diff --git a/configs/det/det_r50_drrg_ctw.yml b/configs/det/det_r50_drrg_ctw.yml index 2111eb3419619bd8d2dddfc0c30844f3b2b2826a..f67c926f3a8294a41df0751357061c69a895549e 100755 --- a/configs/det/det_r50_drrg_ctw.yml +++ b/configs/det/det_r50_drrg_ctw.yml @@ -8,7 +8,7 @@ Global: # evaluation is run every 1260 iterations eval_batch_step: [37800, 1260] cal_metric_during_train: False - pretrained_model: + pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained.pdparams checkpoints: save_inference_dir: use_visualdl: False @@ -23,8 +23,6 @@ Architecture: Backbone: name: ResNet_vd layers: 50 - pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained.pdparams - Neck: name: FPN_UNet in_channels: [256, 512, 1024, 2048] diff --git a/ppocr/modeling/backbones/det_resnet_vd.py b/ppocr/modeling/backbones/det_resnet_vd.py index 09af41bd439da9c82e303db958d73d096a6d6717..a421da0ab440e9b87c1c7efc7d2448f8f76ad205 100644 --- a/ppocr/modeling/backbones/det_resnet_vd.py +++ b/ppocr/modeling/backbones/det_resnet_vd.py @@ -16,8 +16,6 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function -import os - import paddle from paddle import ParamAttr import paddle.nn as nn @@ -27,8 +25,6 @@ from paddle.vision.ops import DeformConv2D from paddle.regularizer import L2Decay from paddle.nn.initializer import Normal, Constant, XavierUniform -from ppocr.utils.logging import get_logger - __all__ = ["ResNet_vd", "ConvBNLayer", "DeformableConvV2"] @@ -250,7 +246,6 @@ class ResNet_vd(nn.Layer): layers=50, dcn_stage=None, out_indices=None, - pretrained_model=None, **kwargs): super(ResNet_vd, self).__init__() @@ -344,30 +339,6 @@ class ResNet_vd(nn.Layer): self.out_channels.append(num_filters[block]) self.stages.append(nn.Sequential(*block_list)) - if pretrained_model is not None: - self.load_pretrained_params(pretrained_model) - - def load_pretrained_params(self, path): - logger = get_logger() - if path.endswith('.pdparams'): - path = path.replace('.pdparams', '') - assert os.path.exists(path + ".pdparams"), \ - "The {}.pdparams does not exists!".format(path) - - params = paddle.load(path + '.pdparams') - state_dict = self.state_dict() - new_state_dict = {} - - for k1, k2 in zip(state_dict.keys(), params.keys()): - if list(state_dict[k1].shape) == list(params[k2].shape): - new_state_dict[k1] = params[k2] - else: - logger.info( - f"The shape of model params {k1} {state_dict[k1].shape} not matched with loaded params {k2} {params[k2].shape} !" - ) - self.set_state_dict(new_state_dict) - logger.info(f"loaded backbone pretrained_model successful from {path}") - def forward(self, inputs): y = self.conv1_1(inputs) y = self.conv1_2(y)