Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
55b76dca
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
55b76dca
编写于
8月 19, 2021
作者:
T
Topdu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete blank lines and modify forward_train
上级
a11e2199
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
391 addition
and
291 deletion
+391
-291
configs/rec/rec_mtb_nrtr.yml
configs/rec/rec_mtb_nrtr.yml
+1
-1
ppocr/modeling/backbones/__init__.py
ppocr/modeling/backbones/__init__.py
+3
-2
ppocr/modeling/backbones/rec_nrtr_mtb.py
ppocr/modeling/backbones/rec_nrtr_mtb.py
+26
-8
ppocr/modeling/heads/__init__.py
ppocr/modeling/heads/__init__.py
+3
-4
ppocr/modeling/heads/multiheadAttention.py
ppocr/modeling/heads/multiheadAttention.py
+67
-46
ppocr/modeling/heads/rec_nrtr_optim_head.py
ppocr/modeling/heads/rec_nrtr_optim_head.py
+288
-222
tools/program.py
tools/program.py
+3
-8
未找到文件。
configs/rec/rec_mtb_nrtr.yml
浏览文件 @
55b76dca
ppocr/modeling/backbones/__init__.py
浏览文件 @
55b76dca
...
@@ -27,8 +27,9 @@ def build_backbone(config, model_type):
...
@@ -27,8 +27,9 @@ def build_backbone(config, model_type):
from
.rec_resnet_fpn
import
ResNetFPN
from
.rec_resnet_fpn
import
ResNetFPN
from
.rec_mv1_enhance
import
MobileNetV1Enhance
from
.rec_mv1_enhance
import
MobileNetV1Enhance
from
.rec_nrtr_mtb
import
MTB
from
.rec_nrtr_mtb
import
MTB
from
.rec_swin
import
SwinTransformer
support_dict
=
[
support_dict
=
[
'MobileNetV1Enhance'
,
'MobileNetV3'
,
'ResNet'
,
'ResNetFPN'
,
'MTB'
,
'SwinTransformer'
]
'MobileNetV1Enhance'
,
'MobileNetV3'
,
'ResNet'
,
'ResNetFPN'
,
'MTB'
]
elif
model_type
==
"e2e"
:
elif
model_type
==
"e2e"
:
from
.e2e_resnet_vd_pg
import
ResNet
from
.e2e_resnet_vd_pg
import
ResNet
support_dict
=
[
"ResNet"
]
support_dict
=
[
"ResNet"
]
...
...
ppocr/modeling/backbones/rec_nrtr_mtb.py
浏览文件 @
55b76dca
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle
import
nn
from
paddle
import
nn
class
MTB
(
nn
.
Layer
):
class
MTB
(
nn
.
Layer
):
def
__init__
(
self
,
cnn_num
,
in_channels
):
def
__init__
(
self
,
cnn_num
,
in_channels
):
super
(
MTB
,
self
).
__init__
()
super
(
MTB
,
self
).
__init__
()
...
@@ -8,17 +23,20 @@ class MTB(nn.Layer):
...
@@ -8,17 +23,20 @@ class MTB(nn.Layer):
self
.
cnn_num
=
cnn_num
self
.
cnn_num
=
cnn_num
if
self
.
cnn_num
==
2
:
if
self
.
cnn_num
==
2
:
for
i
in
range
(
self
.
cnn_num
):
for
i
in
range
(
self
.
cnn_num
):
self
.
block
.
add_sublayer
(
'conv_{}'
.
format
(
i
),
nn
.
Conv2D
(
self
.
block
.
add_sublayer
(
in_channels
=
in_channels
if
i
==
0
else
32
*
(
2
**
(
i
-
1
)),
'conv_{}'
.
format
(
i
),
out_channels
=
32
*
(
2
**
i
),
nn
.
Conv2D
(
kernel_size
=
3
,
in_channels
=
in_channels
stride
=
2
,
if
i
==
0
else
32
*
(
2
**
(
i
-
1
)),
out_channels
=
32
*
(
2
**
i
),
kernel_size
=
3
,
stride
=
2
,
padding
=
1
))
padding
=
1
))
self
.
block
.
add_sublayer
(
'relu_{}'
.
format
(
i
),
nn
.
ReLU
())
self
.
block
.
add_sublayer
(
'relu_{}'
.
format
(
i
),
nn
.
ReLU
())
self
.
block
.
add_sublayer
(
'bn_{}'
.
format
(
i
),
nn
.
BatchNorm2D
(
32
*
(
2
**
i
)))
self
.
block
.
add_sublayer
(
'bn_{}'
.
format
(
i
),
nn
.
BatchNorm2D
(
32
*
(
2
**
i
)))
def
forward
(
self
,
images
):
def
forward
(
self
,
images
):
x
=
self
.
block
(
images
)
x
=
self
.
block
(
images
)
if
self
.
cnn_num
==
2
:
if
self
.
cnn_num
==
2
:
# (b, w, h, c)
# (b, w, h, c)
...
...
ppocr/modeling/heads/__init__.py
浏览文件 @
55b76dca
...
@@ -32,9 +32,8 @@ def build_head(config):
...
@@ -32,9 +32,8 @@ def build_head(config):
from
.cls_head
import
ClsHead
from
.cls_head
import
ClsHead
support_dict
=
[
support_dict
=
[
'DBHead'
,
'EASTHead'
,
'SASTHead'
,
'CTCHead'
,
'ClsHead'
,
'AttentionHead'
,
'DBHead'
,
'EASTHead'
,
'SASTHead'
,
'CTCHead'
,
'ClsHead'
,
'AttentionHead'
,
'SRNHead'
,
'PGHead'
,
'TransformerOptim'
,
'TableAttentionHead'
'SRNHead'
,
'PGHead'
,
'TransformerOptim'
,
'TableAttentionHead'
]
]
#table head
#table head
from
.table_att_head
import
TableAttentionHead
from
.table_att_head
import
TableAttentionHead
...
...
ppocr/modeling/heads/multiheadAttention.py
浏览文件 @
55b76dca
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle
from
paddle
import
nn
from
paddle
import
nn
import
paddle.nn.functional
as
F
import
paddle.nn.functional
as
F
...
@@ -11,7 +25,7 @@ ones_ = constant_(value=1.)
...
@@ -11,7 +25,7 @@ ones_ = constant_(value=1.)
class
MultiheadAttentionOptim
(
nn
.
Layer
):
class
MultiheadAttentionOptim
(
nn
.
Layer
):
r
"""Allows the model to jointly attend to information
"""Allows the model to jointly attend to information
from different representation subspaces.
from different representation subspaces.
See reference: Attention Is All You Need
See reference: Attention Is All You Need
...
@@ -23,37 +37,43 @@ class MultiheadAttentionOptim(nn.Layer):
...
@@ -23,37 +37,43 @@ class MultiheadAttentionOptim(nn.Layer):
embed_dim: total dimension of the model
embed_dim: total dimension of the model
num_heads: parallel attention layers, or heads
num_heads: parallel attention layers, or heads
Examples::
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
"""
"""
def
__init__
(
self
,
embed_dim
,
num_heads
,
dropout
=
0.
,
bias
=
True
,
add_bias_kv
=
False
,
add_zero_attn
=
False
):
def
__init__
(
self
,
embed_dim
,
num_heads
,
dropout
=
0.
,
bias
=
True
,
add_bias_kv
=
False
,
add_zero_attn
=
False
):
super
(
MultiheadAttentionOptim
,
self
).
__init__
()
super
(
MultiheadAttentionOptim
,
self
).
__init__
()
self
.
embed_dim
=
embed_dim
self
.
embed_dim
=
embed_dim
self
.
num_heads
=
num_heads
self
.
num_heads
=
num_heads
self
.
dropout
=
dropout
self
.
dropout
=
dropout
self
.
head_dim
=
embed_dim
//
num_heads
self
.
head_dim
=
embed_dim
//
num_heads
assert
self
.
head_dim
*
num_heads
==
self
.
embed_dim
,
"embed_dim must be divisible by num_heads"
assert
self
.
head_dim
*
num_heads
==
self
.
embed_dim
,
"embed_dim must be divisible by num_heads"
self
.
scaling
=
self
.
head_dim
**
-
0.5
self
.
scaling
=
self
.
head_dim
**-
0.5
self
.
out_proj
=
Linear
(
embed_dim
,
embed_dim
,
bias_attr
=
bias
)
self
.
out_proj
=
Linear
(
embed_dim
,
embed_dim
,
bias_attr
=
bias
)
self
.
_reset_parameters
()
self
.
_reset_parameters
()
self
.
conv1
=
paddle
.
nn
.
Conv2D
(
self
.
conv1
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
self
.
conv2
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
self
.
conv2
=
paddle
.
nn
.
Conv2D
(
self
.
conv3
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
self
.
conv3
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
def
_reset_parameters
(
self
):
def
_reset_parameters
(
self
):
xavier_uniform_
(
self
.
out_proj
.
weight
)
xavier_uniform_
(
self
.
out_proj
.
weight
)
def
forward
(
self
,
def
forward
(
self
,
query
,
key
,
value
,
key_padding_mask
=
None
,
incremental_state
=
None
,
query
,
need_weights
=
True
,
static_kv
=
False
,
attn_mask
=
None
):
key
,
value
,
key_padding_mask
=
None
,
incremental_state
=
None
,
need_weights
=
True
,
static_kv
=
False
,
attn_mask
=
None
):
"""
"""
Inputs of forward function
Inputs of forward function
query: [target length, batch size, embed dim]
query: [target length, batch size, embed dim]
...
@@ -68,8 +88,6 @@ class MultiheadAttentionOptim(nn.Layer):
...
@@ -68,8 +88,6 @@ class MultiheadAttentionOptim(nn.Layer):
attn_output: [target length, batch size, embed dim]
attn_output: [target length, batch size, embed dim]
attn_output_weights: [batch size, target length, sequence length]
attn_output_weights: [batch size, target length, sequence length]
"""
"""
tgt_len
,
bsz
,
embed_dim
=
query
.
shape
tgt_len
,
bsz
,
embed_dim
=
query
.
shape
assert
embed_dim
==
self
.
embed_dim
assert
embed_dim
==
self
.
embed_dim
assert
list
(
query
.
shape
)
==
[
tgt_len
,
bsz
,
embed_dim
]
assert
list
(
query
.
shape
)
==
[
tgt_len
,
bsz
,
embed_dim
]
...
