gcb_config + + if self.gcb_config is not None: + gcb_ratio = gcb_config['ratio'] + gcb_headers = gcb_config['headers'] + att_scale = gcb_config['att_scale'] + fusion_type = gcb_config['fusion_type'] + self.context_block = MultiAspectGCAttention( + inplanes=planes, + ratio=gcb_ratio, + headers=gcb_headers, + att_scale=att_scale, + fusion_type=fusion_type) + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.gcb_config is not None: + out = self.context_block(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +def get_gcb_config(gcb_config, layer): + if gcb_config is None or not gcb_config['layers'][layer]: + return None + else: + return gcb_config + + +class TableResNetExtra(nn.Layer): + def __init__(self, layers, in_channels=3, gcb_config=None): + assert len(layers) >= 4 + + super(TableResNetExtra, self).__init__() + self.inplanes = 128 + self.conv1 = nn.Conv2D( + in_channels, + 64, + kernel_size=3, + stride=1, + padding=1, + bias_attr=False) + self.bn1 = nn.BatchNorm2D(64) + self.relu1 = nn.ReLU() + + self.conv2 = nn.Conv2D( + 64, 128, kernel_size=3, stride=1, padding=1, bias_attr=False) + self.bn2 = nn.BatchNorm2D(128) + self.relu2 = nn.ReLU() + + self.maxpool1 = nn.MaxPool2D(kernel_size=2, stride=2) + + self.layer1 = self._make_layer( + BasicBlock, + 256, + layers[0], + stride=1, + gcb_config=get_gcb_config(gcb_config, 0)) + + self.conv3 = nn.Conv2D( + 256, 256, kernel_size=3, stride=1, padding=1, bias_attr=False) + self.bn3 = nn.BatchNorm2D(256) + self.relu3 = nn.ReLU() + + self.maxpool2 = nn.MaxPool2D(kernel_size=2, stride=2) + + self.layer2 = self._make_layer( + BasicBlock, + 256, + layers[1], + stride=1, + gcb_config=get_gcb_config(gcb_config, 1)) + + self.conv4 = nn.Conv2D( + 256, 256, kernel_size=3, stride=1, padding=1, bias_attr=False) + self.bn4 = nn.BatchNorm2D(256) + self.relu4 = nn.ReLU() + + self.maxpool3 = nn.MaxPool2D(kernel_size=2, stride=2) + + self.layer3 = self._make_layer( + BasicBlock, + 512, + layers[2], + stride=1, + gcb_config=get_gcb_config(gcb_config, 2)) + + self.conv5 = nn.Conv2D( + 512, 512, kernel_size=3, stride=1, padding=1, bias_attr=False) + self.bn5 = nn.BatchNorm2D(512) + self.relu5 = nn.ReLU() + + self.layer4 = self._make_layer( + BasicBlock, + 512, + layers[3], + stride=1, + gcb_config=get_gcb_config(gcb_config, 3)) + + self.conv6 = nn.Conv2D( + 512, 512, kernel_size=3, stride=1, padding=1, bias_attr=False) + self.bn6 = nn.BatchNorm2D(512) + self.relu6 = nn.ReLU() + + self.out_channels = [256, 256, 512] + + def _make_layer(self, block, planes, blocks, stride=1, gcb_config=None): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2D( + self.inplanes, + planes * block.expansion, + kernel_size=1, + stride=stride, + bias_attr=False), + nn.BatchNorm2D(planes * block.expansion), ) + + layers = [] + layers.append( + block( + self.inplanes, + planes, + stride, + downsample, + gcb_config=gcb_config)) + self.inplanes = planes * block.expansion + for _ in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + f = [] + x = self.conv1(x) + + x = self.bn1(x) + x = self.relu1(x) + + x = self.conv2(x) + x = self.bn2(x) + x = self.relu2(x) + + x = self.maxpool1(x) + x = self.layer1(x) + + x = self.conv3(x) + x = self.bn3(x) + x = self.relu3(x) + f.append(x) + + x = self.maxpool2(x) + x = self.layer2(x) + + x = self.conv4(x) + x = self.bn4(x) + x = self.relu4(x) + f.append(x) + + x = self.maxpool3(x) + + x = self.layer3(x) + x = self.conv5(x) + x = self.bn5(x) + x = self.relu5(x) + + x = self.layer4(x) + x = self.conv6(x) + x = self.bn6(x) + x = self.relu6(x) + f.append(x) + return f + + +class MultiAspectGCAttention(nn.Layer): + def __init__(self, + inplanes, + ratio, + headers, + pooling_type='att', + att_scale=False, + fusion_type='channel_add'): + super(MultiAspectGCAttention, self).__init__() + assert pooling_type in ['avg', 'att'] + + assert fusion_type in ['channel_add', 'channel_mul', 'channel_concat'] + assert inplanes % headers == 0 and inplanes >= 8 # inplanes must be divided by headers evenly + + self.headers = headers + self.inplanes = inplanes + self.ratio = ratio + self.planes = int(inplanes * ratio) + self.pooling_type = pooling_type + self.fusion_type = fusion_type + self.att_scale = False + + self.single_header_inplanes = int(inplanes / headers) + + if pooling_type == 'att': + self.conv_mask = nn.Conv2D( + self.single_header_inplanes, 1, kernel_size=1) + self.softmax = nn.Softmax(axis=2) + else: + self.avg_pool = nn.AdaptiveAvgPool2D(1) + + if fusion_type == 'channel_add': + self.channel_add_conv = nn.Sequential( + nn.Conv2D( + self.inplanes, self.planes, kernel_size=1), + nn.LayerNorm([self.planes, 1, 1]), + nn.ReLU(), + nn.Conv2D( + self.planes, self.inplanes, kernel_size=1)) + elif fusion_type == 'channel_concat': + self.channel_concat_conv = nn.Sequential( + nn.Conv2D( + self.inplanes, self.planes, kernel_size=1), + nn.LayerNorm([self.planes, 1, 1]), + nn.ReLU(), + nn.Conv2D( + self.planes, self.inplanes, kernel_size=1)) + # for concat + self.cat_conv = nn.Conv2D( + 2 * self.inplanes, self.inplanes, kernel_size=1) + elif fusion_type == 'channel_mul': + self.channel_mul_conv = nn.Sequential( + nn.Conv2D( + self.inplanes, self.planes, kernel_size=1), + nn.LayerNorm([self.planes, 1, 1]), + nn.ReLU(), + nn.Conv2D( + self.planes, self.inplanes, kernel_size=1)) + + def spatial_pool(self, x): + batch, channel, height, width = x.shape + if self.pooling_type == 'att': + # [N*headers, C', H , W] C = headers * C' + x = x.reshape([ + batch * self.headers, self.single_header_inplanes, height, width + ]) + input_x = x + + # [N*headers, C', H * W] C = headers * C' + # input_x = input_x.view(batch, channel, height * width) + input_x = input_x.reshape([ + batch * self.headers, self.single_header_inplanes, + height * width + ]) + + # [N*headers, 1, C', H * W] + input_x = input_x.unsqueeze(1) + # [N*headers, 1, H, W] + context_mask = self.conv_mask(x) + # [N*headers, 1, H * W] + context_mask = context_mask.reshape( + [batch * self.headers, 1, height * width]) + + # scale variance + if self.att_scale and self.headers > 1: + context_mask = context_mask / paddle.sqrt( + self.single_header_inplanes) + + # [N*headers, 1, H * W] + context_mask = self.softmax(context_mask) + + # [N*headers, 1, H * W, 1] + context_mask = context_mask.unsqueeze(-1) + # [N*headers, 1, C', 1] = [N*headers, 1, C', H * W] * [N*headers, 1, H * W, 1] + context = paddle.matmul(input_x, context_mask) + + # [N, headers * C', 1, 1] + context = context.reshape( + [batch, self.headers * self.single_header_inplanes, 1, 1]) + else: + # [N, C, 1, 1] + context = self.avg_pool(x) + + return context + + def forward(self, x): + # [N, C, 1, 1] + context = self.spatial_pool(x) + + out = x + + if self.fusion_type == 'channel_mul': + # [N, C, 1, 1] + channel_mul_term = F.sigmoid(self.channel_mul_conv(context)) + out = out * channel_mul_term + elif self.fusion_type == 'channel_add': + # [N, C, 1, 1] + channel_add_term = self.channel_add_conv(context) + out = out + channel_add_term + else: + # [N, C, 1, 1] + channel_concat_term = self.channel_concat_conv(context) + + # use concat + _, C1, _, _ = channel_concat_term.shape + N, C2, H, W = out.shape + + out = paddle.concat( + [out, channel_concat_term.expand([-1, -1, H, W])], axis=1) + out = self.cat_conv(out) + out = F.layer_norm(out, [self.inplanes, H, W]) + out = F.relu(out) + + return out diff --git a/ppocr/modeling/backbones/vqa_layoutlm.py b/ppocr/modeling/backbones/vqa_layoutlm.py index ede5b7a35af65fac351277cefccd89b251f5cdb7..34dd9d10ea36758059448d96674d4d2c249d3ad0 100644 --- a/ppocr/modeling/backbones/vqa_layoutlm.py +++ b/ppocr/modeling/backbones/vqa_layoutlm.py @@ -43,9 +43,11 @@ class NLPBaseModel(nn.Layer): super(NLPBaseModel, self).__init__() if checkpoints is not None: self.model = model_class.from_pretrained(checkpoints) + elif isinstance(pretrained, (str, )) and os.path.exists(pretrained): + self.model = model_class.from_pretrained(pretrained) else: pretrained_model_name = pretrained_model_dict[base_model_class] - if pretrained: + if pretrained is True: base_model = base_model_class.from_pretrained( pretrained_model_name) else: @@ -74,9 +76,9 @@ class LayoutLMForSer(NLPBaseModel): def forward(self, x): x = self.model( input_ids=x[0], - bbox=x[2], - attention_mask=x[4], - token_type_ids=x[5], + bbox=x[1], + attention_mask=x[2], + token_type_ids=x[3], position_ids=None, output_hidden_states=False) return x @@ -96,13 +98,15 @@ class LayoutLMv2ForSer(NLPBaseModel): def forward(self, x): x = self.model( input_ids=x[0], - bbox=x[2], - image=x[3], - attention_mask=x[4], - token_type_ids=x[5], + bbox=x[1], + attention_mask=x[2], + token_type_ids=x[3], + image=x[4], position_ids=None, head_mask=None, labels=None) + if not self.training: + return x return x[0] @@ -120,13 +124,15 @@ class LayoutXLMForSer(NLPBaseModel): def forward(self, x): x = self.model( input_ids=x[0], - bbox=x[2], - image=x[3], - attention_mask=x[4], - token_type_ids=x[5], + bbox=x[1], + attention_mask=x[2], + token_type_ids=x[3], + image=x[4], position_ids=None, head_mask=None, labels=None) + if not self.training: + return x return x[0] @@ -140,12 +146,12 @@ class LayoutLMv2ForRe(NLPBaseModel): x = self.model( input_ids=x[0], bbox=x[1], - labels=None, - image=x[2], - attention_mask=x[3], - token_type_ids=x[4], + attention_mask=x[2], + token_type_ids=x[3], + image=x[4], position_ids=None, head_mask=None, + labels=None, entities=x[5], relations=x[6]) return x @@ -161,12 +167,12 @@ class LayoutXLMForRe(NLPBaseModel): x = self.model( input_ids=x[0], bbox=x[1], - labels=None, - image=x[2], - attention_mask=x[3], - token_type_ids=x[4], + attention_mask=x[2], + token_type_ids=x[3], + image=x[4], position_ids=None, head_mask=None, + labels=None, entities=x[5], relations=x[6]) return x diff --git a/ppocr/modeling/heads/__init__.py b/ppocr/modeling/heads/__init__.py index 14e6aab854d8942083f1e3466f554c0876bcf403..fcd146efbc378faeebd42534a994836789974c32 100755 --- a/ppocr/modeling/heads/__init__.py +++ b/ppocr/modeling/heads/__init__.py @@ -42,12 +42,13 @@ def build_head(config): from .kie_sdmgr_head import SDMGRHead from .table_att_head import TableAttentionHead + from .table_master_head import TableMasterHead support_dict = [ 'DBHead', 'PSEHead', 'FCEHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead', 'AttentionHead', 'SRNHead', 'PGHead', 'Transformer', 'TableAttentionHead', 'SARHead', 'AsterHead', 'SDMGRHead', 'PRENHead', - 'MultiHead', 'ABINetHead' + 'MultiHead', 'ABINetHead', 'TableMasterHead' ] #table head diff --git a/ppocr/modeling/heads/table_att_head.py b/ppocr/modeling/heads/table_att_head.py index e354f40d6518c1f7ca22e93694b1c6668fc003d2..4f39d6253d8d596fecdc4736666a6d3106601a82 100644 --- a/ppocr/modeling/heads/table_att_head.py +++ b/ppocr/modeling/heads/table_att_head.py @@ -21,6 +21,8 @@ import paddle.nn as nn import paddle.nn.functional as F import numpy as np +from .rec_att_head import AttentionGRUCell + class TableAttentionHead(nn.Layer): def __init__(self, @@ -28,21 +30,19 @@ class TableAttentionHead(nn.Layer): hidden_size, loc_type, in_max_len=488, - max_text_length=100, - max_elem_length=800, - max_cell_num=500, + max_text_length=800, + out_channels=30, + point_num=2, **kwargs): super(TableAttentionHead, self).__init__() self.input_size = in_channels[-1] self.hidden_size = hidden_size - self.elem_num = 30 + self.out_channels = out_channels self.max_text_length = max_text_length - self.max_elem_length = max_elem_length - self.max_cell_num = max_cell_num self.structure_attention_cell = AttentionGRUCell( - self.input_size, hidden_size, self.elem_num, use_gru=False) - self.structure_generator = nn.Linear(hidden_size, self.elem_num) + self.input_size, hidden_size, self.out_channels, use_gru=False) + self.structure_generator = nn.Linear(hidden_size, self.out_channels) self.loc_type = loc_type self.in_max_len = in_max_len @@ -50,12 +50,13 @@ class TableAttentionHead(nn.Layer): self.loc_generator = nn.Linear(hidden_size, 4) else: if self.in_max_len == 640: - self.loc_fea_trans = nn.Linear(400, self.max_elem_length + 1) + self.loc_fea_trans = nn.Linear(400, self.max_text_length + 1) elif self.in_max_len == 800: - self.loc_fea_trans = nn.Linear(625, self.max_elem_length + 1) + self.loc_fea_trans = nn.Linear(625, self.max_text_length + 1) else: - self.loc_fea_trans = nn.Linear(256, self.max_elem_length + 1) - self.loc_generator = nn.Linear(self.input_size + hidden_size, 4) + self.loc_fea_trans = nn.Linear(256, self.max_text_length + 1) + self.loc_generator = nn.Linear(self.input_size + hidden_size, + point_num * 2) def _char_to_onehot(self, input_char, onehot_dim): input_ont_hot = F.one_hot(input_char, onehot_dim) @@ -77,9 +78,9 @@ class TableAttentionHead(nn.Layer): output_hiddens = [] if self.training and targets is not None: structure = targets[0] - for i in range(self.max_elem_length + 1): + for i in range(self.max_text_length + 1): elem_onehots = self._char_to_onehot( - structure[:, i], onehot_dim=self.elem_num) + structure[:, i], onehot_dim=self.out_channels) (outputs, hidden), alpha = self.structure_attention_cell( hidden, fea, elem_onehots) output_hiddens.append(paddle.unsqueeze(outputs, axis=1)) @@ -102,11 +103,11 @@ class TableAttentionHead(nn.Layer): elem_onehots = None outputs = None alpha = None - max_elem_length = paddle.to_tensor(self.max_elem_length) + max_text_length = paddle.to_tensor(self.max_text_length) i = 0 - while i < max_elem_length + 1: + while i < max_text_length + 1: elem_onehots = self._char_to_onehot( - temp_elem, onehot_dim=self.elem_num) + temp_elem, onehot_dim=self.out_channels) (outputs, hidden), alpha = self.structure_attention_cell( hidden, fea, elem_onehots) output_hiddens.append(paddle.unsqueeze(outputs, axis=1)) @@ -128,119 +129,3 @@ class TableAttentionHead(nn.Layer): loc_preds = self.loc_generator(loc_concat) loc_preds = F.sigmoid(loc_preds) return {'structure_probs': structure_probs, 'loc_preds': loc_preds} - - -class AttentionGRUCell(nn.Layer): - def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False): - super(AttentionGRUCell, self).__init__() - self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False) - self.h2h = nn.Linear(hidden_size, hidden_size) - self.score = nn.Linear(hidden_size, 1, bias_attr=False) - self.rnn = nn.GRUCell( - input_size=input_size + num_embeddings, hidden_size=hidden_size) - self.hidden_size = hidden_size - - def forward(self, prev_hidden, batch_H, char_onehots): - batch_H_proj = self.i2h(batch_H) - prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden), axis=1) - res = paddle.add(batch_H_proj, prev_hidden_proj) - res = paddle.tanh(res) - e = self.score(res) - alpha = F.softmax(e, axis=1) - alpha = paddle.transpose(alpha, [0, 2, 1]) - context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1) - concat_context = paddle.concat([context, char_onehots], 1) - cur_hidden = self.rnn(concat_context, prev_hidden) - return cur_hidden, alpha - - -class AttentionLSTM(nn.Layer): - def __init__(self, in_channels, out_channels, hidden_size, **kwargs): - super(AttentionLSTM, self).__init__() - self.input_size = in_channels - self.hidden_size = hidden_size - self.num_classes = out_channels - - self.attention_cell = AttentionLSTMCell( - in_channels, hidden_size, out_channels, use_gru=False) - self.generator = nn.Linear(hidden_size, out_channels) - - def _char_to_onehot(self, input_char, onehot_dim): - input_ont_hot = F.one_hot(input_char, onehot_dim) - return input_ont_hot - - def forward(self, inputs, targets=None, batch_max_length=25): - batch_size = inputs.shape[0] - num_steps = batch_max_length - - hidden = (paddle.zeros((batch_size, self.hidden_size)), paddle.zeros( - (batch_size, self.hidden_size))) - output_hiddens = [] - - if targets is not None: - for i in range(num_steps): - # one-hot vectors for a i-th char - char_onehots = self._char_to_onehot( - targets[:, i], onehot_dim=self.num_classes) - hidden, alpha = self.attention_cell(hidden, inputs, - char_onehots) - - hidden = (hidden[1][0], hidden[1][1]) - output_hiddens.append(paddle.unsqueeze(hidden[0], axis=1)) - output = paddle.concat(output_hiddens, axis=1) - probs = self.generator(output) - - else: - targets = paddle.zeros(shape=[batch_size], dtype="int32") - probs = None - - for i in range(num_steps): - char_onehots = self._char_to_onehot( - targets, onehot_dim=self.num_classes) - hidden, alpha = self.attention_cell(hidden, inputs, - char_onehots) - probs_step = self.generator(hidden[0]) - hidden = (hidden[1][0], hidden[1][1]) - if probs is None: - probs = paddle.unsqueeze(probs_step, axis=1) - else: - probs = paddle.concat( - [probs, paddle.unsqueeze( - probs_step, axis=1)], axis=1) - - next_input = probs_step.argmax(axis=1) - - targets = next_input - - return probs - - -class AttentionLSTMCell(nn.Layer): - def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False): - super(AttentionLSTMCell, self).__init__() - self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False) - self.h2h = nn.Linear(hidden_size, hidden_size) - self.score = nn.Linear(hidden_size, 1, bias_attr=False) - if not use_gru: - self.rnn = nn.LSTMCell( - input_size=input_size + num_embeddings, hidden_size=hidden_size) - else: - self.rnn = nn.GRUCell( - input_size=input_size + num_embeddings, hidden_size=hidden_size) - - self.hidden_size = hidden_size - - def forward(self, prev_hidden, batch_H, char_onehots): - batch_H_proj = self.i2h(batch_H) - prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden[0]), axis=1) - res = paddle.add(batch_H_proj, prev_hidden_proj) - res = paddle.tanh(res) - e = self.score(res) - - alpha = F.softmax(e, axis=1) - alpha = paddle.transpose(alpha, [0, 2, 1]) - context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1) - concat_context = paddle.concat([context, char_onehots], 1) - cur_hidden = self.rnn(concat_context, prev_hidden) - - return cur_hidden, alpha diff --git a/ppocr/modeling/heads/table_master_head.py b/ppocr/modeling/heads/table_master_head.py new file mode 100644 index 0000000000000000000000000000000000000000..fddbcc63fcd6d5380f9fdd96f9ca85756d666442 --- /dev/null +++ b/ppocr/modeling/heads/table_master_head.py @@ -0,0 +1,281 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This code is refer from: +https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/mmocr/models/textrecog/decoders/master_decoder.py +""" + +import copy +import math +import paddle +from paddle import nn +from paddle.nn import functional as F + + +class TableMasterHead(nn.Layer): + """ + Split to two transformer header at the last layer. + Cls_layer is used to structure token classification. + Bbox_layer is used to regress bbox coord. + """ + + def __init__(self, + in_channels, + out_channels=30, + headers=8, + d_ff=2048, + dropout=0, + max_text_length=500, + point_num=2, + **kwargs): + super(TableMasterHead, self).