未验证 提交 44310026 编写于 作者: X xiaoting 提交者: GitHub

Merge pull request #5848 from tink2123/add_serving_c++

Add serving c++
......@@ -30,29 +30,31 @@ The introduction and tutorial of Paddle Serving service deployment framework ref
PaddleOCR operating environment and Paddle Serving operating environment are needed.
1. Please prepare PaddleOCR operating environment reference [link](../../doc/doc_ch/installation.md).
Download the corresponding paddlepaddle whl package according to the environment, it is recommended to install version 2.2.2.
Download the corresponding paddle whl package according to the environment, it is recommended to install version 2.2.2
2. The steps of PaddleServing operating environment prepare are as follows:
```bash
# Install serving which used to start the service
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
pip3 install paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
# Install paddle-serving-server for cuda10.1
# wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
# pip3 install paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
# Install serving which used to start the service
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.7.0-cp37-none-any.whl
pip3 install paddle_serving_client-0.7.0-cp37-none-any.whl
```bash
# Install serving which used to start the service
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
pip3 install paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
# Install paddle-serving-server for cuda10.1
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
# pip3 install paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
# Install serving-app
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.7.0-py3-none-any.whl
pip3 install paddle_serving_app-0.7.0-py3-none-any.whl
```
# Install serving which used to start the service
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp37-none-any.whl
pip3 install paddle_serving_client-0.8.3-cp37-none-any.whl
# Install serving-app
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl
pip3 install paddle_serving_app-0.8.3-py3-none-any.whl
```
**note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md).
**note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md).
<a name="model-conversion"></a>
......@@ -187,6 +189,26 @@ The recognition model is the same.
2021-05-13 03:42:36,979 chl1(In: ['det'], Out: ['rec']) size[6/0]
2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
```
## C++ Serving
1. Compile Serving
To improve predictive performance, C++ services also provide multiple model concatenation services. Unlike Python Pipeline services, multiple model concatenation requires the pre - and post-model processing code to be written on the server side, so local recompilation is required to generate serving. Specific may refer to the official document: [how to compile Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_EN.md)
2. Run the following command to start the service.
```
# Start the service and save the running log in log.txt
python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralRecOp --port 9293 &>log.txt &
```
After the service is successfully started, a log similar to the following will be printed in log.txt
![](./imgs/start_server.png)
3. Send service request
```
python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
```
After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
![](./imgs/results.png)
## WINDOWS Users
......
......@@ -21,6 +21,7 @@ PaddleOCR提供2种服务部署方式:
- [环境准备](#环境准备)
- [模型转换](#模型转换)
- [Paddle Serving pipeline部署](#部署)
- [Paddle Serving C++ 部署](#C++)
- [Windows用户](#Windows用户)
- [FAQ](#FAQ)
......@@ -30,28 +31,30 @@ PaddleOCR提供2种服务部署方式:
需要准备PaddleOCR的运行环境和Paddle Serving的运行环境。
- 准备PaddleOCR的运行环境[链接](../../doc/doc_ch/installation.md)
根据环境下载对应的paddlepaddle whl包,推荐安装2.2.2版本
- 准备PaddleServing的运行环境,步骤如下
```bash
# 安装serving,用于启动服务
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
pip3 install paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
pip3 install paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
# 如果是cuda10.1环境,可以使用下面的命令安装paddle-serving-server
# wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
# pip3 install paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
# pip3 install paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
# 安装client,用于向服务发送请求
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.7.0-cp37-none-any.whl
pip3 install paddle_serving_client-0.7.0-cp37-none-any.whl
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp37-none-any.whl
pip3 install paddle_serving_client-0.8.3-cp37-none-any.whl
# 安装serving-app
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.7.0-py3-none-any.whl
pip3 install paddle_serving_app-0.7.0-py3-none-any.whl
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl
pip3 install paddle_serving_app-0.8.3-py3-none-any.whl
```
**Note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md)
**Note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Latest_Packages_CN.md)
<a name="模型转换"></a>
## 模型转换
......@@ -187,6 +190,45 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
```
<a name="C++"></a>
## Paddle Serving C++ 部署
基于python的服务部署,显然具有二次开发便捷的优势,然而真正落地应用,往往需要追求更优的性能。PaddleServing 也提供了性能更优的C++部署版本。
C++ 服务部署在环境搭建和数据准备阶段与 python 相同,区别在于启动服务和客户端发送请求时不同。
1. 准备 Serving 环境
为了提高预测性能,C++ 服务同样提供了多模型串联服务。与python pipeline服务不同,多模型串联的过程中需要将模型前后处理代码写在服务端,因此需要在本地重新编译生成serving。具体可参考官方文档:[如何编译Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_CN.md)
完成编译后,注意要安装编译出的三个whl包,并设置SERVING_BIN环境变量。
2. 启动服务可运行如下命令:
一个服务启动两个模型串联,只需要在--model后依次按顺序传入模型文件夹的相对路径,且需要在--op后依次传入自定义C++OP类名称:
```
# 启动服务,运行日志保存在log.txt
python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralRecOp --port 9293 &>log.txt &
```
成功启动服务后,log.txt中会打印类似如下日志
![](./imgs/start_server.png)
3. 发送服务请求:
```
python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
```
成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
![](./imgs/results.png)
在浏览器中输入服务器 ip:端口号,可以看到当前服务的实时QPS。(端口号范围需要是8000-9000)
在200张真实图片上测试,把检测长边限制为960。T4 GPU 上 QPS 峰值可达到51左右,约为pipeline的 2.12 倍。
![](./imgs/c++_qps.png)
<a name="Windows用户"></a>
## Windows用户
......
......@@ -45,7 +45,6 @@ for img_file in os.listdir(test_img_dir):
image_data = file.read()
image = cv2_to_base64(image_data)
res_list = []
#print(image)
fetch_map = client.predict(
feed={"x": image}, fetch=["save_infer_model/scale_0.tmp_1"], batch=True)
print("fetrch map:", fetch_map)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册