diff --git a/ppstructure/table/predict_structure.py b/ppstructure/table/predict_structure.py
index 0bf100852b9e9d501dfc858d8ce0787da42a61ed..08e381a846f1e8b4d38918e1031f5b219fed54e2 100755
--- a/ppstructure/table/predict_structure.py
+++ b/ppstructure/table/predict_structure.py
@@ -68,6 +68,7 @@ def build_pre_process_list(args):
class TableStructurer(object):
def __init__(self, args):
+ self.args = args
self.use_onnx = args.use_onnx
pre_process_list = build_pre_process_list(args)
if args.table_algorithm not in ['TableMaster']:
@@ -89,8 +90,31 @@ class TableStructurer(object):
self.predictor, self.input_tensor, self.output_tensors, self.config = \
utility.create_predictor(args, 'table', logger)
+ if args.benchmark:
+ import auto_log
+ pid = os.getpid()
+ gpu_id = utility.get_infer_gpuid()
+ self.autolog = auto_log.AutoLogger(
+ model_name="table",
+ model_precision=args.precision,
+ batch_size=1,
+ data_shape="dynamic",
+ save_path=None, #args.save_log_path,
+ inference_config=self.config,
+ pids=pid,
+ process_name=None,
+ gpu_ids=gpu_id if args.use_gpu else None,
+ time_keys=[
+ 'preprocess_time', 'inference_time', 'postprocess_time'
+ ],
+ warmup=0,
+ logger=logger)
+
def __call__(self, img):
starttime = time.time()
+ if self.args.benchmark:
+ self.autolog.times.start()
+
ori_im = img.copy()
data = {'image': img}
data = transform(data, self.preprocess_op)
@@ -99,6 +123,8 @@ class TableStructurer(object):
return None, 0
img = np.expand_dims(img, axis=0)
img = img.copy()
+ if self.args.benchmark:
+ self.autolog.times.stamp()
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = img
@@ -110,6 +136,8 @@ class TableStructurer(object):
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
+ if self.args.benchmark:
+ self.autolog.times.stamp()
preds = {}
preds['structure_probs'] = outputs[1]
@@ -125,6 +153,8 @@ class TableStructurer(object):
'', '
', ''
] + structure_str_list + ['
', '', '']
elapse = time.time() - starttime
+ if self.args.benchmark:
+ self.autolog.times.end(stamp=True)
return (structure_str_list, bbox_list), elapse
@@ -164,6 +194,8 @@ def main(args):
total_time += elapse
count += 1
logger.info("Predict time of {}: {}".format(image_file, elapse))
+ if args.benchmark:
+ table_structurer.autolog.report()
if __name__ == "__main__":
diff --git a/ppstructure/table/predict_table.py b/ppstructure/table/predict_table.py
index fdf611b7ffc049fc745b86233ee127337eaf5f90..8f9c7174904ab3818f62544aeadc97c410070b07 100644
--- a/ppstructure/table/predict_table.py
+++ b/ppstructure/table/predict_table.py
@@ -14,7 +14,6 @@
import os
import sys
-import subprocess
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
@@ -61,57 +60,31 @@ class TableSystem(object):
self.args = args
if not args.show_log:
logger.setLevel(logging.INFO)
-
- self.text_detector = predict_det.TextDetector(
- args) if text_detector is None else text_detector
- self.text_recognizer = predict_rec.TextRecognizer(
- args) if text_recognizer is None else text_recognizer
-
+ args.benchmark = False
+ self.text_detector = predict_det.TextDetector(copy.deepcopy(
+ args)) if text_detector is None else text_detector
+ self.text_recognizer = predict_rec.TextRecognizer(copy.deepcopy(
+ args)) if text_recognizer is None else text_recognizer
+ args.benchmark = True
self.table_structurer = predict_strture.TableStructurer(args)
if args.table_algorithm in ['TableMaster']:
self.match = TableMasterMatcher()
else:
self.match = TableMatch(filter_ocr_result=True)
- self.benchmark = args.benchmark
self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
args, 'table', logger)
- if args.benchmark:
- import auto_log
- pid = os.getpid()
- gpu_id = utility.get_infer_gpuid()
- self.autolog = auto_log.AutoLogger(
- model_name="table",
- model_precision=args.precision,
- batch_size=1,
- data_shape="dynamic",
- save_path=None, #args.save_log_path,
- inference_config=self.config,
- pids=pid,
- process_name=None,
- gpu_ids=gpu_id if args.use_gpu else None,
- time_keys=[
- 'preprocess_time', 'inference_time', 'postprocess_time'
- ],
- warmup=0,
- logger=logger)
def __call__(self, img, return_ocr_result_in_table=False):
result = dict()
time_dict = {'det': 0, 'rec': 0, 'table': 0, 'all': 0, 'match': 0}
start = time.time()
- if self.args.benchmark:
- self.autolog.times.start()
structure_res, elapse = self._structure(copy.deepcopy(img))
- if self.benchmark:
- self.autolog.times.stamp()
result['cell_bbox'] = structure_res[1].tolist()
time_dict['table'] = elapse
dt_boxes, rec_res, det_elapse, rec_elapse = self._ocr(
copy.deepcopy(img))
- if self.benchmark:
- self.autolog.times.stamp()
time_dict['det'] = det_elapse
time_dict['rec'] = rec_elapse
@@ -126,8 +99,6 @@ class TableSystem(object):
result['html'] = pred_html
end = time.time()
time_dict['all'] = end - start
- if self.benchmark:
- self.autolog.times.end(stamp=True)
return result, time_dict
def _structure(self, img):
@@ -233,12 +204,13 @@ def main(args):
f_html.close()
if args.benchmark:
- table_sys.autolog.report()
+ table_sys.table_structurer.autolog.report()
if __name__ == "__main__":
args = parse_args()
if args.use_mp:
+ import subprocess
p_list = []
total_process_num = args.total_process_num
for process_id in range(total_process_num):