__init__() + hidden_size = in_channels[-1] + self.layers = clones( + DecoderLayer(headers, hidden_size, dropout, d_ff), 2) + self.cls_layer = clones( + DecoderLayer(headers, hidden_size, dropout, d_ff), 1) + self.bbox_layer = clones( + DecoderLayer(headers, hidden_size, dropout, d_ff), 1) + self.cls_fc = nn.Linear(hidden_size, out_channels) + self.bbox_fc = nn.Sequential( + # nn.Linear(hidden_size, hidden_size), + nn.Linear(hidden_size, point_num * 2), + nn.Sigmoid()) + self.norm = nn.LayerNorm(hidden_size) + self.embedding = Embeddings(d_model=hidden_size, vocab=out_channels) + self.positional_encoding = PositionalEncoding(d_model=hidden_size) + + self.SOS = out_channels - 3 + self.PAD = out_channels - 1 + self.out_channels = out_channels + self.point_num = point_num + self.max_text_length = max_text_length + + def make_mask(self, tgt): + """ + Make mask for self attention. + :param src: [b, c, h, l_src] + :param tgt: [b, l_tgt] + :return: + """ + trg_pad_mask = (tgt != self.PAD).unsqueeze(1).unsqueeze(3) + + tgt_len = paddle.shape(tgt)[1] + trg_sub_mask = paddle.tril( + paddle.ones( + ([tgt_len, tgt_len]), dtype=paddle.float32)) + + tgt_mask = paddle.logical_and( + trg_pad_mask.astype(paddle.float32), trg_sub_mask) + return tgt_mask.astype(paddle.float32) + + def decode(self, input, feature, src_mask, tgt_mask): + # main process of transformer decoder. + x = self.embedding(input) # x: 1*x*512, feature: 1*3600,512 + x = self.positional_encoding(x) + + # origin transformer layers + for i, layer in enumerate(self.layers): + x = layer(x, feature, src_mask, tgt_mask) + + # cls head + for layer in self.cls_layer: + cls_x = layer(x, feature, src_mask, tgt_mask) + cls_x = self.norm(cls_x) + + # bbox head + for layer in self.bbox_layer: + bbox_x = layer(x, feature, src_mask, tgt_mask) + bbox_x = self.norm(bbox_x) + return self.cls_fc(cls_x), self.bbox_fc(bbox_x) + + def greedy_forward(self, SOS, feature): + input = SOS + output = paddle.zeros( + [input.shape[0], self.max_text_length + 1, self.out_channels]) + bbox_output = paddle.zeros( + [input.shape[0], self.max_text_length + 1, self.point_num * 2]) + max_text_length = paddle.to_tensor(self.max_text_length) + for i in range(max_text_length + 1): + target_mask = self.make_mask(input) + out_step, bbox_output_step = self.decode(input, feature, None, + target_mask) + prob = F.softmax(out_step, axis=-1) + next_word = prob.argmax(axis=2, dtype="int64") + input = paddle.concat( + [input, next_word[:, -1].unsqueeze(-1)], axis=1) + if i == self.max_text_length: + output = out_step + bbox_output = bbox_output_step + return output, bbox_output + + def forward_train(self, out_enc, targets): + # x is token of label + # feat is feature after backbone before pe. + # out_enc is feature after pe. + padded_targets = targets[0] + src_mask = None + tgt_mask = self.make_mask(padded_targets[:, :-1]) + output, bbox_output = self.decode(padded_targets[:, :-1], out_enc, + src_mask, tgt_mask) + return {'structure_probs': output, 'loc_preds': bbox_output} + + def forward_test(self, out_enc): + batch_size = out_enc.shape[0] + SOS = paddle.zeros([batch_size, 1], dtype='int64') + self.SOS + output, bbox_output = self.greedy_forward(SOS, out_enc) + output = F.softmax(output) + return {'structure_probs': output, 'loc_preds': bbox_output} + + def forward(self, feat, targets=None): + feat = feat[-1] + b, c, h, w = feat.shape + feat = feat.reshape([b, c, h * w]) # flatten 2D feature map + feat = feat.transpose((0, 2, 1)) + out_enc = self.positional_encoding(feat) + if self.training: + return self.forward_train(out_enc, targets) + + return self.forward_test(out_enc) + + +class DecoderLayer(nn.Layer): + """ + Decoder is made of self attention, srouce attention and feed forward. + """ + + def __init__(self, headers, d_model, dropout, d_ff): + super(DecoderLayer, self).__init__() + self.self_attn = MultiHeadAttention(headers, d_model, dropout) + self.src_attn = MultiHeadAttention(headers, d_model, dropout) + self.feed_forward = FeedForward(d_model, d_ff, dropout) + self.sublayer = clones(SubLayerConnection(d_model, dropout), 3) + + def forward(self, x, feature, src_mask, tgt_mask): + x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) + x = self.sublayer[1]( + x, lambda x: self.src_attn(x, feature, feature, src_mask)) + return self.sublayer[2](x, self.feed_forward) + + +class MultiHeadAttention(nn.Layer): + def __init__(self, headers, d_model, dropout): + super(MultiHeadAttention, self).__init__() + + assert d_model % headers == 0 + self.d_k = int(d_model / headers) + self.headers = headers + self.linears = clones(nn.Linear(d_model, d_model), 4) + self.attn = None + self.dropout = nn.Dropout(dropout) + + def forward(self, query, key, value, mask=None): + B = query.shape[0] + + # 1) Do all the linear projections in batch from d_model => h x d_k + query, key, value = \ + [l(x).reshape([B, 0, self.headers, self.d_k]).transpose([0, 2, 1, 3]) + for l, x in zip(self.linears, (query, key, value))] + # 2) Apply attention on all the projected vectors in batch + x, self.attn = self_attention( + query, key, value, mask=mask, dropout=self.dropout) + x = x.transpose([0, 2, 1, 3]).reshape([B, 0, self.headers * self.d_k]) + return self.linears[-1](x) + + +class FeedForward(nn.Layer): + def __init__(self, d_model, d_ff, dropout): + super(FeedForward, self).__init__() + self.w_1 = nn.Linear(d_model, d_ff) + self.w_2 = nn.Linear(d_ff, d_model) + self.dropout = nn.Dropout(dropout) + + def forward(self, x): + return self.w_2(self.dropout(F.relu(self.w_1(x)))) + + +class SubLayerConnection(nn.Layer): + """ + A residual connection followed by a layer norm. + Note for code simplicity the norm is first as opposed to last. + """ + + def __init__(self, size, dropout): + super(SubLayerConnection, self).__init__() + self.norm = nn.LayerNorm(size) + self.dropout = nn.Dropout(dropout) + + def forward(self, x, sublayer): + return x + self.dropout(sublayer(self.norm(x))) + + +def masked_fill(x, mask, value): + mask = mask.astype(x.dtype) + return x * paddle.logical_not(mask).astype(x.dtype) + mask * value + + +def self_attention(query, key, value, mask=None, dropout=None): + """ + Compute 'Scale Dot Product Attention' + """ + d_k = value.shape[-1] + + score = paddle.matmul(query, key.transpose([0, 1, 3, 2]) / math.sqrt(d_k)) + if mask is not None: + # score = score.masked_fill(mask == 0, -1e9) # b, h, L, L + score = masked_fill(score, mask == 0, -6.55e4) # for fp16 + + p_attn = F.softmax(score, axis=-1) + + if dropout is not None: + p_attn = dropout(p_attn) + return paddle.matmul(p_attn, value), p_attn + + +def clones(module, N): + """ Produce N identical layers """ + return nn.LayerList([copy.deepcopy(module) for _ in range(N)]) + + +class Embeddings(nn.Layer): + def __init__(self, d_model, vocab): + super(Embeddings, self).__init__() + self.lut = nn.Embedding(vocab, d_model) + self.d_model = d_model + + def forward(self, *input): + x = input[0] + return self.lut(x) * math.sqrt(self.d_model) + + +class PositionalEncoding(nn.Layer): + """ Implement the PE function. """ + + def __init__(self, d_model, dropout=0., max_len=5000): + super(PositionalEncoding, self).__init__() + self.dropout = nn.Dropout(p=dropout) + + # Compute the positional encodings once in log space. + pe = paddle.zeros([max_len, d_model]) + position = paddle.arange(0, max_len).unsqueeze(1).astype('float32') + div_term = paddle.exp( + paddle.arange(0, d_model, 2) * -math.log(10000.0) / d_model) + pe[:, 0::2] = paddle.sin(position * div_term) + pe[:, 1::2] = paddle.cos(position * div_term) + pe = pe.unsqueeze(0) + self.register_buffer('pe', pe) + + def forward(self, feat, **kwargs): + feat = feat + self.pe[:, :paddle.shape(feat)[1]] # pe 1*5000*512 + return self.dropout(feat) diff --git a/ppocr/modeling/necks/db_fpn.py b/ppocr/modeling/necks/db_fpn.py index 93ed2dbfd1fac9bf2d163c54d23a20e16b537981..8c3f52a331db5daafab2a38c0a441edd44eb141d 100644 --- a/ppocr/modeling/necks/db_fpn.py +++ b/ppocr/modeling/necks/db_fpn.py @@ -105,9 +105,10 @@ class DSConv(nn.Layer): class DBFPN(nn.Layer): - def __init__(self, in_channels, out_channels, **kwargs): + def __init__(self, in_channels, out_channels, use_asf=False, **kwargs): super(DBFPN, self).__init__() self.out_channels = out_channels + self.use_asf = use_asf weight_attr = paddle.nn.initializer.KaimingUniform() self.in2_conv = nn.Conv2D( @@ -163,6 +164,9 @@ class DBFPN(nn.Layer): weight_attr=ParamAttr(initializer=weight_attr), bias_attr=False) + if self.use_asf is True: + self.asf = ASFBlock(self.out_channels, self.out_channels // 4) + def forward(self, x): c2, c3, c4, c5 = x @@ -187,6 +191,10 @@ class DBFPN(nn.Layer): p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1) fuse = paddle.concat([p5, p4, p3, p2], axis=1) + + if self.use_asf is True: + fuse = self.asf(fuse, [p5, p4, p3, p2]) + return fuse @@ -356,3 +364,64 @@ class LKPAN(nn.Layer): fuse = paddle.concat([p5, p4, p3, p2], axis=1) return fuse + + +class ASFBlock(nn.Layer): + """ + This code is refered from: + https://github.com/MhLiao/DB/blob/master/decoders/feature_attention.py + """ + + def __init__(self, in_channels, inter_channels, out_features_num=4): + """ + Adaptive Scale Fusion (ASF) block of DBNet++ + Args: + in_channels: the number of channels in the input data + inter_channels: the number of middle channels + out_features_num: the number of fused stages + """ + super(ASFBlock, self).__init__() + weight_attr = paddle.nn.initializer.KaimingUniform() + self.in_channels = in_channels + self.inter_channels = inter_channels + self.out_features_num = out_features_num + self.conv = nn.Conv2D(in_channels, inter_channels, 3, padding=1) + + self.spatial_scale = nn.Sequential( + #Nx1xHxW + nn.Conv2D( + in_channels=1, + out_channels=1, + kernel_size=3, + bias_attr=False, + padding=1, + weight_attr=ParamAttr(initializer=weight_attr)), + nn.ReLU(), + nn.Conv2D( + in_channels=1, + out_channels=1, + kernel_size=1, + bias_attr=False, + weight_attr=ParamAttr(initializer=weight_attr)), + nn.Sigmoid()) + + self.channel_scale = nn.Sequential( + nn.Conv2D( + in_channels=inter_channels, + out_channels=out_features_num, + kernel_size=1, + bias_attr=False, + weight_attr=ParamAttr(initializer=weight_attr)), + nn.Sigmoid()) + + def forward(self, fuse_features, features_list): + fuse_features = self.conv(fuse_features) + spatial_x = paddle.mean(fuse_features, axis=1, keepdim=True) + attention_scores = self.spatial_scale(spatial_x) + fuse_features + attention_scores = self.channel_scale(attention_scores) + assert len(features_list) == self.out_features_num + + out_list = [] + for i in range(self.out_features_num): + out_list.append(attention_scores[:, i:i + 1] * features_list[i]) + return paddle.concat(out_list, axis=1) diff --git a/ppocr/optimizer/learning_rate.py b/ppocr/optimizer/learning_rate.py index fe251f36e736bb1eac8a71a8115c941cbd7443e6..7d45109b4857871f52764c64d6d32e5322fc7c57 100644 --- a/ppocr/optimizer/learning_rate.py +++ b/ppocr/optimizer/learning_rate.py @@ -308,3 +308,81 @@ class Const(object): end_lr=self.learning_rate, last_epoch=self.last_epoch) return learning_rate + + +class DecayLearningRate(object): + """ + DecayLearningRate learning rate decay + new_lr = (lr - end_lr) * (1 - epoch/decay_steps)**power + end_lr + Args: + learning_rate(float): initial learning rate + step_each_epoch(int): steps each epoch + epochs(int): total training epochs + factor(float): Power of polynomial, should greater than 0.0 to get learning rate decay. Default: 0.9 + end_lr(float): The minimum final learning rate. Default: 0.0. + """ + + def __init__(self, + learning_rate, + step_each_epoch, + epochs, + factor=0.9, + end_lr=0, + **kwargs): + super(DecayLearningRate, self).__init__() + self.learning_rate = learning_rate + self.epochs = epochs + 1 + self.factor = factor + self.end_lr = 0 + self.decay_steps = step_each_epoch * epochs + + def __call__(self): + learning_rate = lr.PolynomialDecay( + learning_rate=self.learning_rate, + decay_steps=self.decay_steps, + power=self.factor, + end_lr=self.end_lr) + return learning_rate + + +class MultiStepDecay(object): + """ + Piecewise learning rate decay + Args: + step_each_epoch(int): steps each epoch + learning_rate (float): The initial learning rate. It is a python float number. + step_size (int): the interval to update. + gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . + It should be less than 1.0. Default: 0.1. + last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. + """ + + def __init__(self, + learning_rate, + milestones, + step_each_epoch, + gamma, + warmup_epoch=0, + last_epoch=-1, + **kwargs): + super(MultiStepDecay, self).__init__() + self.milestones = [step_each_epoch * e for e in milestones] + self.learning_rate = learning_rate + self.gamma = gamma + self.last_epoch = last_epoch + self.warmup_epoch = round(warmup_epoch * step_each_epoch) + + def __call__(self): + learning_rate = lr.MultiStepDecay( + learning_rate=self.learning_rate, + milestones=self.milestones, + gamma=self.gamma, + last_epoch=self.last_epoch) + if self.warmup_epoch > 0: + learning_rate = lr.LinearWarmup( + learning_rate=learning_rate, + warmup_steps=self.warmup_epoch, + start_lr=0.0, + end_lr=self.learning_rate, + last_epoch=self.last_epoch) + return learning_rate diff --git a/ppocr/postprocess/__init__.py b/ppocr/postprocess/__init__.py index 2635117c84298bcf77a77cdcab553278f2df642b..1d414eb2e8562925f461b0c6f6ce15774b81bb8f 100644 --- a/ppocr/postprocess/__init__.py +++ b/ppocr/postprocess/__init__.py @@ -26,12 +26,13 @@ from .east_postprocess import EASTPostProcess from .sast_postprocess import SASTPostProcess from .fce_postprocess import FCEPostProcess from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode, \ - DistillationCTCLabelDecode, TableLabelDecode, NRTRLabelDecode, SARLabelDecode, \ + DistillationCTCLabelDecode, NRTRLabelDecode, SARLabelDecode, \ SEEDLabelDecode, PRENLabelDecode, ViTSTRLabelDecode, ABINetLabelDecode from .cls_postprocess import ClsPostProcess from .pg_postprocess import PGPostProcess from .vqa_token_ser_layoutlm_postprocess import VQASerTokenLayoutLMPostProcess from .vqa_token_re_layoutlm_postprocess import VQAReTokenLayoutLMPostProcess +from .table_postprocess import TableMasterLabelDecode, TableLabelDecode def build_post_process(config, global_config=None): @@ -42,7 +43,8 @@ def build_post_process(config, global_config=None): 'DistillationDBPostProcess', 'NRTRLabelDecode', 'SARLabelDecode', 'SEEDLabelDecode', 'VQASerTokenLayoutLMPostProcess', 'VQAReTokenLayoutLMPostProcess', 'PRENLabelDecode', - 'DistillationSARLabelDecode', 'ViTSTRLabelDecode', 'ABINetLabelDecode' + 'DistillationSARLabelDecode', 'ViTSTRLabelDecode', 'ABINetLabelDecode', + 'TableMasterLabelDecode' ] if config['name'] == 'PSEPostProcess': diff --git a/ppocr/postprocess/db_postprocess.py b/ppocr/postprocess/db_postprocess.py index 27b428ef2e73c9abf81d3881b23979343c8595b2..5e2553c3a09f8359d1641d2d49b1bfb84df695ac 100755 --- a/ppocr/postprocess/db_postprocess.py +++ b/ppocr/postprocess/db_postprocess.py @@ -38,6 +38,7 @@ class DBPostProcess(object): unclip_ratio=2.0, use_dilation=False, score_mode="fast", + use_polygon=False, **kwargs): self.thresh = thresh self.box_thresh = box_thresh @@ -45,6 +46,7 @@ class DBPostProcess(object): self.unclip_ratio = unclip_ratio self.min_size = 3 self.score_mode = score_mode + self.use_polygon = use_polygon assert score_mode in [ "slow", "fast" ], "Score mode must be in [slow, fast] but got: {}".format(score_mode) @@ -52,6 +54,53 @@ class DBPostProcess(object): self.dilation_kernel = None if not use_dilation else np.array( [[1, 1], [1, 1]]) + def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height): + ''' + _bitmap: single map with shape (1, H, W), + whose values are binarized as {0, 1} + ''' + + bitmap = _bitmap + height, width = bitmap.shape + + boxes = [] + scores = [] + + contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), + cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) + + for contour in contours[:self.max_candidates]: + epsilon = 0.002 * cv2.arcLength(contour, True) + approx = cv2.approxPolyDP(contour, epsilon, True) + points = approx.reshape((-1, 2)) + if points.shape[0] < 4: + continue + + score = self.box_score_fast(pred, points.reshape(-1, 2)) + if self.box_thresh > score: + continue + + if points.shape[0] > 2: + box = self.unclip(points, self.unclip_ratio) + if len(box) > 1: + continue + else: + continue + box = box.reshape(-1, 2) + + _, sside = self.get_mini_boxes(box.reshape((-1, 1, 2))) + if sside < self.min_size + 2: + continue + + box = np.array(box) + box[:, 0] = np.clip( + np.round(box[:, 0] / width * dest_width), 0, dest_width) + box[:, 1] = np.clip( + np.round(box[:, 1] / height * dest_height), 0, dest_height) + boxes.append(box.tolist()) + scores.append(score) + return boxes, scores + def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height): ''' _bitmap: single map with shape (1, H, W), @@ -85,7 +134,7 @@ class DBPostProcess(object): if self.box_thresh > score: continue - box = self.unclip(points).reshape(-1, 1, 2) + box = self.unclip(points, self.unclip_ratio).reshape(-1, 1, 2) box, sside = self.get_mini_boxes(box) if sside < self.min_size + 2: continue @@ -99,8 +148,7 @@ class DBPostProcess(object): scores.append(score) return np.array(boxes, dtype=np.int16), scores - def unclip(self, box): - unclip_ratio = self.unclip_ratio + def unclip(self, box, unclip_ratio): poly = Polygon(box) distance = poly.area * unclip_ratio / poly.length offset = pyclipper.PyclipperOffset() @@ -185,8 +233,12 @@ class DBPostProcess(object): self.dilation_kernel) else: mask = segmentation[batch_index] - boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask, - src_w, src_h) + if self.use_polygon is True: + boxes, scores = self.polygons_from_bitmap(pred[batch_index], + mask, src_w, src_h) + else: + boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask, + src_w, src_h) boxes_batch.append({'points': boxes}) return boxes_batch @@ -202,6 +254,7 @@ class DistillationDBPostProcess(object): unclip_ratio=1.5, use_dilation=False, score_mode="fast", + use_polygon=False, **kwargs): self.model_name = model_name self.key = key @@ -211,7 +264,8 @@ class DistillationDBPostProcess(object): max_candidates=max_candidates, unclip_ratio=unclip_ratio, use_dilation=use_dilation, - score_mode=score_mode) + score_mode=score_mode, + use_polygon=use_polygon) def __call__(self, predicts, shape_list): results = {} diff --git a/ppocr/postprocess/pse_postprocess/pse_postprocess.py b/ppocr/postprocess/pse_postprocess/pse_postprocess.py index 34f1b8c9b5397a5513462468a9ee3d8530389607..962f3efe922c4a2656e0f44f478e1baf301a5542 100755 --- a/ppocr/postprocess/pse_postprocess/pse_postprocess.py +++ b/ppocr/postprocess/pse_postprocess/pse_postprocess.py @@ -58,6 +58,8 @@ class PSEPostProcess(object): kernels = (pred > self.thresh).astype('float32') text_mask = kernels[:, 0, :, :] + text_mask = paddle.unsqueeze(text_mask, axis=1) + kernels[:, 0:, :, :] = kernels[:, 0:, :, :] * text_mask score = score.numpy() diff --git a/ppocr/postprocess/rec_postprocess.py b/ppocr/postprocess/rec_postprocess.py index c77420ad19b76e203262568ba77f06ea248a1655..cc7c2cb379cc476943152507569f0b0066189c46 100644 --- a/ppocr/postprocess/rec_postprocess.py +++ b/ppocr/postprocess/rec_postprocess.py @@ -380,146 +380,6 @@ class SRNLabelDecode(BaseRecLabelDecode): return idx -class TableLabelDecode(object): - """ """ - - def __init__(self, character_dict_path, **kwargs): - list_character, list_elem = self.load_char_elem_dict( - character_dict_path) - list_character = self.add_special_char(list_character) - list_elem = self.add_special_char(list_elem) - self.dict_character = {} - self.dict_idx_character = {} - for i, char in enumerate(list_character): - self.dict_idx_character[i] = char - self.dict_character[char] = i - self.dict_elem = {} - self.dict_idx_elem = {} - for i, elem in enumerate(list_elem): - self.dict_idx_elem[i] = elem - self.dict_elem[elem] = i - - def load_char_elem_dict(self, character_dict_path): - list_character = [] - list_elem = [] - with open(character_dict_path, "rb") as fin: - lines = fin.readlines() - substr = lines[0].decode('utf-8').strip("\n").strip("\r\n").split( - "\t") - character_num = int(substr[0]) - elem_num = int(substr[1]) - for cno in range(1, 1 + character_num): - character = lines[cno].decode('utf-8').strip("\n").strip("\r\n") - list_character.append(character) - for eno in range(1 + character_num, 1 + character_num + elem_num): - elem = lines[eno].decode('utf-8').strip("\n").strip("\r\n") - list_elem.append(elem) - return list_character, list_elem - - def add_special_char(self, list_character): - self.beg_str = "sos" - self.end_str = "eos" - list_character = [self.beg_str] + list_character + [self.end_str] - return list_character - - def __call__(self, preds): - structure_probs = preds['structure_probs'] - loc_preds = preds['loc_preds'] - if isinstance(structure_probs, paddle.Tensor): - structure_probs = structure_probs.numpy() - if isinstance(loc_preds, paddle.Tensor): - loc_preds = loc_preds.numpy() - structure_idx = structure_probs.argmax(axis=2) - structure_probs = structure_probs.max(axis=2) - structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode( - structure_idx, structure_probs, 'elem') - res_html_code_list = [] - res_loc_list = [] - batch_num = len(structure_str) - for bno in range(batch_num): - res_loc = [] - for sno in range(len(structure_str[bno])): - text = structure_str[bno][sno] - if text in ['', ' 0 and tmp_elem_idx == end_idx: - break - if tmp_elem_idx in ignored_tokens: - continue - - char_list.append(current_dict[tmp_elem_idx]) - elem_pos_list.append(idx) - score_list.append(structure_probs[batch_idx, idx]) - elem_idx_list.append(tmp_elem_idx) - result_list.append(char_list) - result_pos_list.append(elem_pos_list) - result_score_list.append(score_list) - result_elem_idx_list.append(elem_idx_list) - return result_list, result_pos_list, result_score_list, result_elem_idx_list - - def get_ignored_tokens(self, char_or_elem): - beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem) - end_idx = self.get_beg_end_flag_idx("end", char_or_elem) - return [beg_idx, end_idx] - - def get_beg_end_flag_idx(self, beg_or_end, char_or_elem): - if char_or_elem == "char": - if beg_or_end == "beg": - idx = self.dict_character[self.beg_str] - elif beg_or_end == "end": - idx = self.dict_character[self.end_str] - else: - assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \ - % beg_or_end - elif char_or_elem == "elem": - if beg_or_end == "beg": - idx = self.dict_elem[self.beg_str] - elif beg_or_end == "end": - idx = self.dict_elem[self.end_str] - else: - assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \ - % beg_or_end - else: - assert False, "Unsupport type %s in char_or_elem" \ - % char_or_elem - return idx - - class SARLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ diff --git a/ppocr/postprocess/table_postprocess.py b/ppocr/postprocess/table_postprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..4396ec4f701478e7bdcdd8c7752738c5c8ef148d --- /dev/null +++ b/ppocr/postprocess/table_postprocess.py @@ -0,0 +1,160 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import paddle + +from .rec_postprocess import AttnLabelDecode + + +class TableLabelDecode(AttnLabelDecode): + """ """ + + def __init__(self, character_dict_path, **kwargs): + super(TableLabelDecode, self).__init__(character_dict_path) + self.td_token = ['', '', ''] + + def __call__(self, preds, batch=None): + structure_probs = preds['structure_probs'] + bbox_preds = preds['loc_preds'] + if isinstance(structure_probs, paddle.Tensor): + structure_probs = structure_probs.numpy() + if isinstance(bbox_preds, paddle.Tensor): + bbox_preds = bbox_preds.numpy() + shape_list = batch[-1] + result = self.decode(structure_probs, bbox_preds, shape_list) + if len(batch) == 1: # only contains shape + return result + + label_decode_result = self.decode_label(batch) + return result, label_decode_result + + def decode(self, structure_probs, bbox_preds, shape_list): + """convert text-label into text-index. + """ + ignored_tokens = self.get_ignored_tokens() + end_idx = self.dict[self.end_str] + + structure_idx = structure_probs.argmax(axis=2) + structure_probs = structure_probs.max(axis=2) + + structure_batch_list = [] + bbox_batch_list = [] + batch_size = len(structure_idx) + for batch_idx in range(batch_size): + structure_list = [] + bbox_list = [] + score_list = [] + for idx in range(len(structure_idx[batch_idx])): + char_idx = int(structure_idx[batch_idx][idx]) + if idx > 0 and char_idx == end_idx: + break + if char_idx in ignored_tokens: + continue + text = self.character[char_idx] + if text in self.td_token: + bbox = bbox_preds[batch_idx, idx] + bbox = self._bbox_decode(bbox, shape_list[batch_idx]) + bbox_list.append(bbox) + structure_list.append(text) + score_list.append(structure_probs[batch_idx, idx]) + structure_batch_list.append([structure_list, np.mean(score_list)]) + bbox_batch_list.append(np.array(bbox_list)) + result = { + 'bbox_batch_list': bbox_batch_list, + 'structure_batch_list': structure_batch_list, + } + return result + + def decode_label(self, batch): + """convert text-label into text-index. + """ + structure_idx = batch[1] + gt_bbox_list = batch[2] + shape_list = batch[-1] + ignored_tokens = self.get_ignored_tokens() + end_idx = self.dict[self.end_str] + + structure_batch_list = [] + bbox_batch_list = [] + batch_size = len(structure_idx) + for batch_idx in range(batch_size): + structure_list = [] + bbox_list = [] + for idx in range(len(structure_idx[batch_idx])): + char_idx = int(structure_idx[batch_idx][idx]) + if idx > 0 and char_idx == end_idx: + break + if char_idx in ignored_tokens: + continue + structure_list.append(self.character[char_idx]) + + bbox = gt_bbox_list[batch_idx][idx] + if bbox.sum() != 0: + bbox = self._bbox_decode(bbox, shape_list[batch_idx]) + bbox_list.append(bbox) + structure_batch_list.append(structure_list) + bbox_batch_list.append(bbox_list) + result = { + 'bbox_batch_list': bbox_batch_list, + 'structure_batch_list': structure_batch_list, + } + return result + + def _bbox_decode(self, bbox, shape): + h, w, ratio_h, ratio_w, pad_h, pad_w = shape + src_h = h / ratio_h + src_w = w / ratio_w + bbox[0::2] *= src_w + bbox[1::2] *= src_h + return bbox + + +class TableMasterLabelDecode(TableLabelDecode): + """ """ + + def __init__(self, character_dict_path, box_shape='ori', **kwargs): + super(TableMasterLabelDecode, self).__init__(character_dict_path) + self.box_shape = box_shape + assert box_shape in [ + 'ori', 'pad' + ], 'The shape used for box normalization must be ori or pad' + + def add_special_char(self, dict_character): + self.beg_str = '' + self.end_str = '' + self.unknown_str = '' + self.pad_str = '' + dict_character = dict_character + dict_character = dict_character + [ + self.unknown_str, self.beg_str, self.end_str, self.pad_str + ] + return dict_character + + def get_ignored_tokens(self): + pad_idx = self.dict[self.pad_str] + start_idx = self.dict[self.beg_str] + end_idx = self.dict[self.end_str] + unknown_idx = self.dict[self.unknown_str] + return [start_idx, end_idx, pad_idx, unknown_idx] + + def _bbox_decode(self, bbox, shape): + h, w, ratio_h, ratio_w, pad_h, pad_w = shape + if self.box_shape == 'pad': + h, w = pad_h, pad_w + bbox[0::2] *= w + bbox[1::2] *= h + bbox[0::2] /= ratio_w + bbox[1::2] /= ratio_h + return bbox diff --git a/ppocr/postprocess/vqa_token_ser_layoutlm_postprocess.py b/ppocr/postprocess/vqa_token_ser_layoutlm_postprocess.py index 782cdea6c58c69e0d728787e0e21e200c9e13790..8a6669f71f5ae6a7a16931e565b43355de5928d9 100644 --- a/ppocr/postprocess/vqa_token_ser_layoutlm_postprocess.py +++ b/ppocr/postprocess/vqa_token_ser_layoutlm_postprocess.py @@ -41,11 +41,13 @@ class VQASerTokenLayoutLMPostProcess(object): self.id2label_map_for_show[val] = key def __call__(self, preds, batch=None, *args, **kwargs): + if isinstance(preds, tuple): + preds = preds[0] if isinstance(preds, paddle.Tensor): preds = preds.numpy() if batch is not None: - return self._metric(preds, batch[1]) + return self._metric(preds, batch[5]) else: return self._infer(preds, **kwargs) @@ -63,11 +65,11 @@ class VQASerTokenLayoutLMPostProcess(object): j]]) return decode_out_list, label_decode_out_list - def _infer(self, preds, attention_masks, segment_offset_ids, ocr_infos): + def _infer(self, preds, segment_offset_ids, ocr_infos): results = [] - for pred, attention_mask, segment_offset_id, ocr_info in zip( - preds, attention_masks, segment_offset_ids, ocr_infos): + for pred, segment_offset_id, ocr_info in zip(preds, segment_offset_ids, + ocr_infos): pred = np.argmax(pred, axis=1) pred = [self.id2label_map[idx] for idx in pred] diff --git a/ppocr/utils/dict/table_master_structure_dict.txt b/ppocr/utils/dict/table_master_structure_dict.txt new file mode 100644 index 0000000000000000000000000000000000000000..95ab2539a70aca4f695c53a38cdc1c3e164fcfb3 --- /dev/null +++ b/ppocr/utils/dict/table_master_structure_dict.txt @@ -0,0 +1,39 @@ + + + + + + + + + + + colspan="2" + colspan="3" + + + rowspan="2" + colspan="4" + colspan="6" + rowspan="3" + colspan="9" + colspan="10" + colspan="7" + rowspan="4" + rowspan="5" + rowspan="9" + colspan="8" + rowspan="8" + rowspan="6" + rowspan="7" + rowspan="10" + + + + + + + + diff --git a/ppocr/utils/dict/table_structure_dict.txt b/ppocr/utils/dict/table_structure_dict.txt index 9c4531e5f3b8c498e70d3c2ea0471e5e746a2c30..8edb10b8817ad596af6c63b6b8fc5eb2349b7464 100644 --- a/ppocr/utils/dict/table_structure_dict.txt +++ b/ppocr/utils/dict/table_structure_dict.txt @@ -1,281 +1,3 @@ -277 28 1267 1186 - -V -a -r -i -b -l -e - -H -z -d - -t -o -9 -5 -% -C -I - -p - -v -u -* -A -g -( -m -n -) -0 -. -7 -1 -6 -≤ -> -8 -3 -– -2 -G -4 -M -F -T -y -f -s -L -w -c -U -h -D -S -Q -R -x -P -- -E -O -/ -k -, -+ -N -K -q -′ -[ -] -< -≥ - -− - -μ -± -J -j -W -_ -Δ -B -“ -: -Y -α -λ -; - - -? -∼ -= -° -# -̊ -̈ -̂ -’ -Z -X -∗ -— -β -' -† -~ -@ -" -γ -↓ -↑ -& -‡ -χ -” -σ -§ -| -¶ -‐ -× -$ -→ -√ -✓ -‘ -\ -∞ -π -• -® -^ -∆ -≧ - - -́ -♀ -♂ -‒ -⁎ -▲ -· -£ -φ -Ψ -ß -△ -☆ -▪ -η -€ -∧ -̃ -Φ -ρ -̄ -δ -‰ -̧ -Ω -♦ -{ -} -̀ -∑ -∫ -ø -κ -ε -¥ -※ -` -ω -Σ -➔ -‖ -Β -̸ -
 -─ -● -⩾ -Χ -Α -⋅ -◆ -★ -■ -ψ -ǂ -□ -ζ -! -Γ -↔ -θ -⁄ -〈 -〉 -― -υ -τ -⋆ -Ø -© -∥ -С -˂ -➢ -ɛ -⁡ -✗ -← -○ -¢ -⩽ -∖ -˃ -­ -≈ -Π -̌ -≦ -∅ -ᅟ - - -∣ -¤ -♯ -̆ -ξ -÷ -▼ - -ι -ν -║ - - -◦ -​ -◊ -∙ -« -» -ł -ı -Θ -∈ -„ -∘ -✔ -̇ -æ -ʹ -ˆ -♣ -⇓ -∩ -⊕ -⇒ -⇑ -̨ -Ι -Λ -⋯ -А -⋮ @@ -303,2457 +25,4 @@ $ rowspan="8" rowspan="6" rowspan="7" - rowspan="10" -0 2924682 -1 3405345 -2 2363468 -3 2709165 -4 4078680 -5 3250792 -6 1923159 -7 1617890 -8 1450532 -9 1717624 -10 1477550 -11 1489223 -12 915528 -13 819193 -14 593660 -15 518924 -16 682065 -17 494584 -18 400591 -19 396421 -20 340994 -21 280688 -22 250328 -23 226786 -24 199927 -25 182707 -26 164629 -27 141613 -28 127554 -29 116286 -30 107682 -31 96367 -32 88002 -33 79234 -34 72186 -35 65921 -36 60374 -37 55976 -38 52166 -39 47414 -40 44932 -41 41279 -42 38232 -43 35463 -44 33703 -45 30557 -46 29639 -47 27000 -48 25447 -49 23186 -50 22093 -51 20412 -52 19844 -53 18261 -54 17561 -55 16499 -56 15597 -57 14558 -58 14372 -59 13445 -60 13514 -61 12058 -62 11145 -63 10767 -64 10370 -65 9630 -66 9337 -67 8881 -68 8727 -69 8060 -70 7994 -71 7740 -72 7189 -73 6729 -74 6749 -75 6548 -76 6321 -77 5957 -78 5740 -79 5407 -80 5370 -81 5035 -82 4921 -83 4656 -84 4600 -85 4519 -86 4277 -87 4023 -88 3939 -89 3910 -90 3861 -91 3560 -92 3483 -93 3406 -94 3346 -95 3229 -96 3122 -97 3086 -98 3001 -99 2884 -100 2822 -101 2677 -102 2670 -103 2610 -104 2452 -105 2446 -106 2400 -107 2300 -108 2316 -109 2196 -110 2089 -111 2083 -112 2041 -113 1881 -114 1838 -115 1896 -116 1795 -117 1786 -118 1743 -119 1765 -120 1750 -121 1683 -122 1563 -123 1499 -124 1513 -125 1462 -126 1388 -127 1441 -128 1417 -129 1392 -130 1306 -131 1321 -132 1274 -133 1294 -134 1240 -135 1126 -136 1157 -137 1130 -138 1084 -139 1130 -140 1083 -141 1040 -142 980 -143 1031 -144 974 -145 980 -146 932 -147 898 -148 960 -149 907 -150 852 -151 912 -152 859 -153 847 -154 876 -155 792 -156 791 -157 765 -158 788 -159 787 -160 744 -161 673 -162 683 -163 697 -164 666 -165 680 -166 632 -167 677 -168 657 -169 618 -170 587 -171 585 -172 567 -173 549 -174 562 -175 548 -176 542 -177 539 -178 542 -179 549 -180 547 -181 526 -182 525 -183 514 -184 512 -185 505 -186 515 -187 467 -188 475 -189 458 -190 435 -191 443 -192 427 -193 424 -194 404 -195 389 -196 429 -197 404 -198 386 -199 351 -200 388 -201 408 -202 361 -203 346 -204 324 -205 361 -206 363 -207 364 -208 323 -209 336 -210 342 -211 315 -212 325 -213 328 -214 314 -215 327 -216 320 -217 300 -218 295 -219 315 -220 310 -221 295 -222 275 -223 248 -224 274 -225 232 -226 293 -227 259 -228 286 -229 263 -230 242 -231 214 -232 261 -233 231 -234 211 -235 250 -236 233 -237 206 -238 224 -239 210 -240 233 -241 223 -242 216 -243 222 -244 207 -245 212 -246 196 -247 205 -248 201 -249 202 -250 211 -251 201 -252 215 -253 179 -254 163 -255 179 -256 191 -257 188 -258 196 -259 150 -260 154 -261 176 -262 211 -263 166 -264 171 -265 165 -266 149 -267 182 -268 159 -269 161 -270 164 -271 161 -272 141 -273 151 -274 127 -275 129 -276 142 -277 158 -278 148 -279 135 -280 127 -281 134 -282 138 -283 131 -284 126 -285 125 -286 130 -287 126 -288 135 -289 125 -290 135 -291 131 -292 95 -293 135 -294 106 -295 117 -296 136 -297 128 -298 128 -299 118 -300 109 -301 112 -302 117 -303 108 -304 120 -305 100 -306 95 -307 108 -308 112 -309 77 -310 120 -311 104 -312 109 -313 89 -314 98 -315 82 -316 98 -317 93 -318 77 -319 93 -320 77 -321 98 -322 93 -323 86 -324 89 -325 73 -326 70 -327 71 -328 77 -329 87 -330 77 -331 93 -332 100 -333 83 -334 72 -335 74 -336 69 -337 77 -338 68 -339 78 -340 90 -341 98 -342 75 -343 80 -344 63 -345 71 -346 83 -347 66 -348 71 -349 70 -350 62 -351 62 -352 59 -353 63 -354 62 -355 52 -356 64 -357 64 -358 56 -359 49 -360 57 -361 63 -362 60 -363 68 -364 62 -365 55 -366 54 -367 40 -368 75 -369 70 -370 53 -371 58 -372 57 -373 55 -374 69 -375 57 -376 53 -377 43 -378 45 -379 47 -380 56 -381 51 -382 59 -383 51 -384 43 -385 34 -386 57 -387 49 -388 39 -389 46 -390 48 -391 43 -392 40 -393 54 -394 50 -395 41 -396 43 -397 33 -398 27 -399 49 -400 44 -401 44 -402 38 -403 30 -404 32 -405 37 -406 39 -407 42 -408 53 -409 39 -410 34 -411 31 -412 32 -413 52 -414 27 -415 41 -416 34 -417 36 -418 50 -419 35 -420 32 -421 33 -422 45 -423 35 -424 40 -425 29 -426 41 -427 40 -428 39 -429 32 -430 31 -431 34 -432 29 -433 27 -434 26 -435 22 -436 34 -437 28 -438 30 -439 38 -440 35 -441 36 -442 36 -443 27 -444 24 -445 33 -446 31 -447 25 -448 33 -449 27 -450 32 -451 46 -452 31 -453 35 -454 35 -455 34 -456 26 -457 21 -458 25 -459 26 -460 24 -461 27 -462 33 -463 30 -464 35 -465 21 -466 32 -467 19 -468 27 -469 16 -470 28 -471 26 -472 27 -473 26 -474 25 -475 25 -476 27 -477 20 -478 28 -479 22 -480 23 -481 16 -482 25 -483 27 -484 19 -485 23 -486 19 -487 15 -488 15 -489 23 -490 24 -491 19 -492 20 -493 18 -494 17 -495 30 -496 28 -497 20 -498 29 -499 17 -500 19 -501 21 -502 15 -503 24 -504 15 -505 19 -506 25 -507 16 -508 23 -509 26 -510 21 -511 15 -512 12 -513 16 -514 18 -515 24 -516 26 -517 18 -518 8 -519 25 -520 14 -521 8 -522 24 -523 20 -524 18 -525 15 -526 13 -527 17 -528 18 -529 22 -530 21 -531 9 -532 16 -533 17 -534 13 -535 17 -536 15 -537 13 -538 20 -539 13 -540 19 -541 29 -542 10 -543 8 -544 18 -545 13 -546 9 -547 18 -548 10 -549 18 -550 18 -551 9 -552 9 -553 15 -554 13 -555 15 -556 14 -557 14 -558 18 -559 8 -560 13 -561 9 -562 7 -563 12 -564 6 -565 9 -566 9 -567 18 -568 9 -569 10 -570 13 -571 14 -572 13 -573 21 -574 8 -575 16 -576 12 -577 9 -578 16 -579 17 -580 22 -581 6 -582 14 -583 13 -584 15 -585 11 -586 13 -587 5 -588 12 -589 13 -590 15 -591 13 -592 15 -593 12 -594 7 -595 18 -596 12 -597 13 -598 13 -599 13 -600 12 -601 12 -602 10 -603 11 -604 6 -605 6 -606 2 -607 9 -608 8 -609 12 -610 9 -611 12 -612 13 -613 12 -614 14 -615 9 -616 8 -617 9 -618 14 -619 13 -620 12 -621 6 -622 8 -623 8 -624 8 -625 12 -626 8 -627 7 -628 5 -629 8 -630 12 -631 6 -632 10 -633 10 -634 7 -635 8 -636 9 -637 6 -638 9 -639 4 -640 12 -641 4 -642 3 -643 11 -644 10 -645 6 -646 12 -647 12 -648 4 -649 4 -650 9 -651 8 -652 6 -653 5 -654 14 -655 10 -656 11 -657 8 -658 5 -659 5 -660 9 -661 13 -662 4 -663 5 -664 9 -665 11 -666 12 -667 7 -668 13 -669 2 -670 1 -671 7 -672 7 -673 7 -674 10 -675 9 -676 6 -677 5 -678 7 -679 6 -680 3 -681 3 -682 4 -683 9 -684 8 -685 5 -686 3 -687 11 -688 9 -689 2 -690 6 -691 5 -692 9 -693 5 -694 6 -695 5 -696 9 -697 8 -698 3 -699 7 -700 5 -701 9 -702 8 -703 7 -704 2 -705 3 -706 7 -707 6 -708 6 -709 10 -710 2 -711 10 -712 6 -713 7 -714 5 -715 6 -716 4 -717 6 -718 8 -719 4 -720 6 -721 7 -722 5 -723 7 -724 3 -725 10 -726 10 -727 3 -728 7 -729 7 -730 5 -731 2 -732 1 -733 5 -734 1 -735 5 -736 6 -737 2 -738 2 -739 3 -740 7 -741 2 -742 7 -743 4 -744 5 -745 4 -746 5 -747 3 -748 1 -749 4 -750 4 -751 2 -752 4 -753 6 -754 6 -755 6 -756 3 -757 2 -758 5 -759 5 -760 3 -761 4 -762 2 -763 1 -764 8 -765 3 -766 4 -767 3 -768 1 -769 5 -770 3 -771 3 -772 4 -773 4 -774 1 -775 3 -776 2 -777 2 -778 3 -779 3 -780 1 -781 4 -782 3 -783 4 -784 6 -785 3 -786 5 -787 4 -788 2 -789 4 -790 5 -791 4 -792 6 -794 4 -795 1 -796 1 -797 4 -798 2 -799 3 -800 3 -801 1 -802 5 -803 5 -804 3 -805 3 -806 3 -807 4 -808 4 -809 2 -811 5 -812 4 -813 6 -814 3 -815 2 -816 2 -817 3 -818 5 -819 3 -820 1 -821 1 -822 4 -823 3 -824 4 -825 8 -826 3 -827 5 -828 5 -829 3 -830 6 -831 3 -832 4 -833 8 -834 5 -835 3 -836 3 -837 2 -838 4 -839 2 -840 1 -841 3 -842 2 -843 1 -844 3 -846 4 -847 4 -848 3 -849 3 -850 2 -851 3 -853 1 -854 4 -855 4 -856 2 -857 4 -858 1 -859 2 -860 5 -861 1 -862 1 -863 4 -864 2 -865 2 -867 5 -868 1 -869 4 -870 1 -871 1 -872 1 -873 2 -875 5 -876 3 -877 1 -878 3 -879 3 -880 3 -881 2 -882 1 -883 6 -884 2 -885 2 -886 1 -887 1 -888 3 -889 2 -890 2 -891 3 -892 1 -893 3 -894 1 -895 5 -896 1 -897 3 -899 2 -900 2 -902 1 -903 2 -904 4 -905 4 -906 3 -907 1 -908 1 -909 2 -910 5 -911 2 -912 3 -914 1 -915 1 -916 2 -918 2 -919 2 -920 4 -921 4 -922 1 -923 1 -924 4 -925 5 -926 1 -928 2 -929 1 -930 1 -931 1 -932 1 -933 1 -934 2 -935 1 -936 1 -937 1 -938 2 -939 1 -941 1 -942 4 -944 2 -945 2 -946 2 -947 1 -948 1 -950 1 -951 2 -953 1 -954 2 -955 1 -956 1 -957 2 -958 1 -960 3 -962 4 -963 1 -964 1 -965 3 -966 2 -967 