diff --git a/doc/doc_ch/android_demo.md b/doc/doc_ch/android_demo.md deleted file mode 100644 index 3b12308257c998387d0a95a46bcfdc7d8837caaf..0000000000000000000000000000000000000000 --- a/doc/doc_ch/android_demo.md +++ /dev/null @@ -1,57 +0,0 @@ -# Android Demo 快速测试 - - -### 1. 安装最新版本的Android Studio - -可以从 https://developer.android.com/studio 下载。本Demo使用是4.0版本Android Studio编写。 - -### 2. 创建新项目 - -Demo测试的时候使用的是NDK 20b版本,20版本以上均可以支持编译成功。 - -如果您是初学者,可以用以下方式安装和测试NDK编译环境。 -点击 File -> New ->New Project, 新建 "Native C++" project - - -1. Start a new Android Studio project - 在项目模版中选择 Native C++ 选择PaddleOCR/deploy/android_demo 路径 - 进入项目后会自动编译,第一次编译会花费较长的时间,建议添加代理加速下载。 - -**代理添加:** - -选择 Android Studio -> Preferences -> Appearance & Behavior -> System Settings -> HTTP Proxy -> Manual proxy configuration - - - -2. 开始编译 - -点击编译按钮,连接手机,跟着Android Studio的引导完成操作。 - -在 Android Studio 里看到下图,表示编译完成: - - - -**提示:** 此时如果出现下列找不到OpenCV的报错信息,请重新点击编译,编译完成后退出项目,再次进入。 - - - -### 3. 发送到手机端 - -完成编译,点击运行,在手机端查看效果。 - -### 4. 如何自定义demo图片 - -1. 图片存放路径:android_demo/app/src/main/assets/images - - 将自定义图片放置在该路径下 - -2. 配置文件: android_demo/app/src/main/res/values/strings.xml - - 修改 IMAGE_PATH_DEFAULT 为自定义图片名即可 - - -# 获得更多支持 -前往[端计算模型生成平台EasyEdge](https://ai.baidu.com/easyedge/app/open_source_demo?referrerUrl=paddlelite),获得更多开发支持: - -- Demo APP:可使用手机扫码安装,方便手机端快速体验文字识别 -- SDK:模型被封装为适配不同芯片硬件和操作系统SDK,包括完善的接口,方便进行二次开发 diff --git a/doc/doc_ch/inference_ppstructure.md b/doc/doc_en/algorithm_det_db_en.md similarity index 100% rename from doc/doc_ch/inference_ppstructure.md rename to doc/doc_en/algorithm_det_db_en.md diff --git a/doc/doc_en/pgnet_en.md b/doc/doc_en/algorithm_e2e_pgnet_en.md similarity index 100% rename from doc/doc_en/pgnet_en.md rename to doc/doc_en/algorithm_e2e_pgnet_en.md diff --git a/doc/doc_en/algorithm_en.md b/doc/doc_en/algorithm_en.md new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/doc/doc_en/android_demo_en.md b/doc/doc_en/android_demo_en.md deleted file mode 100644 index fd962bb2911d952a4ec9919eebf1903daca323c7..0000000000000000000000000000000000000000 --- a/doc/doc_en/android_demo_en.md +++ /dev/null @@ -1,60 +0,0 @@ -# Android Demo quick start - -### 1. Install the latest version of Android Studio - -It can be downloaded from https://developer.android.com/studio . This Demo is written by Android Studio version 4.0. - -### 2. Create a new project - -The NDK version 20b is used in the demo test, and the compilation can be successfully supported for version 20 and above. - -If you are a beginner, you can install and test the NDK compilation environment in the following ways. - -File -> New ->New Project to create "Native C++" project - -1. Start a new Android Studio project - - Select Native C++ in the project template, select Paddle OCR/deploy/android_demo path - After entering the project, it will be automatically compiled. The first compilation - will take a long time. It is recommended to add an agent to speed up the download. - -**Agent add:** - - Android Studio -> Preferences -> Appearance & Behavior -> System Settings -> HTTP Proxy -> Manual proxy configuration - - - -2. Start compilation - -Click the compile button, connect the phone, and follow the instructions of Android Studio to complete the operation. - -When you see the following picture in Android Studio, the compilation is complete: - - - -**Tip:** At this time, if the following error message that OpenCV cannot be found appears, please re-click compile, -exit the project after compiling, and enter again. - - - -### 3. Send to mobile - -Complete the compilation, click Run, and check the effect on the mobile phone. - -### 4. How to customize the demo picture - -1. Image storage path: android_demo/app/src/main/assets/images - - Place the custom picture under this path - -2. Configuration file: android_demo/app/src/main/res/values/strings.xml - - Modify IMAGE_PATH_DEFAULT to a custom picture name - -# Get more support - -Go to [EasyEdge](https://ai.baidu.com/easyedge/app/open_source_demo?referrerUrl=paddlelite) to get more development support: - -- Demo APP: You can use your mobile phone to scan the code to install, which is convenient for the mobile terminal to quickly experience text recognition - -- SDK: The model is packaged to adapt to different chip hardware and operating system SDKs, including a complete interface to facilitate secondary development diff --git a/doc/doc_en/clone_en.md b/doc/doc_en/clone_en.md new file mode 100644 index 0000000000000000000000000000000000000000..9594d9a0b453685fa328d3b1bd221de3e15ad8b7 --- /dev/null +++ b/doc/doc_en/clone_en.md @@ -0,0 +1,27 @@ +# Project Clone + +## 1. Clone PaddleOCR + +```bash +# Recommend +git clone https://github.com/PaddlePaddle/PaddleOCR + +# If you cannot pull successfully due to network problems, you can switch to the mirror hosted on Gitee: + +git clone https://gitee.com/paddlepaddle/PaddleOCR + +# Note: The mirror on Gitee may not keep in synchronization with the latest project on GitHub. There might be a delay of 3-5 days. Please try GitHub at first. +``` + +## 2. Install third-party libraries + +```bash +cd PaddleOCR +pip3 install -r requirements.txt +``` + +If you getting this error `OSError: [WinError 126] The specified module could not be found` when you install shapely on windows. + +Please try to download Shapely whl file from [http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely](http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely). + +Reference: [Solve shapely installation on windows](https://stackoverflow.com/questions/44398265/install-shapely-oserror-winerror-126-the-specified-module-could-not-be-found) diff --git a/doc/doc_en/paddleOCR_overview_en.md b/doc/doc_en/paddleOCR_overview_en.md deleted file mode 100644 index fe64b0bd6c60f4e678ee2e44a303c124bab479ec..0000000000000000000000000000000000000000 --- a/doc/doc_en/paddleOCR_overview_en.md +++ /dev/null @@ -1,39 +0,0 @@ -# PaddleOCR Overview and Project Clone - -## 1. PaddleOCR Overview - -PaddleOCR contains rich text detection, text recognition and end-to-end algorithms. With the experience from real world scenarios and the industry, PaddleOCR chooses DB and CRNN as the basic detection and recognition models, and proposes a series of models, named PP-OCR, for industrial applications after a series of optimization strategies. The PP-OCR model is aimed at general scenarios and forms a model library of different languages. Based on the capabilities of PP-OCR, PaddleOCR releases the PP-Structure toolkit for document scene tasks, including two major tasks: layout analysis and table recognition. In order to get through the entire process of industrial landing, PaddleOCR provides large-scale data production tools and a variety of prediction deployment tools to help developers quickly turn ideas into reality. - -