@@ -80,11 +98,12 @@ class MultiheadAttentionOptim(nn.Layer):
...
@@ -80,11 +98,12 @@ class MultiheadAttentionOptim(nn.Layer):
v
=
self
.
_in_proj_v
(
value
)
v
=
self
.
_in_proj_v
(
value
)
q
*=
self
.
scaling
q
*=
self
.
scaling
q
=
q
.
reshape
([
tgt_len
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
(
q
=
q
.
reshape
([
tgt_len
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
([
1
,
0
,
2
])
[
1
,
0
,
2
])
k
=
k
.
reshape
([
-
1
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
([
1
,
0
,
2
])
k
=
k
.
reshape
([
-
1
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
(
v
=
v
.
reshape
([
-
1
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
([
1
,
0
,
2
])
[
1
,
0
,
2
])
v
=
v
.
reshape
([
-
1
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
(
[
1
,
0
,
2
])
src_len
=
k
.
shape
[
1
]
src_len
=
k
.
shape
[
1
]
...
@@ -92,44 +111,48 @@ class MultiheadAttentionOptim(nn.Layer):
...
@@ -92,44 +111,48 @@ class MultiheadAttentionOptim(nn.Layer):
assert
key_padding_mask
.
shape
[
0
]
==
bsz
assert
key_padding_mask
.
shape
[
0
]
==
bsz
assert
key_padding_mask
.
shape
[
1
]
==
src_len
assert
key_padding_mask
.
shape
[
1
]
==
src_len
attn_output_weights
=
paddle
.
bmm
(
q
,
k
.
transpose
([
0
,
2
,
1
]))
a
ttn_output_weights
=
paddle
.
bmm
(
q
,
k
.
transpose
([
0
,
2
,
1
]))
a
ssert
list
(
attn_output_weights
.
assert
list
(
attn_output_weights
.
shape
)
==
[
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
]
shape
)
==
[
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
]
if
attn_mask
is
not
None
:
if
attn_mask
is
not
None
:
attn_mask
=
attn_mask
.
unsqueeze
(
0
)
attn_mask
=
attn_mask
.
unsqueeze
(
0
)
attn_output_weights
+=
attn_mask
attn_output_weights
+=
attn_mask
if
key_padding_mask
is
not
None
:
if
key_padding_mask
is
not
None
:
attn_output_weights
=
attn_output_weights
.
reshape
([
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
])
attn_output_weights
=
attn_output_weights
.
reshape
(
[
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
])
key
=
key_padding_mask
.
unsqueeze
(
1
).
unsqueeze
(
2
).
astype
(
'float32'
)
key
=
key_padding_mask
.
unsqueeze
(
1
).
unsqueeze
(
2
).
astype
(
'float32'
)
y
=
paddle
.
full
(
shape
=
key
.
shape
,
dtype
=
'float32'
,
fill_value
=
'-inf'
)
y
=
paddle
.
full
(
shape
=
key
.
shape
,
dtype
=
'float32'
,
fill_value
=
'-inf'
)
y
=
paddle
.
where
(
key
==
0.
,
key
,
y
)
y
=
paddle
.
where
(
key
==
0.
,
key
,
y
)
attn_output_weights
+=
y
attn_output_weights
+=
y
attn_output_weights
=
attn_output_weights
.
reshape
([
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
])
attn_output_weights
=
attn_output_weights
.
reshape
(
[
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
])
attn_output_weights
=
F
.
softmax
(
attn_output_weights
=
F
.
softmax
(
attn_output_weights
.
astype
(
'float32'
),
axis
=-
1
,
attn_output_weights
.
astype
(
'float32'
),
dtype
=
paddle
.
float32
if
attn_output_weights
.
dtype
==
paddle
.
float16
else
attn_output_weights
.
dtype
)
axis
=-
1
,
attn_output_weights
=
F
.
dropout
(
attn_output_weights
,
p
=
self
.
dropout
,
training
=
self
.
training
)
dtype
=
paddle
.
float32
if
attn_output_weights
.
dtype
==
paddle
.
float16
else
attn_output_weights
.
dtype
)
attn_output_weights
=
F
.
dropout
(
attn_output_weights
,
p
=
self
.
dropout
,
training
=
self
.
training
)
attn_output
=
paddle
.
bmm
(
attn_output_weights
,
v
)
attn_output
=
paddle
.
bmm
(
attn_output_weights
,
v
)
assert
list
(
attn_output
.
shape
)
==
[
bsz
*
self
.
num_heads
,
tgt_len
,
self
.
head_dim
]
assert
list
(
attn_output
.
attn_output
=
attn_output
.
transpose
([
1
,
0
,
2
]).
reshape
([
tgt_len
,
bsz
,
embed_dim
])
shape
)
==
[
bsz
*
self
.
num_heads
,
tgt_len
,
self
.
head_dim
]
attn_output
=
attn_output
.
transpose
([
1
,
0
,
2
]).
reshape
(
[
tgt_len
,
bsz
,
embed_dim
])
attn_output
=
self
.
out_proj
(
attn_output
)
attn_output
=
self
.
out_proj
(
attn_output
)
if
need_weights
:
if
need_weights
:
# average attention weights over heads
# average attention weights over heads
attn_output_weights
=
attn_output_weights
.
reshape
([
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
])
attn_output_weights
=
attn_output_weights
.
reshape
(
attn_output_weights
=
attn_output_weights
.
sum
(
axis
=
1
)
/
self
.
num_heads
[
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
])
attn_output_weights
=
attn_output_weights
.
sum
(
axis
=
1
)
/
self
.
num_heads
else
:
else
:
attn_output_weights
=
None
attn_output_weights
=
None
return
attn_output
,
attn_output_weights
return
attn_output
,
attn_output_weights
def
_in_proj_q
(
self
,
query
):
def
_in_proj_q
(
self
,
query
):
query
=
query
.
transpose
([
1
,
2
,
0
])
query
=
query
.
transpose
([
1
,
2
,
0
])
query
=
paddle
.
unsqueeze
(
query
,
axis
=
2
)
query
=
paddle
.
unsqueeze
(
query
,
axis
=
2
)
...
@@ -139,7 +162,6 @@ class MultiheadAttentionOptim(nn.Layer):
...
@@ -139,7 +162,6 @@ class MultiheadAttentionOptim(nn.Layer):
return
res
return
res
def
_in_proj_k
(
self
,
key
):
def
_in_proj_k
(
self
,
key
):
key
=
key
.
transpose
([
1
,
2
,
0
])
key
=
key
.
transpose
([
1
,
2
,
0
])
key
=
paddle
.
unsqueeze
(
key
,
axis
=
2
)
key
=
paddle
.
unsqueeze
(
key
,
axis
=
2
)
res
=
self
.
conv2
(
key
)
res
=
self
.
conv2
(
key
)
...
@@ -148,8 +170,7 @@ class MultiheadAttentionOptim(nn.Layer):
...
@@ -148,8 +170,7 @@ class MultiheadAttentionOptim(nn.Layer):
return
res
return
res
def
_in_proj_v
(
self
,
value
):
def
_in_proj_v
(
self
,
value
):
value
=
value
.
transpose
([
1
,
2
,
0
])
#(1, 2, 0)
value
=
value
.
transpose
([
1
,
2
,
0
])
#(1, 2, 0)
value
=
paddle
.
unsqueeze
(
value
,
axis
=
2
)
value
=
paddle
.
unsqueeze
(
value
,
axis
=
2
)
res
=
self
.
conv3
(
value
)
res
=
self
.
conv3
(
value
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
...
...
ppocr/modeling/heads/rec_nrtr_optim_head.py
浏览文件 @
55b76dca
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
math
import
paddle
import
paddle
import
copy
import
copy
...
@@ -14,8 +28,9 @@ from paddle.nn.initializer import XavierNormal as xavier_normal_
...
@@ -14,8 +28,9 @@ from paddle.nn.initializer import XavierNormal as xavier_normal_
zeros_
=
constant_
(
value
=
0.
)
zeros_
=
constant_
(
value
=
0.
)
ones_
=
constant_
(
value
=
1.
)
ones_
=
constant_
(
value
=
1.
)
class
TransformerOptim
(
nn
.
Layer
):
class
TransformerOptim
(
nn
.
Layer
):
r
"""A transformer model. User is able to modify the attributes as needed. The architechture
"""A transformer model. User is able to modify the attributes as needed. The architechture
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
...
@@ -31,39 +46,50 @@ class TransformerOptim(nn.Layer):
...
@@ -31,39 +46,50 @@ class TransformerOptim(nn.Layer):
custom_encoder: custom encoder (default=None).
custom_encoder: custom encoder (default=None).
custom_decoder: custom decoder (default=None).
custom_decoder: custom decoder (default=None).
Examples::
>>> transformer_model = nn.Transformer(src_vocab, tgt_vocab)
>>> transformer_model = nn.Transformer(src_vocab, tgt_vocab, nhead=16, num_encoder_layers=12)
"""
"""
def
__init__
(
self
,
d_model
=
512
,
nhead
=
8
,
num_encoder_layers
=
6
,
beam_size
=
0
,
def
__init__
(
self
,
num_decoder_layers
=
6
,
dim_feedforward
=
1024
,
attention_dropout_rate
=
0.0
,
residual_dropout_rate
=
0.1
,
d_model
=
512
,
custom_encoder
=
None
,
custom_decoder
=
None
,
in_channels
=
0
,
out_channels
=
0
,
dst_vocab_size
=
99
,
scale_embedding
=
True
):
nhead
=
8
,
num_encoder_layers
=
6
,
beam_size
=
0
,
num_decoder_layers
=
6
,
dim_feedforward
=
1024
,
attention_dropout_rate
=
0.0
,
residual_dropout_rate
=
0.1
,
custom_encoder
=
None
,
custom_decoder
=
None
,
in_channels
=
0
,
out_channels
=
0
,
dst_vocab_size
=
99
,
scale_embedding
=
True
):
super
(
TransformerOptim
,
self
).