2 -968 1 -969 3 -970 3 -972 1 -974 4 -975 3 -976 3 -977 2 -979 2 -980 1 -981 1 -983 5 -984 1 -985 3 -986 1 -987 2 -988 4 -989 2 -991 2 -992 2 -993 1 -994 1 -996 2 -997 2 -998 1 -999 3 -1000 2 -1001 1 -1002 3 -1003 3 -1004 2 -1005 3 -1006 1 -1007 2 -1009 1 -1011 1 -1013 3 -1014 1 -1016 2 -1017 1 -1018 1 -1019 1 -1020 4 -1021 1 -1022 2 -1025 1 -1026 1 -1027 2 -1028 1 -1030 1 -1031 2 -1032 4 -1034 3 -1035 2 -1036 1 -1038 1 -1039 1 -1040 1 -1041 1 -1042 2 -1043 1 -1044 2 -1045 4 -1048 1 -1050 1 -1051 1 -1052 2 -1054 1 -1055 3 -1056 2 -1057 1 -1059 1 -1061 2 -1063 1 -1064 1 -1065 1 -1066 1 -1067 1 -1068 1 -1069 2 -1074 1 -1075 1 -1077 1 -1078 1 -1079 1 -1082 1 -1085 1 -1088 1 -1090 1 -1091 1 -1092 2 -1094 2 -1097 2 -1098 1 -1099 2 -1101 2 -1102 1 -1104 1 -1105 1 -1107 1 -1109 1 -1111 2 -1112 1 -1114 2 -1115 2 -1116 2 -1117 1 -1118 1 -1119 1 -1120 1 -1122 1 -1123 1 -1127 1 -1128 3 -1132 2 -1138 3 -1142 1 -1145 4 -1150 1 -1153 2 -1154 1 -1158 1 -1159 1 -1163 1 -1165 1 -1169 2 -1174 1 -1176 1 -1177 1 -1178 2 -1179 1 -1180 2 -1181 1 -1182 1 -1183 2 -1185 1 -1187 1 -1191 2 -1193 1 -1195 3 -1196 1 -1201 3 -1203 1 -1206 1 -1210 1 -1213 1 -1214 1 -1215 2 -1218 1 -1220 1 -1221 1 -1225 1 -1226 1 -1233 2 -1241 1 -1243 1 -1249 1 -1250 2 -1251 1 -1254 1 -1255 2 -1260 1 -1268 1 -1270 1 -1273 1 -1274 1 -1277 1 -1284 1 -1287 1 -1291 1 -1292 2 -1294 1 -1295 2 -1297 1 -1298 1 -1301 1 -1307 1 -1308 3 -1311 2 -1313 1 -1316 1 -1321 1 -1324 1 -1325 1 -1330 1 -1333 1 -1334 1 -1338 2 -1340 1 -1341 1 -1342 1 -1343 1 -1345 1 -1355 1 -1357 1 -1360 2 -1375 1 -1376 1 -1380 1 -1383 1 -1387 1 -1389 1 -1393 1 -1394 1 -1396 1 -1398 1 -1410 1 -1414 1 -1419 1 -1425 1 -1434 1 -1435 1 -1438 1 -1439 1 -1447 1 -1455 2 -1460 1 -1461 1 -1463 1 -1466 1 -1470 1 -1473 1 -1478 1 -1480 1 -1483 1 -1484 1 -1485 2 -1492 2 -1499 1 -1509 1 -1512 1 -1513 1 -1523 1 -1524 1 -1525 2 -1529 1 -1539 1 -1544 1 -1568 1 -1584 1 -1591 1 -1598 1 -1600 1 -1604 1 -1614 1 -1617 1 -1621 1 -1622 1 -1626 1 -1638 1 -1648 1 -1658 1 -1661 1 -1679 1 -1682 1 -1693 1 -1700 1 -1705 1 -1707 1 -1722 1 -1728 1 -1758 1 -1762 1 -1763 1 -1775 1 -1776 1 -1801 1 -1810 1 -1812 1 -1827 1 -1834 1 -1846 1 -1847 1 -1848 1 -1851 1 -1862 1 -1866 1 -1877 2 -1884 1 -1888 1 -1903 1 -1912 1 -1925 1 -1938 1 -1955 1 -1998 1 -2054 1 -2058 1 -2065 1 -2069 1 -2076 1 -2089 1 -2104 1 -2111 1 -2133 1 -2138 1 -2156 1 -2204 1 -2212 1 -2237 1 -2246 2 -2298 1 -2304 1 -2360 1 -2400 1 -2481 1 -2544 1 -2586 1 -2622 1 -2666 1 -2682 1 -2725 1 -2920 1 -3997 1 -4019 1 -5211 1 -12 19 -14 1 -16 401 -18 2 -20 421 -22 557 -24 625 -26 50 -28 4481 -30 52 -32 550 -34 5840 -36 4644 -38 87 -40 5794 -41 33 -42 571 -44 11805 -46 4711 -47 7 -48 597 -49 12 -50 678 -51 2 -52 14715 -53 3 -54 7322 -55 3 -56 508 -57 39 -58 3486 -59 11 -60 8974 -61 45 -62 1276 -63 4 -64 15693 -65 15 -66 657 -67 13 -68 6409 -69 10 -70 3188 -71 25 -72 1889 -73 27 -74 10370 -75 9 -76 12432 -77 23 -78 520 -79 15 -80 1534 -81 29 -82 2944 -83 23 -84 12071 -85 36 -86 1502 -87 10 -88 10978 -89 11 -90 889 -91 16 -92 4571 -93 17 -94 7855 -95 21 -96 2271 -97 33 -98 1423 -99 15 -100 11096 -101 21 -102 4082 -103 13 -104 5442 -105 25 -106 2113 -107 26 -108 3779 -109 43 -110 1294 -111 29 -112 7860 -113 29 -114 4965 -115 22 -116 7898 -117 25 -118 1772 -119 28 -120 1149 -121 38 -122 1483 -123 32 -124 10572 -125 25 -126 1147 -127 31 -128 1699 -129 22 -130 5533 -131 22 -132 4669 -133 34 -134 3777 -135 10 -136 5412 -137 21 -138 855 -139 26 -140 2485 -141 46 -142 1970 -143 27 -144 6565 -145 40 -146 933 -147 15 -148 7923 -149 16 -150 735 -151 23 -152 1111 -153 33 -154 3714 -155 27 -156 2445 -157 30 -158 3367 -159 10 -160 4646 -161 27 -162 990 -163 23 -164 5679 -165 25 -166 2186 -167 17 -168 899 -169 32 -170 1034 -171 22 -172 6185 -173 32 -174 2685 -175 17 -176 1354 -177 38 -178 1460 -179 15 -180 3478 -181 20 -182 958 -183 20 -184 6055 -185 23 -186 2180 -187 15 -188 1416 -189 30 -190 1284 -191 22 -192 1341 -193 21 -194 2413 -195 18 -196 4984 -197 13 -198 830 -199 22 -200 1834 -201 19 -202 2238 -203 9 -204 3050 -205 22 -206 616 -207 17 -208 2892 -209 22 -210 711 -211 30 -212 2631 -213 19 -214 3341 -215 21 -216 987 -217 26 -218 823 -219 9 -220 3588 -221 20 -222 692 -223 7 -224 2925 -225 31 -226 1075 -227 16 -228 2909 -229 18 -230 673 -231 20 -232 2215 -233 14 -234 1584 -235 21 -236 1292 -237 29 -238 1647 -239 25 -240 1014 -241 30 -242 1648 -243 19 -244 4465 -245 10 -246 787 -247 11 -248 480 -249 25 -250 842 -251 15 -252 1219 -253 23 -254 1508 -255 8 -256 3525 -257 16 -258 490 -259 12 -260 1678 -261 14 -262 822 -263 16 -264 1729 -265 28 -266 604 -267 11 -268 2572 -269 7 -270 1242 -271 15 -272 725 -273 18 -274 1983 -275 13 -276 1662 -277 19 -278 491 -279 12 -280 1586 -281 14 -282 563 -283 10 -284 2363 -285 10 -286 656 -287 14 -288 725 -289 28 -290 871 -291 9 -292 2606 -293 12 -294 961 -295 9 -296 478 -297 13 -298 1252 -299 10 -300 736 -301 19 -302 466 -303 13 -304 2254 -305 12 -306 486 -307 14 -308 1145 -309 13 -310 955 -311 13 -312 1235 -313 13 -314 931 -315 14 -316 1768 -317 11 -318 330 -319 10 -320 539 -321 23 -322 570 -323 12 -324 1789 -325 13 -326 884 -327 5 -328 1422 -329 14 -330 317 -331 11 -332 509 -333 13 -334 1062 -335 12 -336 577 -337 27 -338 378 -339 10 -340 2313 -341 9 -342 391 -343 13 -344 894 -345 17 -346 664 -347 9 -348 453 -349 6 -350 363 -351 15 -352 1115 -353 13 -354 1054 -355 8 -356 1108 -357 12 -358 354 -359 7 -360 363 -361 16 -362 344 -363 11 -364 1734 -365 12 -366 265 -367 10 -368 969 -369 16 -370 316 -371 12 -372 757 -373 7 -374 563 -375 15 -376 857 -377 9 -378 469 -379 9 -380 385 -381 12 -382 921 -383 15 -384 764 -385 14 -386 246 -387 6 -388 1108 -389 14 -390 230 -391 8 -392 266 -393 11 -394 641 -395 8 -396 719 -397 9 -398 243 -399 4 -400 1108 -401 7 -402 229 -403 7 -404 903 -405 7 -406 257 -407 12 -408 244 -409 3 -410 541 -411 6 -412 744 -413 8 -414 419 -415 8 -416 388 -417 19 -418 470 -419 14 -420 612 -421 6 -422 342 -423 3 -424 1179 -425 3 -426 116 -427 14 -428 207 -429 6 -430 255 -431 4 -432 288 -433 12 -434 343 -435 6 -436 1015 -437 3 -438 538 -439 10 -440 194 -441 6 -442 188 -443 15 -444 524 -445 7 -446 214 -447 7 -448 574 -449 6 -450 214 -451 5 -452 635 -453 9 -454 464 -455 5 -456 205 -457 9 -458 163 -459 2 -460 558 -461 4 -462 171 -463 14 -464 444 -465 11 -466 543 -467 5 -468 388 -469 6 -470 141 -471 4 -472 647 -473 3 -474 210 -475 4 -476 193 -477 7 -478 195 -479 7 -480 443 -481 10 -482 198 -483 3 -484 816 -485 6 -486 128 -487 9 -488 215 -489 9 -490 328 -491 7 -492 158 -493 11 -494 335 -495 8 -496 435 -497 6 -498 174 -499 1 -500 373 -501 5 -502 140 -503 7 -504 330 -505 9 -506 149 -507 5 -508 642 -509 3 -510 179 -511 3 -512 159 -513 8 -514 204 -515 7 -516 306 -517 4 -518 110 -519 5 -520 326 -521 6 -522 305 -523 6 -524 294 -525 7 -526 268 -527 5 -528 149 -529 4 -530 133 -531 2 -532 513 -533 10 -534 116 -535 5 -536 258 -537 4 -538 113 -539 4 -540 138 -541 6 -542 116 -544 485 -545 4 -546 93 -547 9 -548 299 -549 3 -550 256 -551 6 -552 92 -553 3 -554 175 -555 6 -556 253 -557 7 -558 95 -559 2 -560 128 -561 4 -562 206 -563 2 -564 465 -565 3 -566 69 -567 3 -568 157 -569 7 -570 97 -571 8 -572 118 -573 5 -574 130 -575 4 -576 301 -577 6 -578 177 -579 2 -580 397 -581 3 -582 80 -583 1 -584 128 -585 5 -586 52 -587 2 -588 72 -589 1 -590 84 -591 6 -592 323 -593 11 -594 77 -595 5 -596 205 -597 1 -598 244 -599 4 -600 69 -601 3 -602 89 -603 5 -604 254 -605 6 -606 147 -607 3 -608 83 -609 3 -610 77 -611 3 -612 194 -613 1 -614 98 -615 3 -616 243 -617 3 -618 50 -619 8 -620 188 -621 4 -622 67 -623 4 -624 123 -625 2 -626 50 -627 1 -628 239 -629 2 -630 51 -631 4 -632 65 -633 5 -634 188 -636 81 -637 3 -638 46 -639 3 -640 103 -641 1 -642 136 -643 3 -644 188 -645 3 -646 58 -648 122 -649 4 -650 47 -651 2 -652 155 -653 4 -654 71 -655 1 -656 71 -657 3 -658 50 -659 2 -660 177 -661 5 -662 66 -663 2 -664 183 -665 3 -666 50 -667 2 -668 53 -669 2 -670 115 -672 66 -673 2 -674 47 -675 1 -676 197 -677 2 -678 46 -679 3 -680 95 -681 3 -682 46 -683 3 -684 107 -685 1 -686 86 -687 2 -688 158 -689 4 -690 51 -691 1 -692 80 -694 56 -695 4 -696 40 -698 43 -699 3 -700 95 -701 2 -702 51 -703 2 -704 133 -705 1 -706 100 -707 2 -708 121 -709 2 -710 15 -711 3 -712 35 -713 2 -714 20 -715 3 -716 37 -717 2 -718 78 -720 55 -721 1 -722 42 -723 2 -724 218 -725 3 -726 23 -727 2 -728 26 -729 1 -730 64 -731 2 -732 65 -734 24 -735 2 -736 53 -737 1 -738 32 -739 1 -740 60 -742 81 -743 1 -744 77 -745 1 -746 47 -747 1 -748 62 -749 1 -750 19 -751 1 -752 86 -753 3 -754 40 -756 55 -757 2 -758 38 -759 1 -760 101 -761 1 -762 22 -764 67 -765 2 -766 35 -767 1 -768 38 -769 1 -770 22 -771 1 -772 82 -773 1 -774 73 -776 29 -777 1 -778 55 -780 23 -781 1 -782 16 -784 84 -785 3 -786 28 -788 59 -789 1 -790 33 -791 3 -792 24 -794 13 -795 1 -796 110 -797 2 -798 15 -800 22 -801 3 -802 29 -803 1 -804 87 -806 21 -808 29 -810 48 -812 28 -813 1 -814 58 -815 1 -816 48 -817 1 -818 31 -819 1 -820 66 -822 17 -823 2 -824 58 -826 10 -827 2 -828 25 -829 1 -830 29 -831 1 -832 63 -833 1 -834 26 -835 3 -836 52 -837 1 -838 18 -840 27 -841 2 -842 12 -843 1 -844 83 -845 1 -846 7 -847 1 -848 10 -850 26 -852 25 -853 1 -854 15 -856 27 -858 32 -859 1 -860 15 -862 43 -864 32 -865 1 -866 6 -868 39 -870 11 -872 25 -873 1 -874 10 -875 1 -876 20 -877 2 -878 19 -879 1 -880 30 -882 11 -884 53 -886 25 -887 1 -888 28 -890 6 -892 36 -894 10 -896 13 -898 14 -900 31 -902 14 -903 2 -904 43 -906 25 -908 9 -910 11 -911 1 -912 16 -913 1 -914 24 -916 27 -918 6 -920 15 -922 27 -923 1 -924 23 -926 13 -928 42 -929 1 -930 3 -932 27 -934 17 -936 8 -937 1 -938 11 -940 33 -942 4 -943 1 -944 18 -946 15 -948 13 -950 18 -952 12 -954 11 -956 21 -958 10 -960 13 -962 5 -964 32 -966 13 -968 8 -970 8 -971 1 -972 23 -973 2 -974 12 -975 1 -976 22 -978 7 -979 1 -980 14 -982 8 -984 22 -985 1 -986 6 -988 17 -989 1 -990 6 -992 13 -994 19 -996 11 -998 4 -1000 9 -1002 2 -1004 14 -1006 5 -1008 3 -1010 9 -1012 29 -1014 6 -1016 22 -1017 1 -1018 8 -1019 1 -1020 7 -1022 6 -1023 1 -1024 10 -1026 2 -1028 8 -1030 11 -1031 2 -1032 8 -1034 9 -1036 13 -1038 12 -1040 12 -1042 3 -1044 12 -1046 3 -1048 11 -1050 2 -1051 1 -1052 2 -1054 11 -1056 6 -1058 8 -1059 1 -1060 23 -1062 6 -1063 1 -1064 8 -1066 3 -1068 6 -1070 8 -1071 1 -1072 5 -1074 3 -1076 5 -1078 3 -1080 11 -1081 1 -1082 7 -1084 18 -1086 4 -1087 1 -1088 3 -1090 3 -1092 7 -1094 3 -1096 12 -1098 6 -1099 1 -1100 2 -1102 6 -1104 14 -1106 3 -1108 6 -1110 5 -1112 2 -1114 8 -1116 3 -1118 3 -1120 7 -1122 10 -1124 6 -1126 8 -1128 1 -1130 4 -1132 3 -1134 2 -1136 5 -1138 5 -1140 8 -1142 3 -1144 7 -1146 3 -1148 11 -1150 1 -1152 5 -1154 1 -1156 5 -1158 1 -1160 5 -1162 3 -1164 6 -1165 1 -1166 1 -1168 4 -1169 1 -1170 3 -1171 1 -1172 2 -1174 5 -1176 3 -1177 1 -1180 8 -1182 2 -1184 4 -1186 2 -1188 3 -1190 2 -1192 5 -1194 6 -1196 1 -1198 2 -1200 2 -1204 10 -1206 2 -1208 9 -1210 1 -1214 6 -1216 3 -1218 4 -1220 9 -1221 2 -1222 1 -1224 5 -1226 4 -1228 8 -1230 1 -1232 1 -1234 3 -1236 5 -1240 3 -1242 1 -1244 3 -1245 1 -1246 4 -1248 6 -1250 2 -1252 7 -1256 3 -1258 2 -1260 2 -1262 3 -1264 4 -1265 1 -1266 1 -1270 1 -1271 1 -1272 2 -1274 3 -1276 3 -1278 1 -1280 3 -1284 1 -1286 1 -1290 1 -1292 3 -1294 1 -1296 7 -1300 2 -1302 4 -1304 3 -1306 2 -1308 2 -1312 1 -1314 1 -1316 3 -1318 2 -1320 1 -1324 8 -1326 1 -1330 1 -1331 1 -1336 2 -1338 1 -1340 3 -1341 1 -1344 1 -1346 2 -1347 1 -1348 3 -1352 1 -1354 2 -1356 1 -1358 1 -1360 3 -1362 1 -1364 4 -1366 1 -1370 1 -1372 3 -1380 2 -1384 2 -1388 2 -1390 2 -1392 2 -1394 1 -1396 1 -1398 1 -1400 2 -1402 1 -1404 1 -1406 1 -1410 1 -1412 5 -1418 1 -1420 1 -1424 1 -1432 2 -1434 2 -1442 3 -1444 5 -1448 1 -1454 1 -1456 1 -1460 3 -1462 4 -1468 1 -1474 1 -1476 1 -1478 2 -1480 1 -1486 2 -1488 1 -1492 1 -1496 1 -1500 3 -1503 1 -1506 1 -1512 2 -1516 1 -1522 1 -1524 2 -1534 4 -1536 1 -1538 1 -1540 2 -1544 2 -1548 1 -1556 1 -1560 1 -1562 1 -1564 2 -1566 1 -1568 1 -1570 1 -1572 1 -1576 1 -1590 1 -1594 1 -1604 1 -1608 1 -1614 1 -1622 1 -1624 2 -1628 1 -1629 1 -1636 1 -1642 1 -1654 2 -1660 1 -1664 1 -1670 1 -1684 4 -1698 1 -1732 3 -1742 1 -1752 1 -1760 1 -1764 1 -1772 2 -1798 1 -1808 1 -1820 1 -1852 1 -1856 1 -1874 1 -1902 1 -1908 1 -1952 1 -2004 1 -2018 1 -2020 1 -2028 1 -2174 1 -2233 1 -2244 1 -2280 1 -2290 1 -2352 1 -2604 1 -4190 1 + rowspan="10" \ No newline at end of file diff --git a/ppocr/utils/utility.py b/ppocr/utils/utility.py index 4a25ff8b2fa182faaf4f4ce8909c9ec2e9b55ccc..b881fcab20bc5ca076a0002bd72349768c7d881a 100755 --- a/ppocr/utils/utility.py +++ b/ppocr/utils/utility.py @@ -91,18 +91,19 @@ def check_and_read_gif(img_path): def load_vqa_bio_label_maps(label_map_path): with open(label_map_path, "r", encoding='utf-8') as fin: lines = fin.readlines() - lines = [line.strip() for line in lines] - if "O" not in lines: - lines.insert(0, "O") - labels = [] - for line in lines: - if line == "O": - labels.append("O") - else: - labels.append("B-" + line) - labels.append("I-" + line) - label2id_map = {label: idx for idx, label in enumerate(labels)} - id2label_map = {idx: label for idx, label in enumerate(labels)} + old_lines = [line.strip() for line in lines] + lines = ["O"] + for line in old_lines: + # "O" has already been in lines + if line.upper() in ["OTHER", "OTHERS", "IGNORE"]: + continue + lines.append(line) + labels = ["O"] + for line in lines[1:]: + labels.append("B-" + line) + labels.append("I-" + line) + label2id_map = {label.upper(): idx for idx, label in enumerate(labels)} + id2label_map = {idx: label.upper() for idx, label in enumerate(labels)} return label2id_map, id2label_map diff --git a/ppocr/utils/visual.py b/ppocr/utils/visual.py index 7a8c1674a74f89299de59f7cd120b4577a7499d8..e0fbf06abb471c294cb268520fb99bca1a6b1d61 100644 --- a/ppocr/utils/visual.py +++ b/ppocr/utils/visual.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +import cv2 import os import numpy as np from PIL import Image, ImageDraw, ImageFont @@ -19,7 +20,7 @@ from PIL import Image, ImageDraw, ImageFont def draw_ser_results(image, ocr_results, font_path="doc/fonts/simfang.ttf", - font_size=18): + font_size=14): np.random.seed(2021) color = (np.random.permutation(range(255)), np.random.permutation(range(255)), @@ -40,9 +41,15 @@ def draw_ser_results(image, if ocr_info["pred_id"] not in color_map: continue color = color_map[ocr_info["pred_id"]] - text = "{}: {}".format(ocr_info["pred"], ocr_info["text"]) + text = "{}: {}".format(ocr_info["pred"], ocr_info["transcription"]) - draw_box_txt(ocr_info["bbox"], text, draw, font, font_size, color) + if "bbox" in ocr_info: + # draw with ocr engine + bbox = ocr_info["bbox"] + else: + # draw with ocr groundtruth + bbox = trans_poly_to_bbox(ocr_info["points"]) + draw_box_txt(bbox, text, draw, font, font_size, color) img_new = Image.blend(image, img_new, 0.5) return np.array(img_new) @@ -62,6 +69,14 @@ def draw_box_txt(bbox, text, draw, font, font_size, color): draw.text((bbox[0][0] + 1, start_y), text, fill=(255, 255, 255), font=font) +def trans_poly_to_bbox(poly): + x1 = np.min([p[0] for p in poly]) + x2 = np.max([p[0] for p in poly]) + y1 = np.min([p[1] for p in poly]) + y2 = np.max([p[1] for p in poly]) + return [x1, y1, x2, y2] + + def draw_re_results(image, result, font_path="doc/fonts/simfang.ttf", @@ -80,10 +95,10 @@ def draw_re_results(image, color_line = (0, 255, 0) for ocr_info_head, ocr_info_tail in result: - draw_box_txt(ocr_info_head["bbox"], ocr_info_head["text"], draw, font, - font_size, color_head) - draw_box_txt(ocr_info_tail["bbox"], ocr_info_tail["text"], draw, font, - font_size, color_tail) + draw_box_txt(ocr_info_head["bbox"], ocr_info_head["transcription"], + draw, font, font_size, color_head) + draw_box_txt(ocr_info_tail["bbox"], ocr_info_tail["transcription"], + draw, font, font_size, color_tail) center_head = ( (ocr_info_head['bbox'][0] + ocr_info_head['bbox'][2]) // 2, @@ -96,3 +111,16 @@ def draw_re_results(image, img_new = Image.blend(image, img_new, 0.5) return np.array(img_new) + + +def draw_rectangle(img_path, boxes, use_xywh=False): + img = cv2.imread(img_path) + img_show = img.copy() + for box in boxes.astype(int): + if use_xywh: + x, y, w, h = box + x1, y1, x2, y2 = x - w // 2, y - h // 2, x + w // 2, y + h // 2 + else: + x1, y1, x2, y2 = box + cv2.rectangle(img_show, (x1, y1), (x2, y2), (255, 0, 0), 2) + return img_show \ No newline at end of file diff --git a/ppstructure/docs/kie.md b/ppstructure/docs/kie.md index 35498b33478d1010fd2548dfcb8586b4710723a1..315dd9f7bafa6b6160489eab330e8d278b2d119d 100644 --- a/ppstructure/docs/kie.md +++ b/ppstructure/docs/kie.md @@ -16,7 +16,7 @@ SDMGR是一个关键信息提取算法,将每个检测到的文本区域分类 训练和测试的数据采用wildreceipt数据集,通过如下指令下载数据集: ``` -wget https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/wildreceipt.tar && tar xf wildreceipt.tar +wget https://paddleocr.bj.bcebos.com/ppstructure/dataset/wildreceipt.tar && tar xf wildreceipt.tar ``` 执行预测: diff --git a/ppstructure/docs/kie_en.md b/ppstructure/docs/kie_en.md index 1fe38b0b399e9290526dafa5409673dc87026db7..7b3752223dd765e780d56d146c90bd0f892aac7b 100644 --- a/ppstructure/docs/kie_en.md +++ b/ppstructure/docs/kie_en.md @@ -15,7 +15,7 @@ This section provides a tutorial example on how to quickly use, train, and evalu [Wildreceipt dataset](https://paperswithcode.com/dataset/wildreceipt) is used for this tutorial. It contains 1765 photos, with 25 classes, and 50000 text boxes, which can be downloaded by wget: ```shell -wget https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/wildreceipt.tar && tar xf wildreceipt.tar +wget https://paddleocr.bj.bcebos.com/ppstructure/dataset/wildreceipt.tar && tar xf wildreceipt.tar ``` Download the pretrained model and predict the result: diff --git a/ppstructure/docs/models_list.md b/ppstructure/docs/models_list.md index c7dab999ff6e370c56c5495e22e91f117b3d1275..42d44009dad1ba1b07bb410c199993c6f79f3d5d 100644 --- a/ppstructure/docs/models_list.md +++ b/ppstructure/docs/models_list.md @@ -1,11 +1,11 @@ # PP-Structure 系列模型列表 -- [1. 版面分析模型](#1) -- [2. OCR和表格识别模型](#2) - - [2.1 OCR](#21) - - [2.2 表格识别模型](#22) -- [3. VQA模型](#3) -- [4. KIE模型](#4) +- [1. 版面分析模型](#1-版面分析模型) +- [2. OCR和表格识别模型](#2-ocr和表格识别模型) + - [2.1 OCR](#21-ocr) + - [2.2 表格识别模型](#22-表格识别模型) +- [3. VQA模型](#3-vqa模型) +- [4. KIE模型](#4-kie模型) @@ -35,18 +35,18 @@ |模型名称|模型简介|推理模型大小|下载地址| | --- | --- | --- | --- | -|en_ppocr_mobile_v2.0_table_structure|PubLayNet数据集训练的英文表格场景的表格结构预测|18.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) | +|en_ppocr_mobile_v2.0_table_structure|PubTabNet数据集训练的英文表格场景的表格结构预测|18.