未验证 提交 3e10cfd4 编写于 作者: M MissPenguin 提交者: GitHub

Merge pull request #4334 from LDOUBLEV/test_v10

[full_chain] slice test.sh to test_python.sh
此差异已折叠。
......@@ -2,7 +2,14 @@
source tests/common_func.sh
FILENAME=$1
dataline=$(awk 'NR==1, NR==51{print}' $FILENAME)
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'klquant_infer']
MODE=$2
if [ ${MODE} = "klquant_infer" ]; then
dataline=$(awk 'NR==82, NR==98{print}' $FILENAME)
else
dataline=$(awk 'NR==1, NR==51{print}' $FILENAME)
fi
# parser params
IFS=$'\n'
......@@ -84,6 +91,35 @@ benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")
# parser klquant_infer
if [ ${MODE} = "klquant_infer" ]; then
# parser inference model
infer_model_dir_list=$(func_parser_value "${lines[1]}")
infer_export_list=$(func_parser_value "${lines[2]}")
infer_is_quant=$(func_parser_value "${lines[3]}")
# parser inference
inference_py=$(func_parser_value "${lines[4]}")
use_gpu_key=$(func_parser_key "${lines[5]}")
use_gpu_list=$(func_parser_value "${lines[5]}")
use_mkldnn_key=$(func_parser_key "${lines[6]}")
use_mkldnn_list=$(func_parser_value "${lines[6]}")
cpu_threads_key=$(func_parser_key "${lines[7]}")
cpu_threads_list=$(func_parser_value "${lines[7]}")
batch_size_key=$(func_parser_key "${lines[8]}")
batch_size_list=$(func_parser_value "${lines[8]}")
use_trt_key=$(func_parser_key "${lines[9]}")
use_trt_list=$(func_parser_value "${lines[9]}")
precision_key=$(func_parser_key "${lines[10]}")
precision_list=$(func_parser_value "${lines[10]}")
infer_model_key=$(func_parser_key "${lines[11]}")
image_dir_key=$(func_parser_key "${lines[12]}")
infer_img_dir=$(func_parser_value "${lines[12]}")
save_log_key=$(func_parser_key "${lines[13]}")
benchmark_key=$(func_parser_key "${lines[14]}")
benchmark_value=$(func_parser_value "${lines[14]}")
infer_key1=$(func_parser_key "${lines[15]}")
infer_value1=$(func_parser_value "${lines[15]}")
fi
LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
......@@ -158,16 +194,148 @@ function func_inference(){
done
}
# set cuda device
GPUID=$2
if [ ${#GPUID} -le 0 ];then
if [ ${MODE} = "infer" ] || [ ${MODE} = "klquant_infer" ]; then
GPUID=$3
if [ ${#GPUID} -le 0 ];then
env=" "
else
else
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
fi
set CUDA_VISIBLE_DEVICES
eval $env
fi
# set CUDA_VISIBLE_DEVICES
eval $env
export Count=0
IFS="|"
infer_run_exports=(${infer_export_list})
infer_quant_flag=(${infer_is_quant})
for infer_model in ${infer_model_dir_list[*]}; do
# run export
if [ ${infer_run_exports[Count]} != "null" ];then
save_infer_dir=$(dirname $infer_model)
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
echo ${infer_run_exports[Count]}
echo $export_cmd
eval $export_cmd
status_export=$?
status_check $status_export "${export_cmd}" "${status_log}"
else
save_infer_dir=${infer_model}
fi
#run inference
is_quant=${infer_quant_flag[Count]}
func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
Count=$(($Count + 1))
done
else
IFS="|"
export Count=0
USE_GPU_KEY=(${train_use_gpu_value})
for gpu in ${gpu_list[*]}; do
use_gpu=${USE_GPU_KEY[Count]}
Count=$(($Count + 1))
if [ ${gpu} = "-1" ];then
env=""
elif [ ${#gpu} -le 1 ];then
env="export CUDA_VISIBLE_DEVICES=${gpu}"
eval ${env}
elif [ ${#gpu} -le 15 ];then
IFS=","
array=(${gpu})
env="export CUDA_VISIBLE_DEVICES=${array[0]}"
IFS="|"
else
IFS=";"
array=(${gpu})
ips=${array[0]}
gpu=${array[1]}
IFS="|"
env=" "
fi
for autocast in ${autocast_list[*]}; do
for trainer in ${trainer_list[*]}; do
flag_quant=False
if [ ${trainer} = ${pact_key} ]; then
run_train=${pact_trainer}
run_export=${pact_export}
flag_quant=True
elif [ ${trainer} = "${fpgm_key}" ]; then
run_train=${fpgm_trainer}
run_export=${fpgm_export}
elif [ ${trainer} = "${distill_key}" ]; then
run_train=${distill_trainer}
run_export=${distill_export}
elif [ ${trainer} = ${trainer_key1} ]; then
run_train=${trainer_value1}
run_export=${export_value1}
elif [[ ${trainer} = ${trainer_key2} ]]; then
run_train=${trainer_value2}
run_export=${export_value2}
else
run_train=${norm_trainer}
run_export=${norm_export}
fi
if [ ${run_train} = "null" ]; then
continue
fi
set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
# load pretrain from norm training if current trainer is pact or fpgm trainer
if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
set_pretrain="${load_norm_train_model}"
fi
set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
elif [ ${#gpu} -le 15 ];then # train with multi-gpu
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
else # train with multi-machine
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
fi
# run train
eval "unset CUDA_VISIBLE_DEVICES"
eval $cmd
status_check $? "${cmd}" "${status_log}"
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
# save norm trained models to set pretrain for pact training and fpgm training
if [ ${trainer} = ${trainer_norm} ]; then
load_norm_train_model=${set_eval_pretrain}
fi
# run eval
if [ ${eval_py} != "null" ]; then
set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}"
eval $eval_cmd
status_check $? "${eval_cmd}" "${status_log}"
fi
# run export model
if [ ${run_export} != "null" ]; then
# run export model
save_infer_path="${save_log}"
set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
eval $export_cmd
status_check $? "${export_cmd}" "${status_log}"
#run inference
eval $env
save_infer_path="${save_log}"
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
eval "unset CUDA_VISIBLE_DEVICES"
fi
done # done with: for trainer in ${trainer_list[*]}; do
done # done with: for autocast in ${autocast_list[*]}; do
done # done with: for gpu in ${gpu_list[*]}; do
fi # end if [ ${MODE} = "infer" ]; then
echo "################### run test ###################"
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册