__init__
()
super
(
TransformerOptim
,
self
).
__init__
()
self
.
embedding
=
Embeddings
(
self
.
embedding
=
Embeddings
(
d_model
=
d_model
,
d_model
=
d_model
,
vocab
=
dst_vocab_size
,
vocab
=
dst_vocab_size
,
padding_idx
=
0
,
padding_idx
=
0
,
scale_embedding
=
scale_embedding
scale_embedding
=
scale_embedding
)
)
self
.
positional_encoding
=
PositionalEncoding
(
self
.
positional_encoding
=
PositionalEncoding
(
dropout
=
residual_dropout_rate
,
dropout
=
residual_dropout_rate
,
dim
=
d_model
,
dim
=
d_model
,
)
)
if
custom_encoder
is
not
None
:
if
custom_encoder
is
not
None
:
self
.
encoder
=
custom_encoder
self
.
encoder
=
custom_encoder
else
:
else
:
if
num_encoder_layers
>
0
:
if
num_encoder_layers
>
0
:
encoder_layer
=
TransformerEncoderLayer
(
d_model
,
nhead
,
dim_feedforward
,
attention_dropout_rate
,
residual_dropout_rate
)
encoder_layer
=
TransformerEncoderLayer
(
d_model
,
nhead
,
dim_feedforward
,
attention_dropout_rate
,
self
.
encoder
=
TransformerEncoder
(
encoder_layer
,
num_encoder_layers
)
residual_dropout_rate
)
self
.
encoder
=
TransformerEncoder
(
encoder_layer
,
num_encoder_layers
)
else
:
else
:
self
.
encoder
=
None
self
.
encoder
=
None
if
custom_decoder
is
not
None
:
if
custom_decoder
is
not
None
:
self
.
decoder
=
custom_decoder
self
.
decoder
=
custom_decoder
else
:
else
:
decoder_layer
=
TransformerDecoderLayer
(
d_model
,
nhead
,
dim_feedforward
,
attention_dropout_rate
,
residual_dropout_rate
)
decoder_layer
=
TransformerDecoderLayer
(
d_model
,
nhead
,
dim_feedforward
,
attention_dropout_rate
,
residual_dropout_rate
)
self
.
decoder
=
TransformerDecoder
(
decoder_layer
,
num_decoder_layers
)
self
.
decoder
=
TransformerDecoder
(
decoder_layer
,
num_decoder_layers
)
self
.
_reset_parameters
()
self
.
_reset_parameters
()
...
@@ -71,11 +97,11 @@ class TransformerOptim(nn.Layer):
...
@@ -71,11 +97,11 @@ class TransformerOptim(nn.Layer):
self
.
d_model
=
d_model
self
.
d_model
=
d_model
self
.
nhead
=
nhead
self
.
nhead
=
nhead
self
.
tgt_word_prj
=
nn
.
Linear
(
d_model
,
dst_vocab_size
,
bias_attr
=
False
)
self
.
tgt_word_prj
=
nn
.
Linear
(
d_model
,
dst_vocab_size
,
bias_attr
=
False
)
w0
=
np
.
random
.
normal
(
0.0
,
d_model
**-
0.5
,(
d_model
,
dst_vocab_size
)).
astype
(
np
.
float32
)
w0
=
np
.
random
.
normal
(
0.0
,
d_model
**-
0.5
,
(
d_model
,
dst_vocab_size
)).
astype
(
np
.
float32
)
self
.
tgt_word_prj
.
weight
.
set_value
(
w0
)
self
.
tgt_word_prj
.
weight
.
set_value
(
w0
)
self
.
apply
(
self
.
_init_weights
)
self
.
apply
(
self
.
_init_weights
)
def
_init_weights
(
self
,
m
):
def
_init_weights
(
self
,
m
):
if
isinstance
(
m
,
nn
.
Conv2D
):
if
isinstance
(
m
,
nn
.
Conv2D
):
...
@@ -83,189 +109,193 @@ class TransformerOptim(nn.Layer):
...
@@ -83,189 +109,193 @@ class TransformerOptim(nn.Layer):
if
m
.
bias
is
not
None
:
if
m
.
bias
is
not
None
:
zeros_
(
m
.
bias
)
zeros_
(
m
.
bias
)
def
forward_train
(
self
,
src
,
tgt
):
def
forward_train
(
self
,
src
,
tgt
):
tgt
=
tgt
[:,
:
-
1
]
tgt
=
tgt
[:,
:
-
1
]
tgt_key_padding_mask
=
self
.
generate_padding_mask
(
tgt
)
tgt_key_padding_mask
=
self
.
generate_padding_mask
(
tgt
)
tgt
=
self
.
embedding
(
tgt
).
transpose
([
1
,
0
,
2
])
tgt
=
self
.
embedding
(
tgt
).
transpose
([
1
,
0
,
2
])
tgt
=
self
.
positional_encoding
(
tgt
)
tgt
=
self
.
positional_encoding
(
tgt
)
tgt_mask
=
self
.
generate_square_subsequent_mask
(
tgt
.
shape
[
0
])
tgt_mask
=
self
.
generate_square_subsequent_mask
(
tgt
.
shape
[
0
])
if
self
.
encoder
is
not
None
:
if
self
.
encoder
is
not
None
:
src
=
self
.
positional_encoding
(
src
.
transpose
([
1
,
0
,
2
]))
src
=
self
.
positional_encoding
(
src
.
transpose
([
1
,
0
,
2
]))
memory
=
self
.
encoder
(
src
)
memory
=
self
.
encoder
(
src
)
else
:
else
:
memory
=
src
.
squeeze
(
2
).
transpose
([
2
,
0
,
1
])
memory
=
src
.
squeeze
(
2
).
transpose
([
2
,
0
,
1
])
output
=
self
.
decoder
(
tgt
,
memory
,
tgt_mask
=
tgt_mask
,
memory_mask
=
None
,
output
=
self
.
decoder
(
tgt
,
memory
,
tgt_mask
=
tgt_mask
,
memory_mask
=
None
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
memory_key_padding_mask
=
None
)
memory_key_padding_mask
=
None
)
output
=
output
.
transpose
([
1
,
0
,
2
])
output
=
output
.
transpose
([
1
,
0
,
2
])
logit
=
self
.
tgt_word_prj
(
output
)
logit
=
self
.
tgt_word_prj
(
output
)
return
logit
return
logit
def
forward
(
self
,
src
,
tgt
=
None
):
def
forward
(
self
,
src
,
targets
=
None
):
r
"""Take in and process masked source/target sequences.
"""Take in and process masked source/target sequences.
Args:
Args:
src: the sequence to the encoder (required).
src: the sequence to the encoder (required).
tgt: the sequence to the decoder (required).
tgt: the sequence to the decoder (required).
src_mask: the additive mask for the src sequence (optional).
tgt_mask: the additive mask for the tgt sequence (optional).
memory_mask: the additive mask for the encoder output (optional).
src_key_padding_mask: the ByteTensor mask for src keys per batch (optional).
tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional).
memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional).
Shape:
Shape:
- src: :math:`(S, N, E)`.
- src: :math:`(S, N, E)`.
- tgt: :math:`(T, N, E)`.
- tgt: :math:`(T, N, E)`.
- src_mask: :math:`(S, S)`.
- tgt_mask: :math:`(T, T)`.
- memory_mask: :math:`(T, S)`.
- src_key_padding_mask: :math:`(N, S)`.
- tgt_key_padding_mask: :math:`(N, T)`.
- memory_key_padding_mask: :math:`(N, S)`.
Note: [src/tgt/memory]_mask should be filled with
float('-inf') for the masked positions and float(0.0) else. These masks
ensure that predictions for position i depend only on the unmasked positions
j and are applied identically for each sequence in a batch.
[src/tgt/memory]_key_padding_mask should be a ByteTensor where True values are positions
that should be masked with float('-inf') and False values will be unchanged.
This mask ensures that no information will be taken from position i if
it is masked, and has a separate mask for each sequence in a batch.
- output: :math:`(T, N, E)`.
Note: Due to the multi-head attention architecture in the transformer model,
the output sequence length of a transformer is same as the input sequence
(i.e. target) length of the decode.
where S is the source sequence length, T is the target sequence length, N is the
batch size, E is the feature number
Examples:
Examples:
>>> output = transformer_model(src, tgt
, src_mask=src_mask, tgt_mask=tgt_mask
)
>>> output = transformer_model(src, tgt)
"""
"""
if
tgt
is
not
None
:
if
self
.
training
:
max_len
=
targets
[
1
].
max
()
tgt
=
targets
[
0
][:,
:
2
+
max_len
]
return
self
.
forward_train
(
src
,
tgt
)
return
self
.
forward_train
(
src
,
tgt
)
else
:
else
:
if
self
.
beam_size
>
0
:
if
self
.
beam_size
>
0
:
return
self
.
forward_beam
(
src
)
return
self
.
forward_beam
(
src
)
else
:
else
:
return
self
.
forward_test
(
src
)
return
self
.
forward_test
(
src
)
def
forward_test
(
self
,
src
):
def
forward_test
(
self
,
src
):
bs
=
src
.
shape
[
0
]
bs
=
src
.
shape
[
0
]
if
self
.
encoder
is
not
None
:
if
self
.
encoder
is
not
None
:
src
=
self
.
positional_encoding
(
src
.
transpose
([
1
,
0
,
2
]))
src
=
self
.
positional_encoding
(
src
.
transpose
([
1
,
0
,
2
]))
memory
=
self
.
encoder
(
src
)
memory
=
self
.
encoder
(
src
)
else
:
else
:
memory
=
src
.
squeeze
(
2
).
transpose
([
2
,
0
,
1
])
memory
=
src
.
squeeze
(
2
).
transpose
([
2
,
0
,
1
])
dec_seq
=
paddle
.
full
((
bs
,
1
),
2
,
dtype
=
paddle
.
int64
)
dec_seq
=
paddle
.
full
((
bs
,
1
),
2
,
dtype
=
paddle
.
int64
)
for
len_dec_seq
in
range
(
1
,
25
):
for
len_dec_seq
in
range
(
1
,
25
):
src_enc
=
memory
.