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) | ## 3. VQA模型 |模型名称|模型简介|推理模型大小|下载地址| | --- | --- | --- | --- | -|ser_LayoutXLM_xfun_zh|基于LayoutXLM在xfun中文数据集上训练的SER模型|1.4G|[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar) | -|re_LayoutXLM_xfun_zh|基于LayoutXLM在xfun中文数据集上训练的RE模型|1.4G|[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar) | -|ser_LayoutLMv2_xfun_zh|基于LayoutLMv2在xfun中文数据集上训练的SER模型|778M|[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh.tar) | +|ser_LayoutXLM_xfun_zh|基于LayoutXLM在xfun中文数据集上训练的SER模型|1.4G|[推理模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar) | +|re_LayoutXLM_xfun_zh|基于LayoutXLM在xfun中文数据集上训练的RE模型|1.4G|[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar) | +|ser_LayoutLMv2_xfun_zh|基于LayoutLMv2在xfun中文数据集上训练的SER模型|778M|[推理模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh.tar) | |re_LayoutLMv2_xfun_zh|基于LayoutLMv2在xfun中文数据集上训练的RE模型|765M|[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutLMv2_xfun_zh.tar) | -|ser_LayoutLM_xfun_zh|基于LayoutLM在xfun中文数据集上训练的SER模型|430M|[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar) | +|ser_LayoutLM_xfun_zh|基于LayoutLM在xfun中文数据集上训练的SER模型|430M|[推理模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar) | ## 4. KIE模型 diff --git a/ppstructure/docs/models_list_en.md b/ppstructure/docs/models_list_en.md index b92c10c241df72c85649b64f915b4266cd3fe410..e133a0bb2a9b017207b5e92ea444aba4633a7457 100644 --- a/ppstructure/docs/models_list_en.md +++ b/ppstructure/docs/models_list_en.md @@ -1,11 +1,11 @@ # PP-Structure Model list -- [1. Layout Analysis](#1) -- [2. OCR and Table Recognition](#2) - - [2.1 OCR](#21) - - [2.2 Table Recognition](#22) -- [3. VQA](#3) -- [4. KIE](#4) +- [1. Layout Analysis](#1-layout-analysis) +- [2. OCR and Table Recognition](#2-ocr-and-table-recognition) + - [2.1 OCR](#21-ocr) + - [2.2 Table Recognition](#22-table-recognition) +- [3. VQA](#3-vqa) +- [4. KIE](#4-kie) @@ -42,11 +42,11 @@ If you need to use other OCR models, you can download the model in [PP-OCR model |model| description |inference model size|download| | --- |----------------------------------------------------------------| --- | --- | -|ser_LayoutXLM_xfun_zh| SER model trained on xfun Chinese dataset based on LayoutXLM |1.4G|[inference model coming soon]() / [trained model](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar) | -|re_LayoutXLM_xfun_zh| Re model trained on xfun Chinese dataset based on LayoutXLM |1.4G|[inference model coming soon]() / [trained model](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar) | -|ser_LayoutLMv2_xfun_zh| SER model trained on xfun Chinese dataset based on LayoutXLMv2 |778M|[inference model coming soon]() / [trained model](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh.tar) | +|ser_LayoutXLM_xfun_zh| SER model trained on xfun Chinese dataset based on LayoutXLM |1.4G|[inference model](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar) | +|re_LayoutXLM_xfun_zh| Re model trained on xfun Chinese dataset based on LayoutXLM |1.4G|[inference model coming soon]() / [trained model](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar) | +|ser_LayoutLMv2_xfun_zh| SER model trained on xfun Chinese dataset based on LayoutXLMv2 |778M|[inference model](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh.tar) | |re_LayoutLMv2_xfun_zh| Re model trained on xfun Chinese dataset based on LayoutXLMv2 |765M|[inference model coming soon]() / [trained model](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutLMv2_xfun_zh.tar) | -|ser_LayoutLM_xfun_zh| SER model trained on xfun Chinese dataset based on LayoutLM |430M|[inference model coming soon]() / [trained model](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar) | +|ser_LayoutLM_xfun_zh| SER model trained on xfun Chinese dataset based on LayoutLM |430M|[inference model](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar) | ## 4. KIE diff --git a/ppstructure/table/predict_structure.py b/ppstructure/table/predict_structure.py index 0179c614ae4864677576f6073f291282fb772988..7a7d3169d567493b4707b63c75cec07485cf5acb 100755 --- a/ppstructure/table/predict_structure.py +++ b/ppstructure/table/predict_structure.py @@ -23,43 +23,63 @@ os.environ["FLAGS_allocator_strategy"] = 'auto_growth' import cv2 import numpy as np import time +import json import tools.infer.utility as utility from ppocr.data import create_operators, transform from ppocr.postprocess import build_post_process from ppocr.utils.logging import get_logger from ppocr.utils.utility import get_image_file_list, check_and_read_gif +from ppocr.utils.visual import draw_rectangle from ppstructure.utility import parse_args logger = get_logger() +def build_pre_process_list(args): + resize_op = {'ResizeTableImage': {'max_len': args.table_max_len, }} + pad_op = { + 'PaddingTableImage': { + 'size': [args.table_max_len, args.table_max_len] + } + } + normalize_op = { + 'NormalizeImage': { + 'std': [0.229, 0.224, 0.225] if + args.table_algorithm not in ['TableMaster'] else [0.5, 0.5, 0.5], + 'mean': [0.485, 0.456, 0.406] if + args.table_algorithm not in ['TableMaster'] else [0.5, 0.5, 0.5], + 'scale': '1./255.', + 'order': 'hwc' + } + } + to_chw_op = {'ToCHWImage': None} + keep_keys_op = {'KeepKeys': {'keep_keys': ['image', 'shape']}} + if args.table_algorithm not in ['TableMaster']: + pre_process_list = [ + resize_op, normalize_op, pad_op, to_chw_op, keep_keys_op + ] + else: + pre_process_list = [ + resize_op, pad_op, normalize_op, to_chw_op, keep_keys_op + ] + return pre_process_list + + class TableStructurer(object): def __init__(self, args): - pre_process_list = [{ - 'ResizeTableImage': { - 'max_len': args.table_max_len - } - }, { - 'NormalizeImage': { - 'std': [0.229, 0.224, 0.225], - 'mean': [0.485, 0.456, 0.406], - 'scale': '1./255.', - 'order': 'hwc' + pre_process_list = build_pre_process_list(args) + if args.table_algorithm not in ['TableMaster']: + postprocess_params = { + 'name': 'TableLabelDecode', + "character_dict_path": args.table_char_dict_path, } - }, { - 'PaddingTableImage': None - }, { - 'ToCHWImage': None - }, { - 'KeepKeys': { - 'keep_keys': ['image'] + else: + postprocess_params = { + 'name': 'TableMasterLabelDecode', + "character_dict_path": args.table_char_dict_path, + 'box_shape': 'pad' } - }] - postprocess_params = { - 'name': 'TableLabelDecode', - "character_dict_path": args.table_char_dict_path, - } self.preprocess_op = create_operators(pre_process_list) self.postprocess_op = build_post_process(postprocess_params) @@ -88,27 +108,17 @@ class TableStructurer(object): preds['structure_probs'] = outputs[1] preds['loc_preds'] = outputs[0] - post_result = self.postprocess_op(preds) - - structure_str_list = post_result['structure_str_list'] - res_loc = post_result['res_loc'] - imgh, imgw = ori_im.shape[0:2] - res_loc_final = [] - for rno in range(len(res_loc[0])): - x0, y0, x1, y1 = res_loc[0][rno] - left = max(int(imgw * x0), 0) - top = max(int(imgh * y0), 0) - right = min(int(imgw * x1), imgw - 1) - bottom = min(int(imgh * y1), imgh - 1) - res_loc_final.append([left, top, right, bottom]) - - structure_str_list = structure_str_list[0][:-1] + shape_list = np.expand_dims(data[-1], axis=0) + post_result = self.postprocess_op(preds, [shape_list]) + + structure_str_list = post_result['structure_batch_list'][0] + bbox_list = post_result['bbox_batch_list'][0] + structure_str_list = structure_str_list[0] structure_str_list = [ '', '', '' ] + structure_str_list + ['
', '', ''] - elapse = time.time() - starttime - return (structure_str_list, res_loc_final), elapse + return (structure_str_list, bbox_list), elapse def main(args): @@ -116,21 +126,35 @@ def main(args): table_structurer = TableStructurer(args) count = 0 total_time = 0 - for image_file in image_file_list: - img, flag = check_and_read_gif(image_file) - if not flag: - img = cv2.imread(image_file) - if img is None: - logger.info("error in loading image:{}".format(image_file)) - continue - structure_res, elapse = table_structurer(img) - - logger.info("result: {}".format(structure_res)) - - if count > 0: - total_time += elapse - count += 1 - logger.info("Predict time of {}: {}".format(image_file, elapse)) + use_xywh = args.table_algorithm in ['TableMaster'] + os.makedirs(args.output, exist_ok=True) + with open( + os.path.join(args.output, 'infer.txt'), mode='w', + encoding='utf-8') as f_w: + for image_file in image_file_list: + img, flag = check_and_read_gif(image_file) + if not flag: + img = cv2.imread(image_file) + if img is None: + logger.info("error in loading image:{}".format(image_file)) + continue + structure_res, elapse = table_structurer(img) + structure_str_list, bbox_list = structure_res + bbox_list_str = json.dumps(bbox_list.tolist()) + logger.info("result: {}, {}".format(structure_str_list, + bbox_list_str)) + f_w.write("result: {}, {}\n".format(structure_str_list, + bbox_list_str)) + + img = draw_rectangle(image_file, bbox_list, use_xywh) + img_save_path = os.path.join(args.output, + os.path.basename(image_file)) + cv2.imwrite(img_save_path, img) + logger.info("save vis result to {}".format(img_save_path)) + if count > 0: + total_time += elapse + count += 1 + logger.info("Predict time of {}: {}".format(image_file, elapse)) if __name__ == "__main__": diff --git a/ppstructure/utility.py b/ppstructure/utility.py index 1ad902e7e6be95a6901e3774420fad337f594861..af0616239b167ff9ca5f6e1222015d51338d6bab 100644 --- a/ppstructure/utility.py +++ b/ppstructure/utility.py @@ -25,6 +25,7 @@ def init_args(): parser.add_argument("--output", type=str, default='./output') # params for table structure parser.add_argument("--table_max_len", type=int, default=488) + parser.add_argument("--table_algorithm", type=str, default='TableAttn') parser.add_argument("--table_model_dir", type=str) parser.add_argument( "--table_char_dict_path", @@ -40,6 +41,13 @@ def init_args(): type=ast.literal_eval, default=None, help='label map according to ppstructure/layout/README_ch.md') + # params for vqa + parser.add_argument("--vqa_algorithm", type=str, default='LayoutXLM') + parser.add_argument("--ser_model_dir", type=str) + parser.add_argument( + "--ser_dict_path", + type=str, + default="../train_data/XFUND/class_list_xfun.txt") # params for inference parser.add_argument( "--mode", @@ -65,7 +73,7 @@ def init_args(): "--recovery", type=bool, default=False, - help='Whether to enable layout of recovery') + help='Whether to enable layout of recovery') return parser diff --git a/ppstructure/vqa/README.md b/ppstructure/vqa/README.md index e3a10671ddb6494eb15073e7ac007aa1e8e6a32a..05635265b5e5eff18429e2d595fc4195381299f5 100644 --- a/ppstructure/vqa/README.md +++ b/ppstructure/vqa/README.md @@ -1,19 +1,15 @@ English | [简体中文](README_ch.md) -- [Document Visual Question Answering (Doc-VQA)](#Document-Visual-Question-Answering) - - [1. Introduction](#1-Introduction) - - [2. Performance](#2-performance) - - [3. Effect demo](#3-Effect-demo) - - [3.1 SER](#31-ser) - - [3.2 RE](#32-re) - - [4. Install](#4-Install) - - [4.1 Installation dependencies](#41-Install-dependencies) - - [4.2 Install PaddleOCR](#42-Install-PaddleOCR) - - [5. Usage](#5-Usage) - - [5.1 Data and Model Preparation](#51-Data-and-Model-Preparation) - - [5.2 SER](#52-ser) - - [5.3 RE](#53-re) - - [6. Reference](#6-Reference-Links) +- [1 Introduction](#1-introduction) +- [2. Performance](#2-performance) +- [3. Effect demo](#3-effect-demo) + - [3.1 SER](#31-ser) + - [3.2 RE](#32-re) +- [4. Install](#4-install) + - [4.1 Install dependencies](#41-install-dependencies) + - [5.3 RE](#53-re) +- [6. Reference Links](#6-reference-links) +- [License](#license) # Document Visual Question Answering @@ -125,13 +121,13 @@ If you want to experience the prediction process directly, you can download the * Download the processed dataset -The download address of the processed XFUND Chinese dataset: [https://paddleocr.bj.bcebos.com/dataset/XFUND.tar](https://paddleocr.bj.bcebos.com/dataset/XFUND.tar). +The download address of the processed XFUND Chinese dataset: [link](https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar). Download and unzip the dataset, and place the dataset in the current directory after unzipping. ```shell -wget https://paddleocr.bj.bcebos.com/dataset/XFUND.tar +wget https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar ```` * Convert the dataset @@ -187,17 +183,17 @@ CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/vqa/ser/layoutxlm.yml -o ```` Finally, `precision`, `recall`, `hmean` and other indicators will be printed -* Use `OCR engine + SER` tandem prediction +* `OCR + SER` tandem prediction based on training engine -Use the following command to complete the series prediction of `OCR engine + SER`, taking the pretrained SER model as an example: +Use the following command to complete the series prediction of `OCR engine + SER`, taking the SER model based on LayoutXLM as an example:: ```shell -CUDA_VISIBLE_DEVICES=0 python3 tools/infer_vqa_token_ser.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=pretrain/ser_LayoutXLM_xfun_zh/Global.infer_img=doc/vqa/input/zh_val_42.jpg +python3.7 tools/export_model.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=pretrain/ser_LayoutXLM_xfun_zh/ Global.save_inference_dir=output/ser/infer ```` Finally, the prediction result visualization image and the prediction result text file will be saved in the directory configured by the `config.Global.save_res_path` field. The prediction result text file is named `infer_results.txt`. -* End-to-end evaluation of `OCR engine + SER` prediction system +* End-to-end evaluation of `OCR + SER` prediction system First use the `tools/infer_vqa_token_ser.py` script to complete the prediction of the dataset, then use the following command to evaluate. @@ -205,6 +201,24 @@ First use the `tools/infer_vqa_token_ser.py` script to complete the prediction o export CUDA_VISIBLE_DEVICES=0 python3 tools/eval_with_label_end2end.py --gt_json_path XFUND/zh_val/xfun_normalize_val.json --pred_json_path output_res/infer_results.txt ```` +* export model + +Use the following command to complete the model export of the SER model, taking the SER model based on LayoutXLM as an example: + +```shell +python3.7 tools/export_model.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=pretrain/ser_LayoutXLM_xfun_zh/ Global.save_inference_dir=output/ser/infer +``` +The converted model will be stored in the directory specified by the `Global.save_inference_dir` field. + +* `OCR + SER` tandem prediction based on prediction engine + +Use the following command to complete the tandem prediction of `OCR + SER` based on the prediction engine, taking the SER model based on LayoutXLM as an example: + +```shell +cd ppstructure +CUDA_VISIBLE_DEVICES=0 python3.7 vqa/predict_vqa_token_ser.py --vqa_algorithm=LayoutXLM --ser_model_dir=../output/ser/infer --ser_dict_path=../train_data/XFUND/class_list_xfun.txt --image_dir=docs/vqa/input/zh_val_42.jpg --output=output +``` +After the prediction is successful, the visualization images and results will be saved in the directory specified by the `output` field ### 5.3 RE @@ -247,11 +261,19 @@ Finally, `precision`, `recall`, `hmean` and other indicators will be printed Use the following command to complete the series prediction of `OCR engine + SER + RE`, taking the pretrained SER and RE models as an example: ```shell export CUDA_VISIBLE_DEVICES=0 -python3 tools/infer_vqa_token_ser_re.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=pretrain/re_LayoutXLM_xfun_zh/Global.infer_img=doc/vqa/input/zh_val_21.jpg -c_ser configs/vqa/ser/layoutxlm. yml -o_ser Architecture.Backbone.checkpoints=pretrain/ser_LayoutXLM_xfun_zh/ +python3 tools/infer_vqa_token_ser_re.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=pretrain/re_LayoutXLM_xfun_zh/Global.infer_img=ppstructure/docs/vqa/input/zh_val_21.jpg -c_ser configs/vqa/ser/layoutxlm. yml -o_ser Architecture.Backbone.checkpoints=pretrain/ser_LayoutXLM_xfun_zh/ ```` Finally, the prediction result visualization image and the prediction result text file will be saved in the directory configured by the `config.Global.save_res_path` field. The prediction result text file is named `infer_results.txt`. +* export model + +cooming soon + +* `OCR + SER + RE` tandem prediction based on prediction engine + +cooming soon + ## 6. Reference Links - LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding, https://arxiv.org/pdf/2104.08836.pdf diff --git a/ppstructure/vqa/README_ch.md b/ppstructure/vqa/README_ch.md index b677dc07bce6c1a752d753b6a1c538b4d3f99271..b421a82d3a1cbe39f5c740bea486ec26593ab20f 100644 --- a/ppstructure/vqa/README_ch.md +++ b/ppstructure/vqa/README_ch.md @@ -1,19 +1,19 @@ [English](README.md) | 简体中文 -- [文档视觉问答(DOC-VQA)](#文档视觉问答doc-vqa) - - [1. 简介](#1-简介) - - [2. 性能](#2-性能) - - [3. 效果演示](#3-效果演示) - - [3.1 SER](#31-ser) - - [3.2 RE](#32-re) - - [4. 安装](#4-安装) - - [4.1 安装依赖](#41-安装依赖) - - [4.2 安装PaddleOCR(包含 PP-OCR 和 VQA)](#42-安装paddleocr包含-pp-ocr-和-vqa) - - [5. 使用](#5-使用) - - [5.1 数据和预训练模型准备](#51-数据和预训练模型准备) - - [5.2 SER](#52-ser) - - [5.3 RE](#53-re) - - [6. 参考链接](#6-参考链接) +- [1. 简介](#1-简介) +- [2. 性能](#2-性能) +- [3. 效果演示](#3-效果演示) + - [3.1 SER](#31-ser) + - [3.2 RE](#32-re) +- [4. 安装](#4-安装) + - [4.1 安装依赖](#41-安装依赖) + - [4.2 安装PaddleOCR(包含 PP-OCR 和 VQA)](#42-安装paddleocr包含-pp-ocr-和-vqa) +- [5. 使用](#5-使用) + - [5.1 数据和预训练模型准备](#51-数据和预训练模型准备) + - [5.2 SER](#52-ser) + - [5.3 RE](#53-re) +- [6. 参考链接](#6-参考链接) +- [License](#license) # 文档视觉问答(DOC-VQA) @@ -122,13 +122,13 @@ python3 -m pip install -r ppstructure/vqa/requirements.txt * 下载处理好的数据集 -处理好的XFUND中文数据集下载地址:[https://paddleocr.bj.bcebos.com/dataset/XFUND.tar](https://paddleocr.bj.bcebos.com/dataset/XFUND.tar)。 +处理好的XFUND中文数据集下载地址:[链接](https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar)。 下载并解压该数据集,解压后将数据集放置在当前目录下。 ```shell -wget https://paddleocr.bj.bcebos.com/dataset/XFUND.tar +wget https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar ``` * 转换数据集 @@ -183,16 +183,16 @@ CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/vqa/ser/layoutxlm.yml -o ``` 最终会打印出`precision`, `recall`, `hmean`等指标 -* 使用`OCR引擎 + SER`串联预测 +* 基于训练引擎的`OCR + SER`串联预测 -使用如下命令即可完成`OCR引擎 + SER`的串联预测, 以SER预训练模型为例: +使用如下命令即可完成基于训练引擎的`OCR + SER`的串联预测, 以基于LayoutXLM的SER模型为例: ```shell CUDA_VISIBLE_DEVICES=0 python3 tools/infer_vqa_token_ser.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=pretrain/ser_LayoutXLM_xfun_zh/ Global.infer_img=doc/vqa/input/zh_val_42.jpg ``` 最终会在`config.Global.save_res_path`字段所配置的目录下保存预测结果可视化图像以及预测结果文本文件,预测结果文本文件名为`infer_results.txt`。 -* 对`OCR引擎 + SER`预测系统进行端到端评估 +* 对`OCR + SER`预测系统进行端到端评估 首先使用 `tools/infer_vqa_token_ser.py` 脚本完成数据集的预测,然后使用下面的命令进行评估。 @@ -200,6 +200,24 @@ CUDA_VISIBLE_DEVICES=0 python3 tools/infer_vqa_token_ser.py -c configs/vqa/ser/l export CUDA_VISIBLE_DEVICES=0 python3 tools/eval_with_label_end2end.py --gt_json_path XFUND/zh_val/xfun_normalize_val.json --pred_json_path output_res/infer_results.txt ``` +* 模型导出 + +使用如下命令即可完成SER模型的模型导出, 以基于LayoutXLM的SER模型为例: + +```shell +python3.7 tools/export_model.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=pretrain/ser_LayoutXLM_xfun_zh/ Global.save_inference_dir=output/ser/infer +``` +转换后的模型会存放在`Global.save_inference_dir`字段指定的目录下。 + +* 基于预测引擎的`OCR + SER`串联预测 + +使用如下命令即可完成基于预测引擎的`OCR + SER`的串联预测, 以基于LayoutXLM的SER模型为例: + +```shell +cd ppstructure +CUDA_VISIBLE_DEVICES=0 python3.7 vqa/predict_vqa_token_ser.py --vqa_algorithm=LayoutXLM --ser_model_dir=../output/ser/infer --ser_dict_path=../train_data/XFUND/class_list_xfun.txt --image_dir=docs/vqa/input/zh_val_42.jpg --output=output +``` +预测成功后,可视化图片和结果会保存在`output`字段指定的目录下 ### 5.3 RE @@ -236,16 +254,24 @@ CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/vqa/re/layoutxlm.yml -o ``` 最终会打印出`precision`, `recall`, `hmean`等指标 -* 使用`OCR引擎 + SER + RE`串联预测 +* 基于训练引擎的`OCR + SER + RE`串联预测 -使用如下命令即可完成`OCR引擎 + SER + RE`的串联预测, 以预训练SER和RE模型为例: +使用如下命令即可完成基于训练引擎的`OCR + SER + RE`串联预测, 以基于LayoutXLMSER和RE模型为例: ```shell export CUDA_VISIBLE_DEVICES=0 -python3 tools/infer_vqa_token_ser_re.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=pretrain/re_LayoutXLM_xfun_zh/ Global.infer_img=doc/vqa/input/zh_val_21.jpg -c_ser configs/vqa/ser/layoutxlm.yml -o_ser Architecture.Backbone.checkpoints=pretrain/ser_LayoutXLM_xfun_zh/ +python3 tools/infer_vqa_token_ser_re.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=pretrain/re_LayoutXLM_xfun_zh/ Global.infer_img=ppstructure/docs/vqa/input/zh_val_21.jpg -c_ser configs/vqa/ser/layoutxlm.yml -o_ser Architecture.Backbone.checkpoints=pretrain/ser_LayoutXLM_xfun_zh/ ``` 最终会在`config.Global.save_res_path`字段所配置的目录下保存预测结果可视化图像以及预测结果文本文件,预测结果文本文件名为`infer_results.txt`。 +* 模型导出 + +cooming soon + +* 基于预测引擎的`OCR + SER + RE`串联预测 + +cooming soon + ## 6. 参考链接 - LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding, https://arxiv.org/pdf/2104.08836.pdf diff --git a/ppstructure/vqa/labels/labels_ser.txt b/ppstructure/vqa/labels/labels_ser.txt deleted file mode 100644 index 508e48112412f62538baf0c78bcf99ec8945196e..0000000000000000000000000000000000000000 --- a/ppstructure/vqa/labels/labels_ser.txt +++ /dev/null @@ -1,3 +0,0 @@ -QUESTION -ANSWER -HEADER diff --git a/ppstructure/vqa/predict_vqa_token_ser.py b/ppstructure/vqa/predict_vqa_token_ser.py new file mode 100644 index 0000000000000000000000000000000000000000..de0bbfe72d80d9a16de8b09657a98dc5285bb348 --- /dev/null +++ b/ppstructure/vqa/predict_vqa_token_ser.py @@ -0,0 +1,169 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import os +import sys + +__dir__ = os.path.dirname(os.path.abspath(__file__)) +sys.path.append(__dir__) +sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) + +os.environ["FLAGS_allocator_strategy"] = 'auto_growth' + +import cv2 +import json +import numpy as np +import time + +import tools.infer.utility as utility +from ppocr.data import create_operators, transform +from ppocr.postprocess import build_post_process +from ppocr.utils.logging import get_logger +from ppocr.utils.visual import draw_ser_results +from ppocr.utils.utility import get_image_file_list, check_and_read_gif +from ppstructure.utility import parse_args + +from paddleocr import PaddleOCR + +logger = get_logger() + + +class SerPredictor(object): + def __init__(self, args): + self.ocr_engine = PaddleOCR(use_angle_cls=False, show_log=False) + + pre_process_list = [{ + 'VQATokenLabelEncode': { + 'algorithm': args.vqa_algorithm, + 'class_path': args.ser_dict_path, + 'contains_re': False, + 'ocr_engine': self.ocr_engine + } + }, { + 'VQATokenPad': { + 'max_seq_len': 512, + 'return_attention_mask': True + } + }, { + 'VQASerTokenChunk': { + 'max_seq_len': 512, + 'return_attention_mask': True + } + }, { + 'Resize': { + 'size': [224, 224] + } + }, { + 'NormalizeImage': { + 'std': [58.395, 57.12, 57.375], + 'mean': [123.675, 116.28, 103.53], + 'scale': '1', + 'order': 'hwc' + } + }, { + 'ToCHWImage': None + }, { + 'KeepKeys': { + 'keep_keys': [ + 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', + 'image', 'labels', 'segment_offset_id', 'ocr_info', + 'entities' + ] + } + }] + postprocess_params = { + 'name': 'VQASerTokenLayoutLMPostProcess', + "class_path": args.ser_dict_path, + } + + self.preprocess_op = create_operators(pre_process_list, + {'infer_mode': True}) + self.postprocess_op = build_post_process(postprocess_params) + self.predictor, self.input_tensor, self.output_tensors, self.config = \ + utility.create_predictor(args, 'ser', logger) + + def __call__(self, img): + ori_im = img.copy() + data = {'image': img} + data = transform(data, self.preprocess_op) + img = data[0] + if img is None: + return None, 0 + img = np.expand_dims(img, axis=0) + img = img.copy() + starttime = time.time() + + for idx in range(len(self.input_tensor)): + expand_input = np.expand_dims(data[idx], axis=0) + self.input_tensor[idx].copy_from_cpu(expand_input) + + self.predictor.run() + + outputs = [] + for output_tensor in self.output_tensors: + output = output_tensor.copy_to_cpu() + outputs.append(output) + preds = outputs[0] + + post_result = self.postprocess_op( + preds, segment_offset_ids=[data[6]], ocr_infos=[data[7]]) + elapse = time.time() - starttime + return post_result, elapse + + +def main(args): + image_file_list = get_image_file_list(args.image_dir) + ser_predictor = SerPredictor(args) + count = 0 + total_time = 0 + + os.makedirs(args.output, exist_ok=True) + with open( + os.path.join(args.output, 'infer.txt'), mode='w', + encoding='utf-8') as f_w: + for image_file in image_file_list: + img, flag = check_and_read_gif(image_file) + if not flag: + img = cv2.imread(image_file) + img = img[:, :, ::-1] + if img is None: + logger.info("error in loading image:{}".format(image_file)) + continue + ser_res, elapse = ser_predictor(img) + ser_res = ser_res[0] + + res_str = '{}\t{}\n'.format( + image_file, + json.dumps( + { + "ocr_info": ser_res, + }, ensure_ascii=False)) + f_w.write(res_str) + + img_res = draw_ser_results( + image_file, + ser_res, + font_path="../doc/fonts/simfang.ttf", ) + + img_save_path = os.path.join(args.output, + os.path.basename(image_file)) + cv2.imwrite(img_save_path, img_res) + logger.info("save vis result to {}".format(img_save_path)) + if count > 0: + total_time += elapse + count += 1 + logger.info("Predict time of {}: {}".format(image_file, elapse)) + + +if __name__ == "__main__": + main(parse_args()) diff --git a/ppstructure/vqa/requirements.txt b/ppstructure/vqa/requirements.txt index 0042ec0baedcc3e7bbecb922d10b93c95219219d..fcd882274c4402ba2a1d34f20ee6e2befa157121 100644 --- a/ppstructure/vqa/requirements.txt +++ b/ppstructure/vqa/requirements.txt @@ -1,4 +1,7 @@ sentencepiece yacs seqeval -paddlenlp>=2.2.1 \ No newline at end of file +paddlenlp>=2.2.1 +pypandoc +attrdict +python_docx \ No newline at end of file diff --git a/ppstructure/vqa/tools/trans_funsd_label.py b/ppstructure/vqa/tools/trans_funsd_label.py new file mode 100644 index 0000000000000000000000000000000000000000..ef7d1db010a925b37d285befe77aa202db2141d9 --- /dev/null +++ b/ppstructure/vqa/tools/trans_funsd_label.py @@ -0,0 +1,151 @@ +# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import json +import os +import sys +import cv2 +import numpy as np +from copy import deepcopy + + +def trans_poly_to_bbox(poly): + x1 = np.min([p[0] for p in poly]) + x2 = np.max([p[0] for p in poly]) + y1 = np.min([p[1] for p in poly]) + y2 = np.max([p[1] for p in poly]) + return [x1, y1, x2, y2] + + +def get_outer_poly(bbox_list): + x1 = min([bbox[0] for bbox in bbox_list]) + y1 = min([bbox[1] for bbox in bbox_list]) + x2 = max([bbox[2] for bbox in bbox_list]) + y2 = max([bbox[3] for bbox in bbox_list]) + return [[x1, y1], [x2, y1], [x2, y2], [x1, y2]] + + +def load_funsd_label(image_dir, anno_dir): + imgs = os.listdir(image_dir) + annos = os.listdir(anno_dir) + + imgs = [img.replace(".png", "") for img in imgs] + annos = [anno.replace(".json", "") for anno in annos] + + fn_info_map = dict() + for anno_fn in annos: + res = [] + with open(os.path.join(anno_dir, anno_fn + ".json"), "r") as fin: + infos = json.load(fin) + infos = infos["form"] + old_id2new_id_map = dict() + global_new_id = 0 + for info in infos: + if info["text"] is None: + continue + words = info["words"] + if len(words) <= 0: + continue + word_idx = 1 + curr_bboxes = [words[0]["box"]] + curr_texts = [words[0]["text"]] + while word_idx < len(words): + # switch to a new link + if words[word_idx]["box"][0] + 10 <= words[word_idx - 1][ + "box"][2]: + if len("".join(curr_texts[0])) > 0: + res.append({ + "transcription": " ".join(curr_texts), + "label": info["label"], + "points": get_outer_poly(curr_bboxes), + "linking": info["linking"], + "id": global_new_id, + }) + if info["id"] not in old_id2new_id_map: + old_id2new_id_map[info["id"]] = [] + old_id2new_id_map[info["id"]].append(global_new_id) + global_new_id += 1 + curr_bboxes = [words[word_idx]["box"]] + curr_texts = [words[word_idx]["text"]] + else: + curr_bboxes.append(words[word_idx]["box"]) + curr_texts.append(words[word_idx]["text"]) + word_idx += 1 + if len("".join(curr_texts[0])) > 0: + res.append({ + "transcription": " ".join(curr_texts), + "label": info["label"], + "points": get_outer_poly(curr_bboxes), + "linking": info["linking"], + "id": global_new_id, + }) + if info["id"] not in old_id2new_id_map: + old_id2new_id_map[info["id"]] = [] + old_id2new_id_map[info["id"]].append(global_new_id) + global_new_id += 1 + res = sorted( + res, key=lambda r: (r["points"][0][1], r["points"][0][0])) + for i in range(len(res) - 1): + for j in range(i, 0, -1): + if abs(res[j + 1]["points"][0][1] - res[j]["points"][0][1]) < 20 and \ + (res[j + 1]["points"][0][0] < res[j]["points"][0][0]): + tmp = deepcopy(res[j]) + res[j] = deepcopy(res[j + 1]) + res[j + 1] = deepcopy(tmp) + else: + break + # re-generate unique ids + for idx, r in enumerate(res): + new_links = [] + for link in r["linking"]: + # illegal links will be removed + if link[0] not in old_id2new_id_map or link[ + 1] not in old_id2new_id_map: + continue + for src in old_id2new_id_map[link[0]]: + for dst in old_id2new_id_map[link[1]]: + new_links.append([src, dst]) + res[idx]["linking"] = deepcopy(new_links) + + fn_info_map[anno_fn] = res + + return fn_info_map + + +def main(): + test_image_dir = "train_data/FUNSD/testing_data/images/" + test_anno_dir = "train_data/FUNSD/testing_data/annotations/" + test_output_dir = "train_data/FUNSD/test.json" + + fn_info_map = load_funsd_label(test_image_dir, test_anno_dir) + with open(test_output_dir, "w") as fout: + for fn in fn_info_map: + fout.write(fn + ".png" + "\t" + json.dumps( + fn_info_map[fn], ensure_ascii=False) + "\n") + + train_image_dir = "train_data/FUNSD/training_data/images/" + train_anno_dir = "train_data/FUNSD/training_data/annotations/" + train_output_dir = "train_data/FUNSD/train.json" + + fn_info_map = load_funsd_label(train_image_dir, train_anno_dir) + with open(train_output_dir, "w") as fout: + for fn in fn_info_map: + fout.write(fn + ".png" + "\t" + json.dumps( + fn_info_map[fn], ensure_ascii=False) + "\n") + print("====ok====") + return + + +if __name__ == "__main__": + main() diff --git a/ppstructure/vqa/tools/trans_xfun_data.py b/ppstructure/vqa/tools/trans_xfun_data.py index 93ec98163c6cec96ec93399c1d41524200ddc499..11d221bea40367f091b3e09dde42e87f2217a617 100644 --- a/ppstructure/vqa/tools/trans_xfun_data.py +++ b/ppstructure/vqa/tools/trans_xfun_data.py @@ -21,26 +21,22 @@ def transfer_xfun_data(json_path=None, output_file=None): json_info = json.loads(lines[0]) documents = json_info["documents"] - label_info = {} with open(output_file, "w", encoding='utf-8') as fout: for idx, document in enumerate(documents): + label_info = [] img_info = document["img"] document = document["document"] image_path = img_info["fname"] - label_info["height"] = img_info["height"] - label_info["width"] = img_info["width"] - - label_info["ocr_info"] = [] - for doc in document: - label_info["ocr_info"].append({ - "text": doc["text"], + x1, y1, x2, y2 = doc["box"] + points = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]] + label_info.append({ + "transcription": doc["text"], "label": doc["label"], - "bbox": doc["box"], + "points": points, "id": doc["id"], - "linking": doc["linking"], - "words": doc["words"] + "linking": doc["linking"] }) fout.write(image_path + "\t" + json.dumps( diff --git a/test_tipc/benchmark_train.sh b/test_tipc/benchmark_train.sh index e3e4d627fa27f3a34ae0ae47a8613d6ec0a0f60e..c74054ed557f4d42c7db452fe41af6839f8ea6b7 100644 --- a/test_tipc/benchmark_train.sh +++ b/test_tipc/benchmark_train.sh @@ -139,8 +139,8 @@ else device_num=${params_list[4]} IFS=";" - if [ ${precision} = "null" ];then - precision="fp32" + if [ ${precision} = "fp16" ];then + precision="amp" fi fp_items_list=($precision) @@ -150,10 +150,16 @@ fi IFS="|" for batch_size in ${batch_size_list[*]}; do - for precision in ${fp_items_list[*]}; do + for train_precision in ${fp_items_list[*]}; do for device_num in ${device_num_list[*]}; do # sed batchsize and precision - func_sed_params "$FILENAME" "${line_precision}" "$precision" + if [ ${train_precision} = "amp" ];then + precision="fp16" + else + precision="fp32" + fi + + func_sed_params "$FILENAME" "${line_precision}" "$train_precision" func_sed_params "$FILENAME" "${line_batchsize}" "$MODE=$batch_size" func_sed_params "$FILENAME" "${line_epoch}" "$MODE=$epoch" gpu_id=$(set_gpu_id $device_num) diff --git a/test_tipc/configs/det_mv3_db_v2_0/train_infer_python.txt b/test_tipc/configs/det_mv3_db_v2_0/train_infer_python.txt index ab3aa59b601db58b48cf18de79f77710611e2596..2c8aa953449c4b97790842bb90256280b8b20d9a 100644 --- a/test_tipc/configs/det_mv3_db_v2_0/train_infer_python.txt +++ b/test_tipc/configs/det_mv3_db_v2_0/train_infer_python.txt @@ -54,6 +54,6 @@ random_infer_input:[{float32,[3,640,640]}];[{float32,[3,960,960]}] ===========================train_benchmark_params========================== batch_size:8|16 fp_items:fp32|fp16 -epoch:2 +epoch:15 --profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096 diff --git a/test_tipc/configs/det_r18_vd_db_v2_0/train_infer_python.txt b/test_tipc/configs/det_r18_vd_db_v2_0/train_infer_python.txt index 33e4dbf2337f3799328516119a213bc0f14af9fe..df88c0e5434511fb48deac699e8f67fc535765d3 100644 --- a/test_tipc/configs/det_r18_vd_db_v2_0/train_infer_python.txt +++ b/test_tipc/configs/det_r18_vd_db_v2_0/train_infer_python.txt @@ -54,5 +54,5 @@ random_infer_input:[{float32,[3,640,640]}];[{float32,[3,960,960]}] ===========================train_benchmark_params========================== batch_size:8|16 fp_items:fp32|fp16 -epoch:2 +epoch:15 --profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile diff --git a/test_tipc/configs/det_r50_db_plusplus/train_infer_python.txt b/test_tipc/configs/det_r50_db_plusplus/train_infer_python.txt new file mode 100644 index 0000000000000000000000000000000000000000..bcfdef63942bfdebe041d0a8fbe5e00833b96c46 --- /dev/null +++ b/test_tipc/configs/det_r50_db_plusplus/train_infer_python.txt @@ -0,0 +1,59 @@ +===========================train_params=========================== +model_name:det_r50_db_plusplus +python:python3.7 +gpu_list:0|0,1 +Global.use_gpu:True|True +Global.auto_cast:null +Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300 +Global.save_model_dir:./output/ +Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4 +Global.pretrained_model:null +train_model_name:latest +train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/ +null:null +## +trainer:norm_train +norm_train:tools/train.py -c configs/det/det_r50_db++_icdar15.yml -o Global.pretrained_model=./pretrain_models/ResNet50_dcn_asf_synthtext_pretrained +pact_train:null +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:null +null:null +## +===========================infer_params=========================== +Global.save_inference_dir:./output/ +Global.checkpoints: +norm_export:tools/export_model.py -c configs/det/det_r50_db++_icdar15.yml -o +quant_export:null +fpgm_export:null +distill_export:null +export1:null +export2:null +inference_dir:null +train_model:./inference/det_r50_db++_train/best_accuracy +infer_export:tools/export_model.py -c configs/det/det_r50_db++_icdar15.yml -o +infer_quant:False +inference:tools/infer/predict_det.py --det_algorithm="DB++" +--use_gpu:True|False +--enable_mkldnn:False +--cpu_threads:6 +--rec_batch_num:1 +--use_tensorrt:False +--precision:fp32 +--det_model_dir: +--image_dir:./inference/ch_det_data_50/all-sum-510/ +null:null +--benchmark:True +null:null +===========================infer_benchmark_params========================== +random_infer_input:[{float32,[3,640,640]}];[{float32,[3,960,960]}] +===========================train_benchmark_params========================== +batch_size:8|16 +fp_items:fp32|fp16 +epoch:2 +--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile +flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096 diff --git a/test_tipc/configs/det_r50_vd_east_v2_0/train_infer_python.txt b/test_tipc/configs/det_r50_vd_east_v2_0/train_infer_python.txt index 8477a4fa74f7a0617104aa83617fc6f61b8234b3..24e4d760c37828c213741b9ff127d55df2f9335a 100644 --- a/test_tipc/configs/det_r50_vd_east_v2_0/train_infer_python.txt +++ b/test_tipc/configs/det_r50_vd_east_v2_0/train_infer_python.txt @@ -1,13 +1,13 @@ ===========================train_params=========================== model_name:det_r50_vd_east_v2_0 python:python3.7 -gpu_list:0 +gpu_list:0|0,1 Global.use_gpu:True|True Global.auto_cast:fp32 Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=500 Global.save_model_dir:./output/ Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4 -Global.pretrained_model:null +Global.pretrained_model:./pretrain_models/det_r50_vd_east_v2.0_train/best_accuracy train_model_name:latest train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/ null:null diff --git a/test_tipc/configs/det_r50_vd_pse_v2_0/train_infer_python.txt b/test_tipc/configs/det_r50_vd_pse_v2_0/train_infer_python.txt index 62da89fe1c8e3a7c2b7586eae6b2589f94237a2e..53511e6ae21003cb9df6a92d3931577fbbef5b18 100644 --- a/test_tipc/configs/det_r50_vd_pse_v2_0/train_infer_python.txt +++ b/test_tipc/configs/det_r50_vd_pse_v2_0/train_infer_python.txt @@ -54,5 +54,5 @@ random_infer_input:[{float32,[3,640,640]}];[{float32,[3,960,960]}] ===========================train_benchmark_params========================== batch_size:8 fp_items:fp32|fp16 -epoch:2 +epoch:10 --profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile diff --git a/test_tipc/configs/en_table_structure/table_mv3.yml b/test_tipc/configs/en_table_structure/table_mv3.yml index adf326bd02aeff4683c8f37a704125b4e426efa9..281038b968a5bf829483882117d779ec7de1976d 100755 --- a/test_tipc/configs/en_table_structure/table_mv3.yml +++ b/test_tipc/configs/en_table_structure/table_mv3.yml @@ -9,16 +9,15 @@ Global: eval_batch_step: [0, 400] cal_metric_during_train: True pretrained_model: - checkpoints: + checkpoints: save_inference_dir: use_visualdl: False - infer_img: doc/table/table.jpg + infer_img: ppstructure/docs/table/table.jpg + save_res_path: output/table_mv3 # for data or label process character_dict_path: ppocr/utils/dict/table_structure_dict.txt character_type: en - max_text_length: 100 - max_elem_length: 800 - max_cell_num: 500 + max_text_length: 800 infer_mode: False process_total_num: 0 process_cut_num: 0 @@ -44,11 +43,8 @@ Architecture: Head: name: TableAttentionHead hidden_size: 256 - l2_decay: 0.00001 loc_type: 2 - max_text_length: 100 - max_elem_length: 800 - max_cell_num: 500 + max_text_length: 800 Loss: name: TableAttentionLoss @@ -61,28 +57,34 @@ PostProcess: Metric: name: TableMetric main_indicator: acc + compute_bbox_metric: false # cost many time, set False for training Train: dataset: name: PubTabDataSet data_dir: ./train_data/pubtabnet/train - label_file_path: ./train_data/pubtabnet/train.jsonl + label_file_list: [./train_data/pubtabnet/train.jsonl] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False + - TableLabelEncode: + learn_empty_box: False + merge_no_span_structure: False + replace_empty_cell_token: False + - TableBoxEncode: - ResizeTableImage: max_len: 488 - - TableLabelEncode: - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - PaddingTableImage: + size: [488, 488] - ToCHWImage: - KeepKeys: - keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask'] + keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ] loader: shuffle: True batch_size_per_card: 32 @@ -93,23 +95,28 @@ Eval: dataset: name: PubTabDataSet data_dir: ./train_data/pubtabnet/test/ - label_file_path: ./train_data/pubtabnet/test.jsonl + label_file_list: [./train_data/pubtabnet/test.jsonl] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False + - TableLabelEncode: + learn_empty_box: False + merge_no_span_structure: False + replace_empty_cell_token: False + - TableBoxEncode: - ResizeTableImage: max_len: 488 - - TableLabelEncode: - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - PaddingTableImage: + size: [488, 488] - ToCHWImage: - KeepKeys: - keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask'] + keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ] loader: shuffle: False drop_last: False diff --git a/test_tipc/configs/en_table_structure/train_pact_infer_python.txt b/test_tipc/configs/en_table_structure/train_pact_infer_python.txt index f62e8b68bc6c1af06a65a8dfb438d5d63576e123..9890b906a1d3b1127352af567dca0d7186f94694 100644 --- a/test_tipc/configs/en_table_structure/train_pact_infer_python.txt +++ b/test_tipc/configs/en_table_structure/train_pact_infer_python.txt @@ -6,7 +6,7 @@ Global.use_gpu:True|True Global.auto_cast:fp32 Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=50 Global.save_model_dir:./output/ -Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=128 +Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=2 Global.pretrained_model:./pretrain_models/en_ppocr_mobile_v2.0_table_structure_train/best_accuracy train_model_name:latest train_infer_img_dir:./ppstructure/docs/table/table.jpg diff --git a/test_tipc/configs/table_master/table_master.yml b/test_tipc/configs/table_master/table_master.yml new file mode 100644 index 0000000000000000000000000000000000000000..c519b5b8f464d8843888155387b74a8416821f2f --- /dev/null +++ b/test_tipc/configs/table_master/table_master.yml @@ -0,0 +1,136 @@ +Global: + use_gpu: true + epoch_num: 17 + log_smooth_window: 20 + print_batch_step: 100 + save_model_dir: ./output/table_master/ + save_epoch_step: 17 + eval_batch_step: [0, 6259] + cal_metric_during_train: true + pretrained_model: null + checkpoints: + save_inference_dir: output/table_master/infer + use_visualdl: false + infer_img: ppstructure/docs/table/table.jpg + save_res_path: ./output/table_master + character_dict_path: ppocr/utils/dict/table_master_structure_dict.txt + infer_mode: false + max_text_length: 500 + process_total_num: 0 + process_cut_num: 0 + + +Optimizer: + name: Adam + beta1: 0.9 + beta2: 0.999 + lr: + name: MultiStepDecay + learning_rate: 0.001 + milestones: [12, 15] + gamma: 0.1 + warmup_epoch: 0.02 + regularizer: + name: L2 + factor: 0.0 + +Architecture: + model_type: table + algorithm: TableMaster + Backbone: + name: TableResNetExtra + gcb_config: + ratio: 0.0625 + headers: 1 + att_scale: False + fusion_type: channel_add + layers: [False, True, True, True] + layers: [1,2,5,3] + Head: + name: TableMasterHead + hidden_size: 512 + headers: 8 + dropout: 0 + d_ff: 2024 + max_text_length: 500 + +Loss: + name: TableMasterLoss + ignore_index: 42 # set to len of dict + 3 + +PostProcess: + name: TableMasterLabelDecode + box_shape: pad + +Metric: + name: TableMetric + main_indicator: acc + compute_bbox_metric: False + +Train: + dataset: + name: PubTabDataSet + data_dir: ./train_data/pubtabnet/train + label_file_list: [./train_data/pubtabnet/train.jsonl] + transforms: + - DecodeImage: + img_mode: BGR + channel_first: False + - TableMasterLabelEncode: + learn_empty_box: False + merge_no_span_structure: True + replace_empty_cell_token: True + - ResizeTableImage: + max_len: 480 + resize_bboxes: True + - PaddingTableImage: + size: [480, 480] + - TableBoxEncode: + use_xywh: True + - NormalizeImage: + scale: 1./255. + mean: [0.5, 0.5, 0.5] + std: [0.5, 0.5, 0.5] + order: hwc + - ToCHWImage: null + - KeepKeys: + keep_keys: [image, structure, bboxes, bbox_masks, shape] + loader: + shuffle: True + batch_size_per_card: 10 + drop_last: True + num_workers: 8 + +Eval: + dataset: + name: PubTabDataSet + data_dir: ./train_data/pubtabnet/test/ + label_file_list: [./train_data/pubtabnet/test.jsonl] + transforms: + - DecodeImage: + img_mode: BGR + channel_first: False + - TableMasterLabelEncode: + learn_empty_box: False + merge_no_span_structure: True + replace_empty_cell_token: True + - ResizeTableImage: + max_len: 480 + resize_bboxes: True + - PaddingTableImage: + size: [480, 480] + - TableBoxEncode: + use_xywh: True + - NormalizeImage: + scale: 1./255. + mean: [0.5, 0.5, 0.5] + std: [0.5, 0.5, 0.5] + order: hwc + - ToCHWImage: null + - KeepKeys: + keep_keys: [image, structure, bboxes, bbox_masks, shape] + loader: + shuffle: False + drop_last: False + batch_size_per_card: 10 + num_workers: 8 \ No newline at end of file diff --git a/test_tipc/configs/table_master/train_infer_python.txt b/test_tipc/configs/table_master/train_infer_python.txt new file mode 100644 index 0000000000000000000000000000000000000000..56b8e636026939ae8cd700308690010e1300d8f6 --- /dev/null +++ b/test_tipc/configs/table_master/train_infer_python.txt @@ -0,0 +1,53 @@ +===========================train_params=========================== +model_name:table_master +python:python3.7 +gpu_list:0|0,1 +Global.use_gpu:True|True +Global.auto_cast:fp32 +Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=17 +Global.save_model_dir:./output/ +Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4 +Global.pretrained_model:./pretrain_models/table_structure_tablemaster_train/best_accuracy +train_model_name:latest +train_infer_img_dir:./ppstructure/docs/table/table.jpg +null:null +## +trainer:norm_train +norm_train:tools/train.py -c test_tipc/configs/table_master/table_master.yml -o Global.print_batch_step=10 +pact_train:null +fpgm_train:null +distill_train:null +null:null +null:null +## +===========================eval_params=========================== +eval:null +null:null +## +===========================infer_params=========================== +Global.save_inference_dir:./output/ +Global.checkpoints: +norm_export:tools/export_model.py -c test_tipc/configs/table_master/table_master.yml -o +quant_export: +fpgm_export: +distill_export:null +export1:null +export2:null +## +infer_model:null +infer_export:null +infer_quant:False +inference:ppstructure/table/predict_structure.py --table_char_dict_path=./ppocr/utils/dict/table_master_structure_dict.txt --image_dir=./ppstructure/docs/table/table.jpg --output ./output/table --table_algorithm=TableMaster --table_max_len=480 +--use_gpu:True|False +--enable_mkldnn:False +--cpu_threads:6 +--rec_batch_num:1 +--use_tensorrt:False +--precision:fp32 +--table_model_dir: +--image_dir:./ppstructure/docs/table/table.jpg +null:null +--benchmark:False +null:null +===========================infer_benchmark_params========================== +random_infer_input:[{float32,[3,480,480]}] diff --git a/test_tipc/prepare.sh b/test_tipc/prepare.sh index 2c9bd2901b52ff7d4b6af483a9aa201aef339099..ec6dece42a0126e6d05405b3262c1c1d24f0a376 100644 --- a/test_tipc/prepare.sh +++ b/test_tipc/prepare.sh @@ -22,13 +22,19 @@ trainer_list=$(func_parser_value "${lines[14]}") if [ ${MODE} = "benchmark_train" ];then pip install -r requirements.txt - if [[ ${model_name} =~ "det_mv3_db_v2_0" || ${model_name} =~ "det_r50_vd_east_v2_0" || ${model_name} =~ "det_r50_vd_pse_v2_0" || ${model_name} =~ "det_r18_db_v2_0" ]];then + if [[ ${model_name} =~ "det_mv3_db_v2_0" || ${model_name} =~ "det_r50_vd_pse_v2_0" || ${model_name} =~ "det_r18_db_v2_0" ]];then rm -rf ./train_data/icdar2015 wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar --no-check-certificate cd ./train_data/ && tar xf icdar2015.tar && cd ../ fi - if [[ ${model_name} =~ "det_r50_vd_east_v2_0" || ${model_name} =~ "det_r50_vd_pse_v2_0" ]];then + if [[ ${model_name} =~ "det_r50_vd_east_v2_0" ]]; then + wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar --no-check-certificate + cd ./pretrain_models/ && tar xf det_r50_vd_east_v2.0_train.tar && cd ../ + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar --no-check-certificate + cd ./train_data/ && tar xf icdar2015.tar && cd ../ + fi + if [[ ${model_name} =~ "det_r50_vd_pse_v2_0" ]];then wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet50_vd_ssld_pretrained.pdparams --no-check-certificate wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar --no-check-certificate cd ./train_data/ && tar xf icdar2015.tar && cd ../ @@ -52,13 +58,20 @@ if [ ${MODE} = "lite_train_lite_infer" ];then wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar --no-check-certificate cd ./pretrain_models/ && tar xf ch_PP-OCRv3_det_distill_train.tar && cd ../ fi - if [ ${model_name} == "en_table_structure" ];then + if [ ${model_name} == "en_table_structure" ] || [ ${model_name} == "en_table_structure_PACT" ];then wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar --no-check-certificate cd ./pretrain_models/ && tar xf en_ppocr_mobile_v2.0_table_structure_train.tar && cd ../ wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar --no-check-certificate wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar --no-check-certificate cd ./inference/ && tar xf en_ppocr_mobile_v2.0_table_det_infer.tar && tar xf en_ppocr_mobile_v2.0_table_rec_infer.tar && cd ../ fi + if [[ ${model_name} =~ "det_r50_db_plusplus" ]];then + wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams --no-check-certificate + fi + if [ ${model_name} == "table_master" ];then + wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_train.tar --no-check-certificate + cd ./pretrain_models/ && tar xf table_structure_tablemaster_train.tar && cd ../ + fi cd ./pretrain_models/ && tar xf det_mv3_db_v2.0_train.tar && cd ../ rm -rf ./train_data/icdar2015 rm -rf ./train_data/ic15_data @@ -120,6 +133,10 @@ if [ ${MODE} = "lite_train_lite_infer" ];then wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar --no-check-certificate cd ./pretrain_models/ && tar xf det_mv3_east_v2.0_train.tar && cd ../ fi + if [ ${model_name} == "det_r50_vd_east_v2_0" ]; then + wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar --no-check-certificate + cd ./pretrain_models/ && tar xf det_r50_vd_east_v2.0_train.tar && cd ../ + fi elif [ ${MODE} = "whole_train_whole_infer" ];then wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate diff --git a/test_tipc/readme.md b/test_tipc/readme.md index effb2f168b6cc91012bef3de120de9e98a21dbda..1c637d76f99fffdfdc5a053fa0c5b9336fe4b731 100644 --- a/test_tipc/readme.md +++ b/test_tipc/readme.md @@ -54,6 +54,7 @@ | NRTR |rec_mtb_nrtr | 识别 | 支持 | 多机多卡
混合精度 | - | - | | SAR |rec_r31_sar | 识别 | 支持 | 多机多卡
混合精度 | - | - | | PGNet |rec_r34_vd_none_none_ctc_v2.0 | 端到端| 支持 | 多机多卡
混合精度 | - | - | +| TableMaster |table_structure_tablemaster_train | 表格识别| 支持 | 多机多卡
混合精度 | - | - | diff --git a/test_tipc/test_ptq_inference_python.sh b/test_tipc/test_ptq_inference_python.sh index c1aa3daa6c0c647d7a9f9980e7698a85ee09ca78..e2939fd5e638ad0f6b4c44422a6fec6459903d1c 100644 --- a/test_tipc/test_ptq_inference_python.sh +++ b/test_tipc/test_ptq_inference_python.sh @@ -139,7 +139,7 @@ if [ ${MODE} = "whole_infer" ]; then save_infer_dir="${infer_model}_klquant" set_export_weight=$(func_set_params "${export_weight}" "${infer_model}") set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}") - export_log_path="${LOG_PATH}/_export_${Count}.log" + export_log_path="${LOG_PATH}/${MODE}_export_${Count}.log" export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key} > ${export_log_path} 2>&1 " echo ${infer_run_exports[Count]} echo $export_cmd diff --git a/test_tipc/test_serving_infer_cpp.sh b/test_tipc/test_serving_infer_cpp.sh index 4088c66f576187215e5945793868d13fc74005af..0be6a45adf3105f088a96336dddfbe9ac612f19b 100644 --- a/test_tipc/test_serving_infer_cpp.sh +++ b/test_tipc/test_serving_infer_cpp.sh @@ -87,11 +87,12 @@ function func_serving(){ set_image_dir=$(func_set_params "${image_dir_key}" "${image_dir_value}") python_list=(${python_list}) cd ${serving_dir_value} + # cpp serving for gpu_id in ${gpu_value[*]}; do if [ ${gpu_id} = "null" ]; then server_log_path="${LOG_PATH}/cpp_server_cpu.log" - web_service_cpp_cmd="${python_list[0]} ${web_service_py} --model ${det_server_value} ${rec_server_value} ${op_key} ${op_value} ${port_key} ${port_value} > ${server_log_path} 2>&1 " + web_service_cpp_cmd="nohup ${python_list[0]} ${web_service_py} --model ${det_server_value} ${rec_server_value} ${op_key} ${op_value} ${port_key} ${port_value} > ${server_log_path} 2>&1 &" eval $web_service_cpp_cmd last_status=${PIPESTATUS[0]} status_check $last_status "${web_service_cpp_cmd}" "${status_log}" "${model_name}" @@ -105,7 +106,7 @@ function func_serving(){ ps ux | grep -i ${port_value} | awk '{print $2}' | xargs kill -s 9 else server_log_path="${LOG_PATH}/cpp_server_gpu.log" - web_service_cpp_cmd="${python_list[0]} ${web_service_py} --model ${det_server_value} ${rec_server_value} ${op_key} ${op_value} ${port_key} ${port_value} ${gpu_key} ${gpu_id} > ${server_log_path} 2>&1 " + web_service_cpp_cmd="nohup ${python_list[0]} ${web_service_py} --model ${det_server_value} ${rec_server_value} ${op_key} ${op_value} ${port_key} ${port_value} ${gpu_key} ${gpu_id} > ${server_log_path} 2>&1 &" eval $web_service_cpp_cmd sleep 5s _save_log_path="${LOG_PATH}/cpp_client_gpu.log" diff --git a/test_tipc/test_serving_infer_python.sh b/test_tipc/test_serving_infer_python.sh index 57dab6aeb5dab31605a56abd072cb1568368a66c..4ccccc06e23ce086e7dac1f3446aae9130605444 100644 --- a/test_tipc/test_serving_infer_python.sh +++ b/test_tipc/test_serving_infer_python.sh @@ -112,7 +112,7 @@ function func_serving(){ cd ${serving_dir_value} python=${python_list[0]} - + # python serving for use_gpu in ${web_use_gpu_list[*]}; do if [ ${use_gpu} = "null" ]; then @@ -123,19 +123,19 @@ function func_serving(){ if [ ${model_name} = "ch_PP-OCRv2" ] || [ ${model_name} = "ch_PP-OCRv3" ] || [ ${model_name} = "ch_ppocr_mobile_v2.0" ] || [ ${model_name} = "ch_ppocr_server_v2.0" ]; then set_det_model_config=$(func_set_params "${det_server_key}" "${det_server_value}") set_rec_model_config=$(func_set_params "${rec_server_key}" "${rec_server_value}") - web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}="" ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_det_model_config} ${set_rec_model_config} > ${server_log_path} 2>&1 " + web_service_cmd="nohup ${python} ${web_service_py} ${web_use_gpu_key}="" ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_det_model_config} ${set_rec_model_config} > ${server_log_path} 2>&1 &" eval $web_service_cmd last_status=${PIPESTATUS[0]} status_check $last_status "${web_service_cmd}" "${status_log}" "${model_name}" elif [[ ${model_name} =~ "det" ]]; then set_det_model_config=$(func_set_params "${det_server_key}" "${det_server_value}") - web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}="" ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_det_model_config} > ${server_log_path} 2>&1 " + web_service_cmd="nohup ${python} ${web_service_py} ${web_use_gpu_key}="" ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_det_model_config} > ${server_log_path} 2>&1 &" eval $web_service_cmd last_status=${PIPESTATUS[0]} status_check $last_status "${web_service_cmd}" "${status_log}" "${model_name}" elif [[ ${model_name} =~ "rec" ]]; then set_rec_model_config=$(func_set_params "${rec_server_key}" "${rec_server_value}") - web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}="" ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_rec_model_config} > ${server_log_path} 2>&1 " + web_service_cmd="nohup ${python} ${web_service_py} ${web_use_gpu_key}="" ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_rec_model_config} > ${server_log_path} 2>&1 &" eval $web_service_cmd last_status=${PIPESTATUS[0]} status_check $last_status "${web_service_cmd}" "${status_log}" "${model_name}" @@ -174,19 +174,19 @@ function func_serving(){ if [ ${model_name} = "ch_PP-OCRv2" ] || [ ${model_name} = "ch_PP-OCRv3" ] || [ ${model_name} = "ch_ppocr_mobile_v2.0" ] || [ ${model_name} = "ch_ppocr_server_v2.0" ]; then set_det_model_config=$(func_set_params "${det_server_key}" "${det_server_value}") set_rec_model_config=$(func_set_params "${rec_server_key}" "${rec_server_value}") - web_service_cmd="${python} ${web_service_py} ${set_tensorrt} ${set_precision} ${set_det_model_config} ${set_rec_model_config} > ${server_log_path} 2>&1 " + web_service_cmd="nohup ${python} ${web_service_py} ${set_tensorrt} ${set_precision} ${set_det_model_config} ${set_rec_model_config} > ${server_log_path} 2>&1 &" eval $web_service_cmd last_status=${PIPESTATUS[0]} status_check $last_status "${web_service_cmd}" "${status_log}" "${model_name}" elif [[ ${model_name} =~ "det" ]]; then set_det_model_config=$(func_set_params "${det_server_key}" "${det_server_value}") - web_service_cmd="${python} ${web_service_py} ${set_tensorrt} ${set_precision} ${set_det_model_config} > ${server_log_path} 2>&1 " + web_service_cmd="nohup ${python} ${web_service_py} ${set_tensorrt} ${set_precision} ${set_det_model_config} > ${server_log_path} 2>&1 &" eval $web_service_cmd last_status=${PIPESTATUS[0]} status_check $last_status "${web_service_cmd}" "${status_log}" "${model_name}" elif [[ ${model_name} =~ "rec" ]]; then set_rec_model_config=$(func_set_params "${rec_server_key}" "${rec_server_value}") - web_service_cmd="${python} ${web_service_py} ${set_tensorrt} ${set_precision} ${set_rec_model_config} > ${server_log_path} 2>&1 " + web_service_cmd="nohup ${python} ${web_service_py} ${set_tensorrt} ${set_precision} ${set_rec_model_config} > ${server_log_path} 2>&1 &" eval $web_service_cmd last_status=${PIPESTATUS[0]} status_check $last_status "${web_service_cmd}" "${status_log}" "${model_name}" diff --git a/test_tipc/test_train_inference_python.sh b/test_tipc/test_train_inference_python.sh index fa68cb2632ee69fe361f99093e7a2352006ed283..402f636b1b92fa75380142803c6b513a897a89e4 100644 --- a/test_tipc/test_train_inference_python.sh +++ b/test_tipc/test_train_inference_python.sh @@ -193,7 +193,7 @@ if [ ${MODE} = "whole_infer" ]; then save_infer_dir="${infer_model}" set_export_weight=$(func_set_params "${export_weight}" "${infer_model}") set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}") - export_log_path="${LOG_PATH}/_export_${Count}.log" + export_log_path="${LOG_PATH}_export_${Count}.log" export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key} > ${export_log_path} 2>&1 " echo ${infer_run_exports[Count]} echo $export_cmd @@ -265,7 +265,7 @@ else if [ ${run_train} = "null" ]; then