clone
()
src_enc
=
memory
.
clone
()
tgt_key_padding_mask
=
self
.
generate_padding_mask
(
dec_seq
)
tgt_key_padding_mask
=
self
.
generate_padding_mask
(
dec_seq
)
dec_seq_embed
=
self
.
embedding
(
dec_seq
).
transpose
([
1
,
0
,
2
])
dec_seq_embed
=
self
.
embedding
(
dec_seq
).
transpose
([
1
,
0
,
2
])
dec_seq_embed
=
self
.
positional_encoding
(
dec_seq_embed
)
dec_seq_embed
=
self
.
positional_encoding
(
dec_seq_embed
)
tgt_mask
=
self
.
generate_square_subsequent_mask
(
dec_seq_embed
.
shape
[
0
])
tgt_mask
=
self
.
generate_square_subsequent_mask
(
dec_seq_embed
.
shape
[
output
=
self
.
decoder
(
dec_seq_embed
,
src_enc
,
tgt_mask
=
tgt_mask
,
memory_mask
=
None
,
0
])
output
=
self
.
decoder
(
dec_seq_embed
,
src_enc
,
tgt_mask
=
tgt_mask
,
memory_mask
=
None
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
memory_key_padding_mask
=
None
)
memory_key_padding_mask
=
None
)
dec_output
=
output
.
transpose
([
1
,
0
,
2
])
dec_output
=
output
.
transpose
([
1
,
0
,
2
])
dec_output
=
dec_output
[:,
-
1
,
:]
# Pick the last step: (bh * bm) * d_h
dec_output
=
dec_output
[:,
-
1
,
:]
# Pick the last step: (bh * bm) * d_h
word_prob
=
F
.
log_softmax
(
self
.
tgt_word_prj
(
dec_output
),
axis
=
1
)
word_prob
=
F
.
log_softmax
(
self
.
tgt_word_prj
(
dec_output
),
axis
=
1
)
word_prob
=
word_prob
.
reshape
([
1
,
bs
,
-
1
])
word_prob
=
word_prob
.
reshape
([
1
,
bs
,
-
1
])
preds_idx
=
word_prob
.
argmax
(
axis
=
2
)
preds_idx
=
word_prob
.
argmax
(
axis
=
2
)
if
paddle
.
equal_all
(
preds_idx
[
-
1
],
paddle
.
full
(
preds_idx
[
-
1
].
shape
,
3
,
dtype
=
'int64'
)):
if
paddle
.
equal_all
(
preds_idx
[
-
1
],
paddle
.
full
(
preds_idx
[
-
1
].
shape
,
3
,
dtype
=
'int64'
)):
break
break
preds_prob
=
word_prob
.
max
(
axis
=
2
)
preds_prob
=
word_prob
.
max
(
axis
=
2
)
dec_seq
=
paddle
.
concat
([
dec_seq
,
preds_idx
.
reshape
([
-
1
,
1
])],
axis
=
1
)
dec_seq
=
paddle
.
concat
(
[
dec_seq
,
preds_idx
.
reshape
([
-
1
,
1
])],
axis
=
1
)
return
dec_seq
return
dec_seq
def
forward_beam
(
self
,
images
):
def
forward_beam
(
self
,
images
):
''' Translation work in one batch '''
''' Translation work in one batch '''
def
get_inst_idx_to_tensor_position_map
(
inst_idx_list
):
def
get_inst_idx_to_tensor_position_map
(
inst_idx_list
):
''' Indicate the position of an instance in a tensor. '''
''' Indicate the position of an instance in a tensor. '''
return
{
inst_idx
:
tensor_position
for
tensor_position
,
inst_idx
in
enumerate
(
inst_idx_list
)}
return
{
inst_idx
:
tensor_position
for
tensor_position
,
inst_idx
in
enumerate
(
inst_idx_list
)
}
def
collect_active_part
(
beamed_tensor
,
curr_active_inst_idx
,
n_prev_active_inst
,
n_bm
):
def
collect_active_part
(
beamed_tensor
,
curr_active_inst_idx
,
n_prev_active_inst
,
n_bm
):
''' Collect tensor parts associated to active instances. '''
''' Collect tensor parts associated to active instances. '''
_
,
*
d_hs
=
beamed_tensor
.
shape
_
,
*
d_hs
=
beamed_tensor
.
shape
n_curr_active_inst
=
len
(
curr_active_inst_idx
)
n_curr_active_inst
=
len
(
curr_active_inst_idx
)
new_shape
=
(
n_curr_active_inst
*
n_bm
,
*
d_hs
)
new_shape
=
(
n_curr_active_inst
*
n_bm
,
*
d_hs
)
beamed_tensor
=
beamed_tensor
.
reshape
([
n_prev_active_inst
,
-
1
])
#contiguous()
beamed_tensor
=
beamed_tensor
.
reshape
(
beamed_tensor
=
beamed_tensor
.
index_select
(
paddle
.
to_tensor
(
curr_active_inst_idx
),
axis
=
0
)
[
n_prev_active_inst
,
-
1
])
#contiguous()
beamed_tensor
=
beamed_tensor
.
index_select
(
paddle
.
to_tensor
(
curr_active_inst_idx
),
axis
=
0
)
beamed_tensor
=
beamed_tensor
.
reshape
([
*
new_shape
])
beamed_tensor
=
beamed_tensor
.
reshape
([
*
new_shape
])
return
beamed_tensor
return
beamed_tensor
def
collate_active_info
(
src_enc
,
inst_idx_to_position_map
,
def
collate_active_info
(
active_inst_idx_list
):
src_enc
,
inst_idx_to_position_map
,
active_inst_idx_list
):
# Sentences which are still active are collected,
# Sentences which are still active are collected,
# so the decoder will not run on completed sentences.
# so the decoder will not run on completed sentences.
n_prev_active_inst
=
len
(
inst_idx_to_position_map
)
n_prev_active_inst
=
len
(
inst_idx_to_position_map
)
active_inst_idx
=
[
inst_idx_to_position_map
[
k
]
for
k
in
active_inst_idx_list
]
active_inst_idx
=
[
inst_idx_to_position_map
[
k
]
for
k
in
active_inst_idx_list
]
active_inst_idx
=
paddle
.
to_tensor
(
active_inst_idx
,
dtype
=
'int64'
)
active_inst_idx
=
paddle
.
to_tensor
(
active_inst_idx
,
dtype
=
'int64'
)
active_src_enc
=
collect_active_part
(
src_enc
.
transpose
([
1
,
0
,
2
]),
active_inst_idx
,
n_prev_active_inst
,
n_bm
).
transpose
([
1
,
0
,
2
])
active_src_enc
=
collect_active_part
(
active_inst_idx_to_position_map
=
get_inst_idx_to_tensor_position_map
(
active_inst_idx_list
)
src_enc
.
transpose
([
1
,
0
,
2
]),
active_inst_idx
,
n_prev_active_inst
,
n_bm
).
transpose
([
1
,
0
,
2
])
active_inst_idx_to_position_map
=
get_inst_idx_to_tensor_position_map
(
active_inst_idx_list
)
return
active_src_enc
,
active_inst_idx_to_position_map
return
active_src_enc
,
active_inst_idx_to_position_map
def
beam_decode_step
(
def
beam_decode_step
(
inst_dec_beams
,
len_dec_seq
,
enc_output
,
inst_dec_beams
,
len_dec_seq
,
enc_output
,
inst_idx_to_position_map
,
n_bm
,
memory_key_padding_mask
):
inst_idx_to_position_map
,
n_bm
,
memory_key_padding_mask
):
''' Decode and update beam status, and then return active beam idx '''
''' Decode and update beam status, and then return active beam idx '''
def
prepare_beam_dec_seq
(
inst_dec_beams
,
len_dec_seq
):
def
prepare_beam_dec_seq
(
inst_dec_beams
,
len_dec_seq
):
dec_partial_seq
=
[
b
.
get_current_state
()
for
b
in
inst_dec_beams
if
not
b
.
done
]
dec_partial_seq
=
[
b
.
get_current_state
()
for
b
in
inst_dec_beams
if
not
b
.
done
]
dec_partial_seq
=
paddle
.
stack
(
dec_partial_seq
)
dec_partial_seq
=
paddle
.
stack
(
dec_partial_seq
)
dec_partial_seq
=
dec_partial_seq
.
reshape
([
-
1
,
len_dec_seq
])
dec_partial_seq
=
dec_partial_seq
.
reshape
([
-
1
,
len_dec_seq
])
return
dec_partial_seq
return
dec_partial_seq
def
prepare_beam_memory_key_padding_mask
(
inst_dec_beams
,
memory_key_padding_mask
,
n_bm
):
def
prepare_beam_memory_key_padding_mask
(
inst_dec_beams
,
memory_key_padding_mask
,
n_bm
):
keep
=
[]
keep
=
[]
for
idx
in
(
memory_key_padding_mask
):
for
idx
in
(
memory_key_padding_mask
):
if
not
inst_dec_beams
[
idx
].
done
:
if
not
inst_dec_beams
[
idx
].
done
:
keep
.
append
(
idx
)
keep
.
append
(
idx
)
memory_key_padding_mask
=
memory_key_padding_mask
[
paddle
.
to_tensor
(
keep
)]
memory_key_padding_mask
=
memory_key_padding_mask
[
paddle
.
to_tensor
(
keep
)]
len_s
=
memory_key_padding_mask
.
shape
[
-
1
]
len_s
=
memory_key_padding_mask
.
shape
[
-
1
]
n_inst
=
memory_key_padding_mask
.
shape
[
0
]
n_inst
=
memory_key_padding_mask
.
shape
[
0
]
memory_key_padding_mask
=
paddle
.
concat
([
memory_key_padding_mask
for
i
in
range
(
n_bm
)],
axis
=
1
)
memory_key_padding_mask
=
paddle
.
concat
(
memory_key_padding_mask
=
memory_key_padding_mask
.
reshape
([
n_inst
*
n_bm
,
len_s
])
#repeat(1, n_bm)
[
memory_key_padding_mask
for
i
in
range
(
n_bm
)],
axis
=
1
)
memory_key_padding_mask
=
memory_key_padding_mask
.
reshape
(
[
n_inst
*
n_bm
,
len_s
])
#repeat(1, n_bm)
return
memory_key_padding_mask
return
memory_key_padding_mask
def
predict_word
(
dec_seq
,
enc_output
,
n_active_inst
,
n_bm
,
memory_key_padding_mask
):
def
predict_word
(
dec_seq
,
enc_output
,
n_active_inst
,
n_bm
,
memory_key_padding_mask
):
tgt_key_padding_mask
=
self
.
generate_padding_mask
(
dec_seq
)
tgt_key_padding_mask
=
self
.
generate_padding_mask
(
dec_seq
)
dec_seq
=
self
.
embedding
(
dec_seq
).
transpose
([
1
,
0
,
2
])
dec_seq
=
self
.
embedding
(
dec_seq
).
transpose
([
1
,
0
,
2
])
dec_seq
=
self
.
positional_encoding
(
dec_seq
)
dec_seq
=
self
.
positional_encoding
(
dec_seq
)
tgt_mask
=
self
.
generate_square_subsequent_mask
(
dec_seq
.
shape
[
0
])
tgt_mask
=
self
.
generate_square_subsequent_mask
(
dec_seq
.
shape
[
0
])
dec_output
=
self
.
decoder
(
dec_output
=
self
.
decoder
(
dec_seq
,
enc_output
,
dec_seq
,
enc_output
,
tgt_mask
=
tgt_mask
,
tgt_mask
=
tgt_mask
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
memory_key_padding_mask
=
memory_key_padding_mask
,
memory_key_padding_mask
=
memory_key_padding_mask
,
).
transpose
([
1
,
0
,
2
])
).
transpose
([
1
,
0
,
2
])
dec_output
=
dec_output
[:,
-
1
,
:]
# Pick the last step: (bh * bm) * d_h
dec_output
=
dec_output
[:,
-
1
,
:]
# Pick the last step: (bh * bm) * d_h
word_prob
=
F
.
log_softmax
(
self
.
tgt_word_prj
(
dec_output
),
axis
=
1
)
word_prob
=
F
.
log_softmax
(
self
.
tgt_word_prj
(
dec_output
),
axis
=
1
)
word_prob
=
word_prob
.
reshape
([
n_active_inst
,
n_bm
,
-
1
])
word_prob
=
word_prob
.
reshape
([
n_active_inst
,
n_bm
,
-
1
])
return
word_prob
return
word_prob
def
collect_active_inst_idx_list
(
inst_beams
,
word_prob
,
inst_idx_to_position_map
):
def
collect_active_inst_idx_list
(
inst_beams
,
word_prob
,
inst_idx_to_position_map
):
active_inst_idx_list
=
[]
active_inst_idx_list
=
[]
for
inst_idx
,
inst_position
in
inst_idx_to_position_map
.
items
():
for
inst_idx
,
inst_position
in
inst_idx_to_position_map
.
items
():
is_inst_complete
=
inst_beams
[
inst_idx
].
advance
(
word_prob
[
inst_position
])
is_inst_complete
=
inst_beams
[
inst_idx
].
advance
(
word_prob
[
inst_position
])
if
not
is_inst_complete
:
if
not
is_inst_complete
:
active_inst_idx_list
+=
[
inst_idx
]
active_inst_idx_list
+=
[
inst_idx
]
...
@@ -274,7 +304,8 @@ class TransformerOptim(nn.Layer):
...
@@ -274,7 +304,8 @@ class TransformerOptim(nn.Layer):
n_active_inst
=
len
(
inst_idx_to_position_map
)
n_active_inst
=
len
(
inst_idx_to_position_map
)
dec_seq
=
prepare_beam_dec_seq
(
inst_dec_beams
,
len_dec_seq
)
dec_seq
=
prepare_beam_dec_seq
(
inst_dec_beams
,
len_dec_seq
)
memory_key_padding_mask
=
None
memory_key_padding_mask
=
None
word_prob
=
predict_word
(
dec_seq
,
enc_output
,
n_active_inst
,
n_bm
,
memory_key_padding_mask
)
word_prob
=
predict_word
(
dec_seq
,
enc_output
,
n_active_inst
,
n_bm
,
memory_key_padding_mask
)
# Update the beam with predicted word prob information and collect incomplete instances
# Update the beam with predicted word prob information and collect incomplete instances
active_inst_idx_list
=
collect_active_inst_idx_list
(
active_inst_idx_list
=
collect_active_inst_idx_list
(
inst_dec_beams
,
word_prob
,
inst_idx_to_position_map
)
inst_dec_beams
,
word_prob
,
inst_idx_to_position_map
)
...
@@ -285,14 +316,17 @@ class TransformerOptim(nn.Layer):
...
@@ -285,14 +316,17 @@ class TransformerOptim(nn.Layer):
for
inst_idx
in
range
(
len
(
inst_dec_beams
)):
for
inst_idx
in
range
(
len
(
inst_dec_beams
)):
scores
,
tail_idxs
=
inst_dec_beams
[
inst_idx
].
sort_scores
()
scores
,
tail_idxs
=
inst_dec_beams
[
inst_idx
].
sort_scores
()
all_scores
+=
[
scores
[:
n_best
]]
all_scores
+=
[
scores
[:
n_best
]]
hyps
=
[
inst_dec_beams
[
inst_idx
].
get_hypothesis
(
i
)
for
i
in
tail_idxs
[:
n_best
]]
hyps
=
[
inst_dec_beams
[
inst_idx
].
get_hypothesis
(
i
)
for
i
in
tail_idxs
[:
n_best
]
]
all_hyp
+=
[
hyps
]
all_hyp
+=
[
hyps
]
return
all_hyp
,
all_scores
return
all_hyp
,
all_scores
with
paddle
.
no_grad
():
with
paddle
.
no_grad
():
#-- Encode
#-- Encode
if
self
.
encoder
is
not
None
:
if
self
.
encoder
is
not
None
:
src
=
self
.
positional_encoding
(
images
.
transpose
([
1
,
0
,
2
]))
src
=
self
.
positional_encoding
(
images
.
transpose
([
1
,
0
,
2
]))
src_enc
=
self
.
encoder
(
src
).
transpose
([
1
,
0
,
2
])
src_enc
=
self
.
encoder
(
src
).
transpose
([
1
,
0
,
2
])
else
:
else
:
...
@@ -301,45 +335,53 @@ class TransformerOptim(nn.Layer):
...
@@ -301,45 +335,53 @@ class TransformerOptim(nn.Layer):
#-- Repeat data for beam search
#-- Repeat data for beam search
n_bm
=
self
.
beam_size
n_bm
=
self
.
beam_size
n_inst
,
len_s
,
d_h
=
src_enc
.
shape
n_inst
,
len_s
,
d_h
=
src_enc
.
shape
src_enc
=
paddle
.
concat
([
src_enc
for
i
in
range
(
n_bm
)],
axis
=
1
)
src_enc
=
paddle
.
concat
([
src_enc
for
i
in
range
(
n_bm
)],
axis
=
1
)
src_enc
=
src_enc
.
reshape
([
n_inst
*
n_bm
,
len_s
,
d_h
]).
transpose
([
1
,
0
,
2
])
#repeat(1, n_bm, 1)
src_enc
=
src_enc
.
reshape
([
n_inst
*
n_bm
,
len_s
,
d_h
]).
transpose
(
[
1
,
0
,
2
])
#repeat(1, n_bm, 1)
#-- Prepare beams
#-- Prepare beams
inst_dec_beams
=
[
Beam
(
n_bm
)
for
_
in
range
(
n_inst
)]
inst_dec_beams
=
[
Beam
(
n_bm
)
for
_
in
range
(
n_inst
)]
#-- Bookkeeping for active or not
#-- Bookkeeping for active or not
active_inst_idx_list
=
list
(
range
(
n_inst
))
active_inst_idx_list
=
list
(
range
(
n_inst
))
inst_idx_to_position_map
=
get_inst_idx_to_tensor_position_map
(
active_inst_idx_list
)
inst_idx_to_position_map
=
get_inst_idx_to_tensor_position_map
(
active_inst_idx_list
)
#-- Decode
#-- Decode
for
len_dec_seq
in
range
(
1
,
25
):
for
len_dec_seq
in
range
(
1
,
25
):
src_enc_copy
=
src_enc
.
clone
()
src_enc_copy
=
src_enc
.
clone
()
active_inst_idx_list
=
beam_decode_step
(
active_inst_idx_list
=
beam_decode_step
(
inst_dec_beams
,
len_dec_seq
,
src_enc_copy
,
inst_idx_to_position_map
,
n_bm
,
None
)
inst_dec_beams
,
len_dec_seq
,
src_enc_copy
,
inst_idx_to_position_map
,
n_bm
,
None
)
if
not
active_inst_idx_list
:
if
not
active_inst_idx_list
:
break
# all instances have finished their path to <EOS>
break
# all instances have finished their path to <EOS>
src_enc
,
inst_idx_to_position_map
=
collate_active_info
(
src_enc
,
inst_idx_to_position_map
=
collate_active_info
(
src_enc_copy
,
inst_idx_to_position_map
,
active_inst_idx_list
)
src_enc_copy
,
inst_idx_to_position_map
,
batch_hyp
,
batch_scores
=
collect_hypothesis_and_scores
(
inst_dec_beams
,
1
)
active_inst_idx_list
)
batch_hyp
,
batch_scores
=
collect_hypothesis_and_scores
(
inst_dec_beams
,
1
)
result_hyp
=
[]
result_hyp
=
[]
for
bs_hyp
in
batch_hyp
:
for
bs_hyp
in
batch_hyp
:
bs_hyp_pad
=
bs_hyp
[
0
]
+
[
3
]
*
(
25
-
len
(
bs_hyp
[
0
]))
bs_hyp_pad
=
bs_hyp
[
0
]
+
[
3
]
*
(
25
-
len
(
bs_hyp
[
0
]))
result_hyp
.
append
(
bs_hyp_pad
)
result_hyp
.
append
(
bs_hyp_pad
)
return
paddle
.
to_tensor
(
np
.
array
(
result_hyp
),
dtype
=
paddle
.
int64
)
return
paddle
.
to_tensor
(
np
.
array
(
result_hyp
),
dtype
=
paddle
.
int64
)
def
generate_square_subsequent_mask
(
self
,
sz
):
def
generate_square_subsequent_mask
(
self
,
sz
):
r
"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
Unmasked positions are filled with float(0.0).
Unmasked positions are filled with float(0.0).
"""
"""
mask
=
paddle
.
zeros
([
sz
,
sz
],
dtype
=
'float32'
)
mask
=
paddle
.
zeros
([
sz
,
sz
],
dtype
=
'float32'
)
mask_inf
=
paddle
.
triu
(
paddle
.
full
(
shape
=
[
sz
,
sz
],
dtype
=
'float32'
,
fill_value
=
'-inf'
),
diagonal
=
1
)
mask_inf
=
paddle
.
triu
(
mask
=
mask
+
mask_inf
paddle
.
full
(
shape
=
[
sz
,
sz
],
dtype
=
'float32'
,
fill_value
=
'-inf'
),
diagonal
=
1
)
mask
=
mask
+
mask_inf
return
mask
return
mask
def
generate_padding_mask
(
self
,
x
):
def
generate_padding_mask
(
self
,
x
):
padding_mask
=
x
.
equal
(
paddle
.
to_tensor
(
0
,
dtype
=
x
.
dtype
))
padding_mask
=
x
.
equal
(
paddle
.
to_tensor
(
0
,
dtype
=
x
.
dtype
))
return
padding_mask
return
padding_mask
def
_reset_parameters
(
self
):
def
_reset_parameters
(
self
):
r
"""Initiate parameters in the transformer model."""
"""Initiate parameters in the transformer model."""
for
p
in
self
.
parameters
():
for
p
in
self
.
parameters
():
if
p
.
dim
()
>
1
:
if
p
.
dim
()
>
1
:
...
@@ -347,16 +389,11 @@ class TransformerOptim(nn.Layer):
...
@@ -347,16 +389,11 @@ class TransformerOptim(nn.Layer):
class
TransformerEncoder
(
nn
.
Layer
):
class
TransformerEncoder
(
nn
.
Layer
):
r
"""TransformerEncoder is a stack of N encoder layers
"""TransformerEncoder is a stack of N encoder layers
Args:
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
norm: the layer normalization component (optional).
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)
"""
"""
def
__init__
(
self
,
encoder_layer
,
num_layers
):
def
__init__
(
self
,
encoder_layer
,
num_layers
):
...
@@ -364,38 +401,31 @@ class TransformerEncoder(nn.Layer):
...
@@ -364,38 +401,31 @@ class TransformerEncoder(nn.Layer):
self
.
layers
=
_get_clones
(
encoder_layer
,
num_layers
)
self
.
layers
=
_get_clones
(
encoder_layer
,
num_layers
)
self
.
num_layers
=
num_layers
self
.
num_layers
=
num_layers
def
forward
(
self
,
src
):
def
forward
(
self
,
src
):
r
"""Pass the input through the endocder layers in turn.
"""Pass the input through the endocder layers in turn.
Args:
Args:
src: the sequnce to the encoder (required).
src: the sequnce to the encoder (required).
mask: the mask for the src sequence (optional).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
"""
output
=
src
output
=
src
for
i
in
range
(
self
.
num_layers
):
for
i
in
range
(
self
.
num_layers
):
output
=
self
.
layers
[
i
](
output
,
src_mask
=
None
,
output
=
self
.
layers
[
i
](
output
,
src_mask
=
None
,
src_key_padding_mask
=
None
)
src_key_padding_mask
=
None
)
return
output
return
output
class
TransformerDecoder
(
nn
.
Layer
):
class
TransformerDecoder
(
nn
.
Layer
):
r
"""TransformerDecoder is a stack of N decoder layers
"""TransformerDecoder is a stack of N decoder layers
Args:
Args:
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
num_layers: the number of sub-decoder-layers in the decoder (required).
num_layers: the number of sub-decoder-layers in the decoder (required).
norm: the layer normalization component (optional).
norm: the layer normalization component (optional).
Examples::
>>> decoder_layer = nn.TransformerDecoderLayer(d_model, nhead)
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers)
"""
"""
def
__init__
(
self
,
decoder_layer
,
num_layers
):
def
__init__
(
self
,
decoder_layer
,
num_layers
):
...
@@ -403,11 +433,14 @@ class TransformerDecoder(nn.Layer):
...
@@ -403,11 +433,14 @@ class TransformerDecoder(nn.Layer):
self
.
layers
=
_get_clones
(
decoder_layer
,
num_layers
)
self
.
layers
=
_get_clones
(
decoder_layer
,
num_layers
)
self
.
num_layers
=
num_layers
self
.
num_layers
=
num_layers
def
forward
(
self
,
def
forward
(
self
,
tgt
,
memory
,
tgt_mask
=
None
,
tgt
,
memory_mask
=
None
,
tgt_key_padding_mask
=
None
,
memory
,
tgt_mask
=
None
,
memory_mask
=
None
,
tgt_key_padding_mask
=
None
,
memory_key_padding_mask
=
None
):
memory_key_padding_mask
=
None
):
r
"""Pass the inputs (and mask) through the decoder layer in turn.
"""Pass the inputs (and mask) through the decoder layer in turn.
Args:
Args:
tgt: the sequence to the decoder (required).
tgt: the sequence to the decoder (required).
...
@@ -416,21 +449,22 @@ class TransformerDecoder(nn.Layer):
...
@@ -416,21 +449,22 @@ class TransformerDecoder(nn.Layer):
memory_mask: the mask for the memory sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
"""
output
=
tgt
output
=
tgt
for
i
in
range
(
self
.
num_layers
):
for
i
in
range
(
self
.
num_layers
):
output
=
self
.
layers
[
i
](
output
,
memory
,
tgt_mask
=
tgt_mask
,
output
=
self
.
layers
[
i
](
output
,
memory
,
tgt_mask
=
tgt_mask
,
memory_mask
=
memory_mask
,
memory_mask
=
memory_mask
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
memory_key_padding_mask
=
memory_key_padding_mask
)
memory_key_padding_mask
=
memory_key_padding_mask
)
return
output
return
output
class
TransformerEncoderLayer
(
nn
.
Layer
):
class
TransformerEncoderLayer
(
nn
.
Layer
):
r
"""TransformerEncoderLayer is made up of self-attn and feedforward network.
"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
...
@@ -443,16 +477,26 @@ class TransformerEncoderLayer(nn.Layer):
...
@@ -443,16 +477,26 @@ class TransformerEncoderLayer(nn.Layer):
dim_feedforward: the dimension of the feedforward network model (default=2048).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
dropout: the dropout value (default=0.1).
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
"""
"""
def
__init__
(
self
,
d_model
,
nhead
,
dim_feedforward
=
2048
,
attention_dropout_rate
=
0.0
,
residual_dropout_rate
=
0.1
):
def
__init__
(
self
,
d_model
,
nhead
,
dim_feedforward
=
2048
,
attention_dropout_rate
=
0.0
,
residual_dropout_rate
=
0.1
):
super
(
TransformerEncoderLayer
,
self
).
__init__
()
super
(
TransformerEncoderLayer
,
self
).
__init__
()
self
.
self_attn
=
MultiheadAttentionOptim
(
d_model
,
nhead
,
dropout
=
attention_dropout_rate
)
self
.
self_attn
=
MultiheadAttentionOptim
(
d_model
,
nhead
,
dropout
=
attention_dropout_rate
)
self
.
conv1
=
Conv2D
(
in_channels
=
d_model
,
out_channels
=
dim_feedforward
,
kernel_size
=
(
1
,
1
))
self
.
conv2
=
Conv2D
(
in_channels
=
dim_feedforward
,
out_channels
=
d_model
,
kernel_size
=
(
1
,
1
))
self
.
conv1
=
Conv2D
(
in_channels
=
d_model
,
out_channels
=
dim_feedforward
,
kernel_size
=
(
1
,
1
))
self
.
conv2
=
Conv2D
(
in_channels
=
dim_feedforward
,
out_channels
=
d_model
,
kernel_size
=
(
1
,
1
))
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
...
@@ -460,17 +504,17 @@ class TransformerEncoderLayer(nn.Layer):
...
@@ -460,17 +504,17 @@ class TransformerEncoderLayer(nn.Layer):
self
.
dropout2
=
Dropout
(
residual_dropout_rate
)
self
.
dropout2
=
Dropout
(
residual_dropout_rate
)
def
forward
(
self
,
src
,
src_mask
=
None
,
src_key_padding_mask
=
None
):
def
forward
(
self
,
src
,
src_mask
=
None
,
src_key_padding_mask
=
None
):
r
"""Pass the input through the endocder layer.
"""Pass the input through the endocder layer.
Args:
Args:
src: the sequnce to the encoder layer (required).
src: the sequnce to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
"""
src2
=
self
.
self_attn
(
src
,
src
,
src
,
attn_mask
=
src_mask
,
src2
=
self
.
self_attn
(
src
,
src
,
src
,
attn_mask
=
src_mask
,
key_padding_mask
=
src_key_padding_mask
)[
0
]
key_padding_mask
=
src_key_padding_mask
)[
0
]
src
=
src
+
self
.
dropout1
(
src2
)
src
=
src
+
self
.
dropout1
(
src2
)
src
=
self
.
norm1
(
src
)
src
=
self
.
norm1
(
src
)
...
@@ -487,8 +531,9 @@ class TransformerEncoderLayer(nn.Layer):
...
@@ -487,8 +531,9 @@ class TransformerEncoderLayer(nn.Layer):
src
=
self
.
norm2
(
src
)
src
=
self
.
norm2
(
src
)
return
src
return
src
class
TransformerDecoderLayer
(
nn
.
Layer
):
class
TransformerDecoderLayer
(
nn
.
Layer
):
r
"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
This standard decoder layer is based on the paper "Attention Is All You Need".
This standard decoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
...
@@ -501,17 +546,28 @@ class TransformerDecoderLayer(nn.Layer):
...
@@ -501,17 +546,28 @@ class TransformerDecoderLayer(nn.Layer):
dim_feedforward: the dimension of the feedforward network model (default=2048).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
dropout: the dropout value (default=0.1).
Examples::
>>> decoder_layer = nn.TransformerDecoderLayer(d_model, nhead)
"""
"""
def
__init__
(
self
,
d_model
,
nhead
,
dim_feedforward
=
2048
,
attention_dropout_rate
=
0.0
,
residual_dropout_rate
=
0.1
):
def
__init__
(
self
,
d_model
,
nhead
,
dim_feedforward
=
2048
,
attention_dropout_rate
=
0.0
,
residual_dropout_rate
=
0.1
):
super
(
TransformerDecoderLayer
,
self
).
__init__
()
super
(
TransformerDecoderLayer
,
self
).
__init__
()
self
.
self_attn
=
MultiheadAttentionOptim
(
d_model
,
nhead
,
dropout
=
attention_dropout_rate
)
self
.
self_attn
=
MultiheadAttentionOptim
(
self
.
multihead_attn
=
MultiheadAttentionOptim
(
d_model
,
nhead
,
dropout
=
attention_dropout_rate
)
d_model
,
nhead
,
dropout
=
attention_dropout_rate
)
self
.
multihead_attn
=
MultiheadAttentionOptim
(
self
.
conv1
=
Conv2D
(
in_channels
=
d_model
,
out_channels
=
dim_feedforward
,
kernel_size
=
(
1
,
1
))
d_model
,
nhead
,
dropout
=
attention_dropout_rate
)
self
.
conv2
=
Conv2D
(
in_channels
=
dim_feedforward
,
out_channels
=
d_model
,
kernel_size
=
(
1
,
1
))
self
.
conv1
=
Conv2D
(
in_channels
=
d_model
,
out_channels
=
dim_feedforward
,
kernel_size
=
(
1
,
1
))
self
.
conv2
=
Conv2D
(
in_channels
=
dim_feedforward
,
out_channels
=
d_model
,
kernel_size
=
(
1
,
1
))
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
...
@@ -520,9 +576,14 @@ class TransformerDecoderLayer(nn.Layer):
...
@@ -520,9 +576,14 @@ class TransformerDecoderLayer(nn.Layer):
self
.
dropout2
=
Dropout
(
residual_dropout_rate
)
self
.
dropout2
=
Dropout
(
residual_dropout_rate
)
self
.
dropout3
=
Dropout
(
residual_dropout_rate
)
self
.
dropout3
=
Dropout
(
residual_dropout_rate
)
def
forward
(
self
,
tgt
,
memory
,
tgt_mask
=
None
,
memory_mask
=
None
,
def
forward
(
self
,
tgt_key_padding_mask
=
None
,
memory_key_padding_mask
=
None
):
tgt
,
r
"""Pass the inputs (and mask) through the decoder layer.
memory
,
tgt_mask
=
None
,
memory_mask
=
None
,
tgt_key_padding_mask
=
None
,
memory_key_padding_mask
=
None
):
"""Pass the inputs (and mask) through the decoder layer.
Args:
Args:
tgt: the sequence to the decoder layer (required).
tgt: the sequence to the decoder layer (required).
...
@@ -532,14 +593,20 @@ class TransformerDecoderLayer(nn.Layer):
...
@@ -532,14 +593,20 @@ class TransformerDecoderLayer(nn.Layer):
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
"""
tgt2
=
self
.
self_attn
(
tgt
,
tgt
,
tgt
,
attn_mask
=
tgt_mask
,
tgt2
=
self
.
self_attn
(
tgt
,
tgt
,
tgt
,
attn_mask
=
tgt_mask
,
key_padding_mask
=
tgt_key_padding_mask
)[
0
]
key_padding_mask
=
tgt_key_padding_mask
)[
0
]
tgt
=
tgt
+
self
.
dropout1
(
tgt2
)
tgt
=
tgt
+
self
.
dropout1
(
tgt2
)
tgt
=
self
.
norm1
(
tgt
)
tgt
=
self
.
norm1
(
tgt
)
tgt2
=
self
.
multihead_attn
(
tgt
,
memory
,
memory
,
attn_mask
=
memory_mask
,
tgt2
=
self
.
multihead_attn
(
tgt
,
memory
,
memory
,
attn_mask
=
memory_mask
,
key_padding_mask
=
memory_key_padding_mask
)[
0
]
key_padding_mask
=
memory_key_padding_mask
)[
0
]
tgt
=
tgt
+
self
.
dropout2
(
tgt2
)
tgt
=
tgt
+
self
.
dropout2
(
tgt2
)
tgt
=
self
.
norm2
(
tgt
)
tgt
=
self
.
norm2
(
tgt
)
...
@@ -562,9 +629,8 @@ def _get_clones(module, N):
...
@@ -562,9 +629,8 @@ def _get_clones(module, N):
return
LayerList
([
copy
.
deepcopy
(
module
)
for
i
in
range
(
N
)])
return
LayerList
([
copy
.
deepcopy
(
module
)
for
i
in
range
(
N
)])
class
PositionalEncoding
(
nn
.
Layer
):
class
PositionalEncoding
(
nn
.
Layer
):
r
"""Inject some information about the relative or absolute position of the tokens
"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
functions of different frequencies.
...
@@ -586,7 +652,9 @@ class PositionalEncoding(nn.Layer):
...
@@ -586,7 +652,9 @@ class PositionalEncoding(nn.Layer):
pe
=
paddle
.
zeros
([
max_len
,
dim
])
pe
=
paddle
.
zeros
([
max_len
,
dim
])
position
=
paddle
.
arange
(
0
,
max_len
,
dtype
=
paddle
.
float32
).
unsqueeze
(
1
)
position
=
paddle
.
arange
(
0
,
max_len
,
dtype
=
paddle
.
float32
).
unsqueeze
(
1
)
div_term
=
paddle
.
exp
(
paddle
.
arange
(
0
,
dim
,
2
).
astype
(
'float32'
)
*
(
-
math
.
log
(
10000.0
)
/
dim
))
div_term
=
paddle
.
exp
(
paddle
.
arange
(
0
,
dim
,
2
).
astype
(
'float32'
)
*
(
-
math
.
log
(
10000.0
)
/
dim
))
pe
[:,
0
::
2
]
=
paddle
.
sin
(
position
*
div_term
)
pe
[:,
0
::
2
]
=
paddle
.
sin
(
position
*
div_term
)
pe
[:,
1
::
2
]
=
paddle
.
cos
(
position
*
div_term
)
pe
[:,
1
::
2
]
=
paddle
.
cos
(
position
*
div_term
)
pe
=
pe
.
unsqueeze
(
0
)
pe
=
pe
.
unsqueeze
(
0
)
...
@@ -594,7 +662,7 @@ class PositionalEncoding(nn.Layer):
...
@@ -594,7 +662,7 @@ class PositionalEncoding(nn.Layer):
self
.
register_buffer
(
'pe'
,
pe
)
self
.
register_buffer
(
'pe'
,
pe
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
r
"""Inputs of forward function
"""Inputs of forward function
Args:
Args:
x: the sequence fed to the positional encoder model (required).
x: the sequence fed to the positional encoder model (required).
Shape:
Shape:
...
@@ -608,7 +676,7 @@ class PositionalEncoding(nn.Layer):
...
@@ -608,7 +676,7 @@ class PositionalEncoding(nn.Layer):
class
PositionalEncoding_2d
(
nn
.
Layer
):
class
PositionalEncoding_2d
(
nn
.
Layer
):
r
"""Inject some information about the relative or absolute position of the tokens
"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
functions of different frequencies.
...
@@ -630,7 +698,9 @@ class PositionalEncoding_2d(nn.Layer):
...
@@ -630,7 +698,9 @@ class PositionalEncoding_2d(nn.Layer):
pe
=
paddle
.
zeros
([
max_len
,
dim
])
pe
=
paddle
.
zeros
([
max_len
,
dim
])
position
=
paddle
.
arange
(
0
,
max_len
,
dtype
=
paddle
.
float32
).
unsqueeze
(
1
)
position
=
paddle
.
arange
(
0
,
max_len
,
dtype
=
paddle
.
float32
).
unsqueeze
(
1
)
div_term
=
paddle
.
exp
(
paddle
.
arange
(
0
,
dim
,
2
).
astype
(
'float32'
)
*
(
-
math
.
log
(
10000.0
)
/
dim
))
div_term
=
paddle
.
exp
(
paddle
.
arange
(
0
,
dim
,
2
).
astype
(
'float32'
)
*
(
-
math
.
log
(
10000.0
)
/
dim
))
pe
[:,
0
::
2
]
=
paddle
.
sin
(
position
*
div_term
)
pe
[:,
0
::
2
]
=
paddle
.
sin
(
position
*
div_term
)
pe
[:,
1
::
2
]
=
paddle
.
cos
(
position
*
div_term
)
pe
[:,
1
::
2
]
=
paddle
.
cos
(
position
*
div_term
)
pe
=
pe
.
unsqueeze
(
0
).
transpose
([
1
,
0
,
2
])
pe
=
pe
.
unsqueeze
(
0
).
transpose
([
1
,
0
,
2
])
...
@@ -644,7 +714,7 @@ class PositionalEncoding_2d(nn.Layer):
...
@@ -644,7 +714,7 @@ class PositionalEncoding_2d(nn.Layer):
self
.
linear2
.
weight
.
data
.
fill_
(
1.
)
self
.
linear2
.
weight
.
data
.
fill_
(
1.
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
r
"""Inputs of forward function
"""Inputs of forward function
Args:
Args:
x: the sequence fed to the positional encoder model (required).
x: the sequence fed to the positional encoder model (required).
Shape:
Shape:
...
@@ -666,7 +736,9 @@ class PositionalEncoding_2d(nn.Layer):
...
@@ -666,7 +736,9 @@ class PositionalEncoding_2d(nn.Layer):
h_pe
=
h_pe
.
unsqueeze
(
3
)
h_pe
=
h_pe
.
unsqueeze
(
3
)
x
=
x
+
w_pe
+
h_pe
x
=
x
+
w_pe
+
h_pe
x
=
x
.
reshape
([
x
.
shape
[
0
],
x
.
shape
[
1
],
x
.
shape
[
2
]
*
x
.
shape
[
3
]]).
transpose
([
2
,
0
,
1
])
x
=
x
.
reshape
(
[
x
.
shape
[
0
],
x
.
shape
[
1
],
x
.
shape
[
2
]
*
x
.
shape
[
3
]]).
transpose
(
[
2
,
0
,
1
])
return
self
.
dropout
(
x
)
return
self
.
dropout
(
x
)
...
@@ -675,7 +747,8 @@ class Embeddings(nn.Layer):
...
@@ -675,7 +747,8 @@ class Embeddings(nn.Layer):
def
__init__
(
self
,
d_model
,
vocab
,
padding_idx
,
scale_embedding
):
def
__init__
(
self
,
d_model
,
vocab
,
padding_idx
,
scale_embedding
):
super
(
Embeddings
,
self
).
__init__
()
super
(
Embeddings
,
self
).
__init__
()
self
.
embedding
=
nn
.
Embedding
(
vocab
,
d_model
,
padding_idx
=
padding_idx
)
self
.
embedding
=
nn
.
Embedding
(
vocab
,
d_model
,
padding_idx
=
padding_idx
)
w0
=
np
.
random
.
normal
(
0.0
,
d_model
**-
0.5
,(
vocab
,
d_model
)).
astype
(
np
.
float32
)
w0
=
np
.
random
.
normal
(
0.0
,
d_model
**-
0.5
,
(
vocab
,
d_model
)).
astype
(
np
.
float32
)
self
.
embedding
.
weight
.
set_value
(
w0
)
self
.
embedding
.
weight
.
set_value
(
w0
)
self
.
d_model
=
d_model
self
.
d_model
=
d_model
self
.
scale_embedding
=
scale_embedding
self
.
scale_embedding
=
scale_embedding
...
@@ -687,9 +760,6 @@ class Embeddings(nn.Layer):
...
@@ -687,9 +760,6 @@ class Embeddings(nn.Layer):
return
self
.
embedding
(
x
)
return
self
.
embedding
(
x
)
class
Beam
():
class
Beam
():
''' Beam search '''
''' Beam search '''
...
@@ -698,12 +768,12 @@ class Beam():
...
@@ -698,12 +768,12 @@ class Beam():
self
.
size
=
size
self
.
size
=
size
self
.
_done
=
False
self
.
_done
=
False
# The score for each translation on the beam.
# The score for each translation on the beam.
self
.
scores
=
paddle
.
zeros
((
size
,),
dtype
=
paddle
.
float32
)
self
.
scores
=
paddle
.
zeros
((
size
,
),
dtype
=
paddle
.
float32
)
self
.
all_scores
=
[]
self
.
all_scores
=
[]
# The backpointers at each time-step.
# The backpointers at each time-step.
self
.
prev_ks
=
[]
self
.
prev_ks
=
[]
# The outputs at each time-step.
# The outputs at each time-step.
self
.
next_ys
=
[
paddle
.
full
((
size
,
),
0
,
dtype
=
paddle
.
int64
)]
self
.
next_ys
=
[
paddle
.
full
((
size
,
),
0
,
dtype
=
paddle
.
int64
)]
self
.
next_ys
[
0
][
0
]
=
2
self
.
next_ys
[
0
][
0
]
=
2
def
get_current_state
(
self
):
def
get_current_state
(
self
):
...
@@ -729,28 +799,26 @@ class Beam():
...
@@ -729,28 +799,26 @@ class Beam():
beam_lk
=
word_prob
[
0
]
beam_lk
=
word_prob
[
0
]
flat_beam_lk
=
beam_lk
.
reshape
([
-
1
])
flat_beam_lk
=
beam_lk
.
reshape
([
-
1
])
best_scores
,
best_scores_id
=
flat_beam_lk
.
topk
(
self
.
size
,
0
,
True
,
True
)
# 1st sort
best_scores
,
best_scores_id
=
flat_beam_lk
.
topk
(
self
.
size
,
0
,
True
,
True
)
# 1st sort
self
.
all_scores
.
append
(
self
.
scores
)
self
.
all_scores
.
append
(
self
.
scores
)
self
.
scores
=
best_scores
self
.
scores
=
best_scores
# bestScoresId is flattened as a (beam x word) array,
# bestScoresId is flattened as a (beam x word) array,
# so we need to calculate which word and beam each score came from
# so we need to calculate which word and beam each score came from
prev_k
=
best_scores_id
//
num_words
prev_k
=
best_scores_id
//
num_words
self
.
prev_ks
.
append
(
prev_k
)
self
.
prev_ks
.
append
(
prev_k
)
self
.
next_ys
.
append
(
best_scores_id
-
prev_k
*
num_words
)
self
.
next_ys
.
append
(
best_scores_id
-
prev_k
*
num_words
)
# End condition is when top-of-beam is EOS.
# End condition is when top-of-beam is EOS.
if
self
.
next_ys
[
-
1
][
0
]
==
3
:
if
self
.
next_ys
[
-
1
][
0
]
==
3
:
self
.
_done
=
True
self
.
_done
=
True
self
.
all_scores
.
append
(
self
.
scores
)
self
.
all_scores
.
append
(
self
.
scores
)
return
self
.
_done
return
self
.
_done
def
sort_scores
(
self
):
def
sort_scores
(
self
):
"Sort the scores."
"Sort the scores."
return
self
.
scores
,
paddle
.
to_tensor
([
i
for
i
in
range
(
self
.
scores
.
shape
[
0
])],
dtype
=
'int32'
)
return
self
.
scores
,
paddle
.
to_tensor
(
[
i
for
i
in
range
(
self
.
scores
.
shape
[
0
])],
dtype
=
'int32'
)
def
get_the_best_score_and_idx
(
self
):
def
get_the_best_score_and_idx
(
self
):
"Get the score of the best in the beam."
"Get the score of the best in the beam."
...
@@ -759,7 +827,6 @@ class Beam():
...
@@ -759,7 +827,6 @@ class Beam():
def
get_tentative_hypothesis
(
self
):
def
get_tentative_hypothesis
(
self
):
"Get the decoded sequence for the current timestep."
"Get the decoded sequence for the current timestep."
if
len
(
self
.
next_ys
)
==
1
:
if
len
(
self
.
next_ys
)
==
1
:
dec_seq
=
self
.
next_ys
[
0
].
unsqueeze
(
1
)
dec_seq
=
self
.
next_ys
[
0
].
unsqueeze
(
1
)
else
:
else
:
...
@@ -767,13 +834,12 @@ class Beam():
...
@@ -767,13 +834,12 @@ class Beam():
hyps
=
[
self
.
get_hypothesis
(
k
)
for
k
in
keys
]
hyps
=
[
self
.
get_hypothesis
(
k
)
for
k
in
keys
]
hyps
=
[[
2
]
+
h
for
h
in
hyps
]
hyps
=
[[
2
]
+
h
for
h
in
hyps
]
dec_seq
=
paddle
.
to_tensor
(
hyps
,
dtype
=
'int64'
)
dec_seq
=
paddle
.
to_tensor
(
hyps
,
dtype
=
'int64'
)
return
dec_seq
return
dec_seq
def
get_hypothesis
(
self
,
k
):
def
get_hypothesis
(
self
,
k
):
""" Walk back to construct the full hypothesis. """
""" Walk back to construct the full hypothesis. """
hyp
=
[]
hyp
=
[]
for
j
in
range
(
len
(
self
.
prev_ks
)
-
1
,
-
1
,
-
1
):
for
j
in
range
(
len
(
self
.
prev_ks
)
-
1
,
-
1
,
-
1
):
hyp
.
append
(
self
.
next_ys
[
j
+
1
][
k
])
hyp
.
append
(
self
.
next_ys
[
j
+
1
][
k
])
k
=
self
.
prev_ks
[
j
][
k
]
k
=
self
.
prev_ks
[
j
][
k
]
return
list
(
map
(
lambda
x
:
x
.
item
(),
hyp
[::
-
1
]))
return
list
(
map
(
lambda
x
:
x
.
item
(),
hyp
[::
-
1
]))
tools/program.py
浏览文件 @
55b76dca
...
@@ -216,11 +216,8 @@ def train(config,
...
@@ -216,11 +216,8 @@ def train(config,
images
=
batch
[
0
]
images
=
batch
[
0
]
if
use_srn
:
if
use_srn
:
model_average
=
True
model_average
=
True
if
use_srn
or
model_type
==
'table'
:
if
use_srn
or
model_type
==
'table'
or
use_nrtr
:
preds
=
model
(
images
,
data
=
batch
[
1
:])
preds
=
model
(
images
,
data
=
batch
[
1
:])
elif
use_nrtr
:
max_len
=
batch
[
2
].
max
()
preds
=
model
(
images
,
batch
[
1
][:,:
2
+
max_len
])
else
:
else
:
preds
=
model
(
images
)
preds
=
model
(
images
)
loss
=
loss_class
(
preds
,
batch
)
loss
=
loss_class
(
preds
,
batch
)
...
@@ -405,9 +402,7 @@ def preprocess(is_train=False):
...
@@ -405,9 +402,7 @@ def preprocess(is_train=False):
alg
=
config
[
'Architecture'
][
'algorithm'
]
alg
=
config
[
'Architecture'
][
'algorithm'
]
assert
alg
in
[
assert
alg
in
[
'EAST'
,
'DB'
,
'SAST'
,
'Rosetta'
,
'CRNN'
,
'STARNet'
,
'RARE'
,
'SRN'
,
'EAST'
,
'DB'
,
'SAST'
,
'Rosetta'
,
'CRNN'
,
'STARNet'
,
'RARE'
,
'SRN'
,
'CLS'
,
'PGNet'
,
'Distillation'
,
'NRTR'
,
'TableAttn'
'CLS'
,
'PGNet'
,
'Distillation'
,
'NRTR'
,
'TableAttn'
]
]
device
=
'gpu:{}'
.
format
(
dist
.
ParallelEnv
().
dev_id
)
if
use_gpu
else
'cpu'
device
=
'gpu:{}'
.
format
(
dist
.
ParallelEnv
().
dev_id
)
if
use_gpu
else
'cpu'
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录