continue fi - set_autocast=$(func_set_params "${autocast_key}" "${autocast}") + set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}") set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") @@ -287,14 +287,15 @@ else set_save_model=$(func_set_params "${save_model_key}" "${save_log}") if [ ${#gpu} -le 2 ];then # train with cpu or single gpu - cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config} " + cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_train_params1} ${set_amp_config} " elif [ ${#ips} -le 15 ];then # train with multi-gpu - cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}" + cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_train_params1} ${set_amp_config}" else # train with multi-machine - cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}" + cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_batchsize} ${set_train_params1} ${set_amp_config}" fi # run train eval $cmd + eval "cat ${save_log}/train.log >> ${save_log}.log" status_check $? "${cmd}" "${status_log}" "${model_name}" set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}") diff --git a/tools/export_model.py b/tools/export_model.py index b10d41d5b288258ad895cefa7d8cc243eff10546..afecbff8cbb834a5aa5ef3ea1448cf04fbd8c3bb 100755 --- a/tools/export_model.py +++ b/tools/export_model.py @@ -97,6 +97,22 @@ def export_single_model(model, shape=[None, 1, 32, 100], dtype="float32"), ] model = to_static(model, input_spec=other_shape) + elif arch_config["algorithm"] in ["LayoutLM", "LayoutLMv2", "LayoutXLM"]: + input_spec = [ + paddle.static.InputSpec( + shape=[None, 512], dtype="int64"), # input_ids + paddle.static.InputSpec( + shape=[None, 512, 4], dtype="int64"), # bbox + paddle.static.InputSpec( + shape=[None, 512], dtype="int64"), # attention_mask + paddle.static.InputSpec( + shape=[None, 512], dtype="int64"), # token_type_ids + paddle.static.InputSpec( + shape=[None, 3, 224, 224], dtype="int64"), # image + ] + if arch_config["algorithm"] == "LayoutLM": + input_spec.pop(4) + model = to_static(model, input_spec=[input_spec]) else: infer_shape = [3, -1, -1] if arch_config["model_type"] == "rec": @@ -110,6 +126,8 @@ def export_single_model(model, infer_shape[-1] = 100 elif arch_config["model_type"] == "table": infer_shape = [3, 488, 488] + if arch_config["algorithm"] == "TableMaster": + infer_shape = [3, 480, 480] model = to_static( model, input_spec=[ @@ -172,7 +190,7 @@ def main(): config["Architecture"]["Head"]["out_channels"] = char_num model = build_model(config["Architecture"]) - load_model(config, model) + load_model(config, model, model_type=config['Architecture']["model_type"]) model.eval() save_path = config["Global"]["save_inference_dir"] diff --git a/tools/infer/predict_det.py b/tools/infer/predict_det.py index 7b6bebf1fbced2de5bb0e4e75840fb8dd7beb374..394a48948b1f284bd405532769b76eeb298668bd 100755 --- a/tools/infer/predict_det.py +++ b/tools/infer/predict_det.py @@ -67,6 +67,23 @@ class TextDetector(object): postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio postprocess_params["use_dilation"] = args.use_dilation postprocess_params["score_mode"] = args.det_db_score_mode + elif self.det_algorithm == "DB++": + postprocess_params['name'] = 'DBPostProcess' + postprocess_params["thresh"] = args.det_db_thresh + postprocess_params["box_thresh"] = args.det_db_box_thresh + postprocess_params["max_candidates"] = 1000 + postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio + postprocess_params["use_dilation"] = args.use_dilation + postprocess_params["score_mode"] = args.det_db_score_mode + pre_process_list[1] = { + 'NormalizeImage': { + 'std': [1.0, 1.0, 1.0], + 'mean': + [0.48109378172549, 0.45752457890196, 0.40787054090196], + 'scale': '1./255.', + 'order': 'hwc' + } + } elif self.det_algorithm == "EAST": postprocess_params['name'] = 'EASTPostProcess' postprocess_params["score_thresh"] = args.det_east_score_thresh @@ -231,7 +248,7 @@ class TextDetector(object): preds['f_score'] = outputs[1] preds['f_tco'] = outputs[2] preds['f_tvo'] = outputs[3] - elif self.det_algorithm in ['DB', 'PSE']: + elif self.det_algorithm in ['DB', 'PSE', 'DB++']: preds['maps'] = outputs[0] elif self.det_algorithm == 'FCE': for i, output in enumerate(outputs): diff --git a/tools/infer/utility.py b/tools/infer/utility.py index 366212f228eec33f11c825bfaf1e360258af9b2e..7eb77dec74bf283936e1143edcb5b5dfc28365bd 100644 --- a/tools/infer/utility.py +++ b/tools/infer/utility.py @@ -153,6 +153,8 @@ def create_predictor(args, mode, logger): model_dir = args.rec_model_dir elif mode == 'table': model_dir = args.table_model_dir + elif mode == 'ser': + model_dir = args.ser_model_dir else: model_dir = args.e2e_model_dir @@ -316,8 +318,13 @@ def create_predictor(args, mode, logger): # create predictor predictor = inference.create_predictor(config) input_names = predictor.get_input_names() - for name in input_names: - input_tensor = predictor.get_input_handle(name) + if mode in ['ser', 're']: + input_tensor = [] + for name in input_names: + input_tensor.append(predictor.get_input_handle(name)) + else: + for name in input_names: + input_tensor = predictor.get_input_handle(name) output_tensors = get_output_tensors(args, mode, predictor) return predictor, input_tensor, output_tensors, config diff --git a/tools/infer_det.py b/tools/infer_det.py index 1acecedf3e42fe67a93644a7f06c07c8b6bea2e3..f253e8f2876a5942538f18e93dfdada4391875b2 100755 --- a/tools/infer_det.py +++ b/tools/infer_det.py @@ -44,7 +44,7 @@ def draw_det_res(dt_boxes, config, img, img_name, save_path): import cv2 src_im = img for box in dt_boxes: - box = box.astype(np.int32).reshape((-1, 1, 2)) + box = np.array(box).astype(np.int32).reshape((-1, 1, 2)) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) if not os.path.exists(save_path): os.makedirs(save_path) @@ -106,7 +106,7 @@ def main(): dt_boxes_list = [] for box in boxes: tmp_json = {"transcription": ""} - tmp_json['points'] = box.tolist() + tmp_json['points'] = np.array(box).tolist() dt_boxes_list.append(tmp_json) det_box_json[k] = dt_boxes_list save_det_path = os.path.dirname(config['Global'][ @@ -118,7 +118,7 @@ def main(): # write result for box in boxes: tmp_json = {"transcription": ""} - tmp_json['points'] = box.tolist() + tmp_json['points'] = np.array(box).tolist() dt_boxes_json.append(tmp_json) save_det_path = os.path.dirname(config['Global'][ 'save_res_path']) + "/det_results/" diff --git a/tools/infer_kie.py b/tools/infer_kie.py index 0cb0b8702cbd7ea74a7b7fcff69122731578a1bd..346e2e0aeeee695ab49577b6b13dcc058150df1a 100755 --- a/tools/infer_kie.py +++ b/tools/infer_kie.py @@ -39,13 +39,12 @@ import time def read_class_list(filepath): - dict = {} + ret = {} with open(filepath, "r") as f: lines = f.readlines() - for line in lines: - key, value = line.split(" ") - dict[key] = value.rstrip() - return dict + for idx, line in enumerate(lines): + ret[idx] = line.strip("\n") + return ret def draw_kie_result(batch, node, idx_to_cls, count): @@ -71,7 +70,7 @@ def draw_kie_result(batch, node, idx_to_cls, count): x_min = int(min([point[0] for point in new_box])) y_min = int(min([point[1] for point in new_box])) - pred_label = str(node_pred_label[i]) + pred_label = node_pred_label[i] if pred_label in idx_to_cls: pred_label = idx_to_cls[pred_label] pred_score = '{:.2f}'.format(node_pred_score[i]) @@ -109,8 +108,7 @@ def main(): save_res_path = config['Global']['save_res_path'] class_path = config['Global']['class_path'] idx_to_cls = read_class_list(class_path) - if not os.path.exists(os.path.dirname(save_res_path)): - os.makedirs(os.path.dirname(save_res_path)) + os.makedirs(os.path.dirname(save_res_path), exist_ok=True) model.eval() diff --git a/tools/infer_table.py b/tools/infer_table.py index 66c2da4421a313c634d27eb7a1013638a7c005ed..6c02dd8640c9345c267e56d6e5a0c14bde121b7e 100644 --- a/tools/infer_table.py +++ b/tools/infer_table.py @@ -36,10 +36,12 @@ from ppocr.modeling.architectures import build_model from ppocr.postprocess import build_post_process from ppocr.utils.save_load import load_model from ppocr.utils.utility import get_image_file_list +from ppocr.utils.visual import draw_rectangle import tools.program as program import cv2 +@paddle.no_grad() def main(config, device, logger, vdl_writer): global_config = config['Global'] @@ -53,53 +55,61 @@ def main(config, device, logger, vdl_writer): getattr(post_process_class, 'character')) model = build_model(config['Architecture']) + algorithm = config['Architecture']['algorithm'] + use_xywh = algorithm in ['TableMaster'] load_model(config, model) # create data ops transforms = [] - use_padding = False for op in config['Eval']['dataset']['transforms']: op_name = list(op)[0] - if 'Label' in op_name: + if 'Encode' in op_name: continue if op_name == 'KeepKeys': - op[op_name]['keep_keys'] = ['image'] - if op_name == "ResizeTableImage": - use_padding = True - padding_max_len = op['ResizeTableImage']['max_len'] + op[op_name]['keep_keys'] = ['image', 'shape'] transforms.append(op) global_config['infer_mode'] = True ops = create_operators(transforms, global_config) + save_res_path = config['Global']['save_res_path'] + os.makedirs(save_res_path, exist_ok=True) + model.eval() - for file in get_image_file_list(config['Global']['infer_img']): - logger.info("infer_img: {}".format(file)) - with open(file, 'rb') as f: - img = f.read() - data = {'image': img} - batch = transform(data, ops) - images = np.expand_dims(batch[0], axis=0) - images = paddle.to_tensor(images) - preds = model(images) - post_result = post_process_class(preds) - res_html_code = post_result['res_html_code'] - res_loc = post_result['res_loc'] - img = cv2.imread(file) - imgh, imgw = img.shape[0:2] - res_loc_final = [] - for rno in range(len(res_loc[0])): - x0, y0, x1, y1 = res_loc[0][rno] - left = max(int(imgw * x0), 0) - top = max(int(imgh * y0), 0) - right = min(int(imgw * x1), imgw - 1) - bottom = min(int(imgh * y1), imgh - 1) - cv2.rectangle(img, (left, top), (right, bottom), (0, 0, 255), 2) - res_loc_final.append([left, top, right, bottom]) - res_loc_str = json.dumps(res_loc_final) - logger.info("result: {}, {}".format(res_html_code, res_loc_final)) - logger.info("success!") + with open( + os.path.join(save_res_path, 'infer.txt'), mode='w', + encoding='utf-8') as f_w: + for file in get_image_file_list(config['Global']['infer_img']): + logger.info("infer_img: {}".format(file)) + with open(file, 'rb') as f: + img = f.read() + data = {'image': img} + batch = transform(data, ops) + images = np.expand_dims(batch[0], axis=0) + shape_list = np.expand_dims(batch[1], axis=0) + + images = paddle.to_tensor(images) + preds = model(images) + post_result = post_process_class(preds, [shape_list]) + + structure_str_list = post_result['structure_batch_list'][0] + bbox_list = post_result['bbox_batch_list'][0] + structure_str_list = structure_str_list[0] + structure_str_list = [ + '', '', '' + ] + structure_str_list + ['
', '', ''] + bbox_list_str = json.dumps(bbox_list.tolist()) + + logger.info("result: {}, {}".format(structure_str_list, + bbox_list_str)) + f_w.write("result: {}, {}\n".format(structure_str_list, + bbox_list_str)) + + img = draw_rectangle(file, bbox_list, use_xywh) + cv2.imwrite( + os.path.join(save_res_path, os.path.basename(file)), img) + logger.info("success!") if __name__ == '__main__': diff --git a/tools/infer_vqa_token_ser.py b/tools/infer_vqa_token_ser.py index 83ed72b392e627c161903c3945f57be0abfabc2b..0173a554cace31e20ab47dbe36d132a4dbb2127b 100755 --- a/tools/infer_vqa_token_ser.py +++ b/tools/infer_vqa_token_ser.py @@ -44,6 +44,7 @@ def to_tensor(data): from collections import defaultdict data_dict = defaultdict(list) to_tensor_idxs = [] + for idx, v in enumerate(data): if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)): if idx not in to_tensor_idxs: @@ -57,6 +58,7 @@ def to_tensor(data): class SerPredictor(object): def __init__(self, config): global_config = config['Global'] + self.algorithm = config['Architecture']["algorithm"] # build post process self.post_process_class = build_post_process(config['PostProcess'], @@ -70,7 +72,10 @@ class SerPredictor(object): from paddleocr import PaddleOCR - self.ocr_engine = PaddleOCR(use_angle_cls=False, show_log=False) + self.ocr_engine = PaddleOCR( + use_angle_cls=False, + show_log=False, + use_gpu=global_config['use_gpu']) # create data ops transforms = [] @@ -80,29 +85,30 @@ class SerPredictor(object): op[op_name]['ocr_engine'] = self.ocr_engine elif op_name == 'KeepKeys': op[op_name]['keep_keys'] = [ - 'input_ids', 'labels', 'bbox', 'image', 'attention_mask', - 'token_type_ids', 'segment_offset_id', 'ocr_info', + 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', + 'image', 'labels', 'segment_offset_id', 'ocr_info', 'entities' ] transforms.append(op) - global_config['infer_mode'] = True + if config["Global"].get("infer_mode", None) is None: + global_config['infer_mode'] = True self.ops = create_operators(config['Eval']['dataset']['transforms'], global_config) self.model.eval() - def __call__(self, img_path): - with open(img_path, 'rb') as f: + def __call__(self, data): + with open(data["img_path"], 'rb') as f: img = f.read() - data = {'image': img} + data["image"] = img batch = transform(data, self.ops) batch = to_tensor(batch) preds = self.model(batch) + if self.algorithm in ['LayoutLMv2', 'LayoutXLM']: + preds = preds[0] + post_result = self.post_process_class( - preds, - attention_masks=batch[4], - segment_offset_ids=batch[6], - ocr_infos=batch[7]) + preds, segment_offset_ids=batch[6], ocr_infos=batch[7]) return post_result, batch @@ -112,20 +118,33 @@ if __name__ == '__main__': ser_engine = SerPredictor(config) - infer_imgs = get_image_file_list(config['Global']['infer_img']) + if config["Global"].get("infer_mode", None) is False: + data_dir = config['Eval']['dataset']['data_dir'] + with open(config['Global']['infer_img'], "rb") as f: + infer_imgs = f.readlines() + else: + infer_imgs = get_image_file_list(config['Global']['infer_img']) + with open( os.path.join(config['Global']['save_res_path'], "infer_results.txt"), "w", encoding='utf-8') as fout: - for idx, img_path in enumerate(infer_imgs): + for idx, info in enumerate(infer_imgs): + if config["Global"].get("infer_mode", None) is False: + data_line = info.decode('utf-8') + substr = data_line.strip("\n").split("\t") + img_path = os.path.join(data_dir, substr[0]) + data = {'img_path': img_path, 'label': substr[1]} + else: + img_path = info + data = {'img_path': img_path} + save_img_path = os.path.join( config['Global']['save_res_path'], os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg") - logger.info("process: [{}/{}], save result to {}".format( - idx, len(infer_imgs), save_img_path)) - result, _ = ser_engine(img_path) + result, _ = ser_engine(data) result = result[0] fout.write(img_path + "\t" + json.dumps( { @@ -133,3 +152,6 @@ if __name__ == '__main__': }, ensure_ascii=False) + "\n") img_res = draw_ser_results(img_path, result) cv2.imwrite(save_img_path, img_res) + + logger.info("process: [{}/{}], save result to {}".format( + idx, len(infer_imgs), save_img_path)) diff --git a/tools/infer_vqa_token_ser_re.py b/tools/infer_vqa_token_ser_re.py index 6210f7f3c24227c9d366b08ce93ccfe4df849ce1..20ab1fe176c3be75f7a7b01a8d77df6419c58c75 100755 --- a/tools/infer_vqa_token_ser_re.py +++ b/tools/infer_vqa_token_ser_re.py @@ -38,7 +38,7 @@ from ppocr.utils.save_load import load_model from ppocr.utils.visual import draw_re_results from ppocr.utils.logging import get_logger from ppocr.utils.utility import get_image_file_list, load_vqa_bio_label_maps, print_dict -from tools.program import ArgsParser, load_config, merge_config, check_gpu +from tools.program import ArgsParser, load_config, merge_config from tools.infer_vqa_token_ser import SerPredictor @@ -107,7 +107,7 @@ def make_input(ser_inputs, ser_results): # remove ocr_info segment_offset_id and label in ser input ser_inputs.pop(7) ser_inputs.pop(6) - ser_inputs.pop(1) + ser_inputs.pop(5) return ser_inputs, entity_idx_dict_batch @@ -131,9 +131,7 @@ class SerRePredictor(object): self.model.eval() def __call__(self, img_path): - ser_results, ser_inputs = self.ser_engine(img_path) - paddle.save(ser_inputs, 'ser_inputs.npy') - paddle.save(ser_results, 'ser_results.npy') + ser_results, ser_inputs = self.ser_engine({'img_path': img_path}) re_input, entity_idx_dict_batch = make_input(ser_inputs, ser_results) preds = self.model(re_input) post_result = self.post_process_class( @@ -155,7 +153,6 @@ def preprocess(): # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global']['use_gpu'] - check_gpu(use_gpu) device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu' device = paddle.set_device(device) @@ -185,9 +182,7 @@ if __name__ == '__main__': for idx, img_path in enumerate(infer_imgs): save_img_path = os.path.join( config['Global']['save_res_path'], - os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg") - logger.info("process: [{}/{}], save result to {}".format( - idx, len(infer_imgs), save_img_path)) + os.path.splitext(os.path.basename(img_path))[0] + "_ser_re.jpg") result = ser_re_engine(img_path) result = result[0] @@ -197,3 +192,6 @@ if __name__ == '__main__': }, ensure_ascii=False) + "\n") img_res = draw_re_results(img_path, result) cv2.imwrite(save_img_path, img_res) + + logger.info("process: [{}/{}], save result to {}".format( + idx, len(infer_imgs), save_img_path)) diff --git a/tools/program.py b/tools/program.py index aa3ba82c44d6afba725a8059dc7f8cae41947b3d..1d83b46216ad62d59e7123c1b2d590d2a1aae5ac 100755 --- a/tools/program.py +++ b/tools/program.py @@ -281,8 +281,11 @@ def train(config, if cal_metric_during_train and epoch % calc_epoch_interval == 0: # only rec and cls need batch = [item.numpy() for item in batch] - if model_type in ['table', 'kie']: + if model_type in ['kie']: eval_class(preds, batch) + elif model_type in ['table']: + post_result = post_process_class(preds, batch) + eval_class(post_result, batch) else: if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2' ]: # for multi head loss @@ -463,7 +466,6 @@ def eval(model, preds = model(batch) else: preds = model(images) - batch_numpy = [] for item in batch: if isinstance(item, paddle.Tensor): @@ -473,9 +475,9 @@ def eval(model, # Obtain usable results from post-processing methods total_time += time.time() - start # Evaluate the results of the current batch - if model_type in ['table', 'kie']: + if model_type in ['kie']: eval_class(preds, batch_numpy) - elif model_type in ['vqa']: + elif model_type in ['table', 'vqa']: post_result = post_process_class(preds, batch_numpy) eval_class(post_result, batch_numpy) else: @@ -576,8 +578,8 @@ def preprocess(is_train=False): assert alg in [ 'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN', 'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE', - 'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'PREN', 'FCE', 'SVTR', - 'ViTSTR', 'ABINet' + 'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE', + 'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster' ] if use_xpu: