Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
3e10cfd4
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3e10cfd4
编写于
10月 14, 2021
作者:
M
MissPenguin
提交者:
GitHub
10月 14, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4334 from LDOUBLEV/test_v10
[full_chain] slice test.sh to test_python.sh
上级
a99065fe
fd0912a7
变更
2
展开全部
显示空白变更内容
内联
并排
Showing
2 changed file
with
179 addition
and
645 deletion
+179
-645
tests/test.sh
tests/test.sh
+0
-634
tests/test_python.sh
tests/test_python.sh
+179
-11
未找到文件。
tests/test.sh
已删除
100644 → 0
浏览文件 @
a99065fe
此差异已折叠。
点击以展开。
tests/test_python.sh
浏览文件 @
3e10cfd4
...
...
@@ -2,7 +2,14 @@
source
tests/common_func.sh
FILENAME
=
$1
dataline
=
$(
awk
'NR==1, NR==51{print}'
$FILENAME
)
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'klquant_infer']
MODE
=
$2
if
[
${
MODE
}
=
"klquant_infer"
]
;
then
dataline
=
$(
awk
'NR==82, NR==98{print}'
$FILENAME
)
else
dataline
=
$(
awk
'NR==1, NR==51{print}'
$FILENAME
)
fi
# parser params
IFS
=
$'
\n
'
...
...
@@ -84,6 +91,35 @@ benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1
=
$(
func_parser_key
"
${
lines
[50]
}
"
)
infer_value1
=
$(
func_parser_value
"
${
lines
[50]
}
"
)
# parser klquant_infer
if
[
${
MODE
}
=
"klquant_infer"
]
;
then
# parser inference model
infer_model_dir_list
=
$(
func_parser_value
"
${
lines
[1]
}
"
)
infer_export_list
=
$(
func_parser_value
"
${
lines
[2]
}
"
)
infer_is_quant
=
$(
func_parser_value
"
${
lines
[3]
}
"
)
# parser inference
inference_py
=
$(
func_parser_value
"
${
lines
[4]
}
"
)
use_gpu_key
=
$(
func_parser_key
"
${
lines
[5]
}
"
)
use_gpu_list
=
$(
func_parser_value
"
${
lines
[5]
}
"
)
use_mkldnn_key
=
$(
func_parser_key
"
${
lines
[6]
}
"
)
use_mkldnn_list
=
$(
func_parser_value
"
${
lines
[6]
}
"
)
cpu_threads_key
=
$(
func_parser_key
"
${
lines
[7]
}
"
)
cpu_threads_list
=
$(
func_parser_value
"
${
lines
[7]
}
"
)
batch_size_key
=
$(
func_parser_key
"
${
lines
[8]
}
"
)
batch_size_list
=
$(
func_parser_value
"
${
lines
[8]
}
"
)
use_trt_key
=
$(
func_parser_key
"
${
lines
[9]
}
"
)
use_trt_list
=
$(
func_parser_value
"
${
lines
[9]
}
"
)
precision_key
=
$(
func_parser_key
"
${
lines
[10]
}
"
)
precision_list
=
$(
func_parser_value
"
${
lines
[10]
}
"
)
infer_model_key
=
$(
func_parser_key
"
${
lines
[11]
}
"
)
image_dir_key
=
$(
func_parser_key
"
${
lines
[12]
}
"
)
infer_img_dir
=
$(
func_parser_value
"
${
lines
[12]
}
"
)
save_log_key
=
$(
func_parser_key
"
${
lines
[13]
}
"
)
benchmark_key
=
$(
func_parser_key
"
${
lines
[14]
}
"
)
benchmark_value
=
$(
func_parser_value
"
${
lines
[14]
}
"
)
infer_key1
=
$(
func_parser_key
"
${
lines
[15]
}
"
)
infer_value1
=
$(
func_parser_value
"
${
lines
[15]
}
"
)
fi
LOG_PATH
=
"./tests/output"
mkdir
-p
${
LOG_PATH
}
...
...
@@ -158,16 +194,148 @@ function func_inference(){
done
}
# set cuda device
GPUID
=
$2
if
[
${#
GPUID
}
-le
0
]
;
then
if
[
${
MODE
}
=
"infer"
]
||
[
${
MODE
}
=
"klquant_infer"
]
;
then
GPUID
=
$3
if
[
${#
GPUID
}
-le
0
]
;
then
env
=
" "
else
else
env
=
"export CUDA_VISIBLE_DEVICES=
${
GPUID
}
"
fi
set
CUDA_VISIBLE_DEVICES
eval
$env
fi
# set CUDA_VISIBLE_DEVICES
eval
$env
export
Count
=
0
IFS
=
"|"
infer_run_exports
=(
${
infer_export_list
}
)
infer_quant_flag
=(
${
infer_is_quant
}
)
for
infer_model
in
${
infer_model_dir_list
[*]
}
;
do
# run export
if
[
${
infer_run_exports
[Count]
}
!=
"null"
]
;
then
save_infer_dir
=
$(
dirname
$infer_model
)
set_export_weight
=
$(
func_set_params
"
${
export_weight
}
"
"
${
infer_model
}
"
)
set_save_infer_key
=
$(
func_set_params
"
${
save_infer_key
}
"
"
${
save_infer_dir
}
"
)
export_cmd
=
"
${
python
}
${
infer_run_exports
[Count]
}
${
set_export_weight
}
${
set_save_infer_key
}
"
echo
${
infer_run_exports
[Count]
}
echo
$export_cmd
eval
$export_cmd
status_export
=
$?
status_check
$status_export
"
${
export_cmd
}
"
"
${
status_log
}
"
else
save_infer_dir
=
${
infer_model
}
fi
#run inference
is_quant
=
${
infer_quant_flag
[Count]
}
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"
${
save_infer_dir
}
"
"
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
${
is_quant
}
Count
=
$((
$Count
+
1
))
done
else
IFS
=
"|"
export
Count
=
0
USE_GPU_KEY
=(
${
train_use_gpu_value
}
)
for
gpu
in
${
gpu_list
[*]
}
;
do
use_gpu
=
${
USE_GPU_KEY
[Count]
}
Count
=
$((
$Count
+
1
))
if
[
${
gpu
}
=
"-1"
]
;
then
env
=
""
elif
[
${#
gpu
}
-le
1
]
;
then
env
=
"export CUDA_VISIBLE_DEVICES=
${
gpu
}
"
eval
${
env
}
elif
[
${#
gpu
}
-le
15
]
;
then
IFS
=
","
array
=(
${
gpu
}
)
env
=
"export CUDA_VISIBLE_DEVICES=
${
array
[0]
}
"
IFS
=
"|"
else
IFS
=
";"
array
=(
${
gpu
}
)
ips
=
${
array
[0]
}
gpu
=
${
array
[1]
}
IFS
=
"|"
env
=
" "
fi
for
autocast
in
${
autocast_list
[*]
}
;
do
for
trainer
in
${
trainer_list
[*]
}
;
do
flag_quant
=
False
if
[
${
trainer
}
=
${
pact_key
}
]
;
then
run_train
=
${
pact_trainer
}
run_export
=
${
pact_export
}
flag_quant
=
True
elif
[
${
trainer
}
=
"
${
fpgm_key
}
"
]
;
then
run_train
=
${
fpgm_trainer
}
run_export
=
${
fpgm_export
}
elif
[
${
trainer
}
=
"
${
distill_key
}
"
]
;
then
run_train
=
${
distill_trainer
}
run_export
=
${
distill_export
}
elif
[
${
trainer
}
=
${
trainer_key1
}
]
;
then
run_train
=
${
trainer_value1
}
run_export
=
${
export_value1
}
elif
[[
${
trainer
}
=
${
trainer_key2
}
]]
;
then
run_train
=
${
trainer_value2
}
run_export
=
${
export_value2
}
else
run_train
=
${
norm_trainer
}
run_export
=
${
norm_export
}
fi
if
[
${
run_train
}
=
"null"
]
;
then
continue
fi
set_autocast
=
$(
func_set_params
"
${
autocast_key
}
"
"
${
autocast
}
"
)
set_epoch
=
$(
func_set_params
"
${
epoch_key
}
"
"
${
epoch_num
}
"
)
set_pretrain
=
$(
func_set_params
"
${
pretrain_model_key
}
"
"
${
pretrain_model_value
}
"
)
set_batchsize
=
$(
func_set_params
"
${
train_batch_key
}
"
"
${
train_batch_value
}
"
)
set_train_params1
=
$(
func_set_params
"
${
train_param_key1
}
"
"
${
train_param_value1
}
"
)
set_use_gpu
=
$(
func_set_params
"
${
train_use_gpu_key
}
"
"
${
use_gpu
}
"
)
save_log
=
"
${
LOG_PATH
}
/
${
trainer
}
_gpus_
${
gpu
}
_autocast_
${
autocast
}
"
# load pretrain from norm training if current trainer is pact or fpgm trainer
if
[
${
trainer
}
=
${
pact_key
}
]
||
[
${
trainer
}
=
${
fpgm_key
}
]
;
then
set_pretrain
=
"
${
load_norm_train_model
}
"
fi
set_save_model
=
$(
func_set_params
"
${
save_model_key
}
"
"
${
save_log
}
"
)
if
[
${#
gpu
}
-le
2
]
;
then
# train with cpu or single gpu
cmd
=
"
${
python
}
${
run_train
}
${
set_use_gpu
}
${
set_save_model
}
${
set_epoch
}
${
set_pretrain
}
${
set_autocast
}
${
set_batchsize
}
${
set_train_params1
}
"
elif
[
${#
gpu
}
-le
15
]
;
then
# train with multi-gpu
cmd
=
"
${
python
}
-m paddle.distributed.launch --gpus=
${
gpu
}
${
run_train
}
${
set_save_model
}
${
set_epoch
}
${
set_pretrain
}
${
set_autocast
}
${
set_batchsize
}
${
set_train_params1
}
"
else
# train with multi-machine
cmd
=
"
${
python
}
-m paddle.distributed.launch --ips=
${
ips
}
--gpus=
${
gpu
}
${
run_train
}
${
set_save_model
}
${
set_pretrain
}
${
set_epoch
}
${
set_autocast
}
${
set_batchsize
}
${
set_train_params1
}
"
fi
# run train
eval
"unset CUDA_VISIBLE_DEVICES"
eval
$cmd
status_check
$?
"
${
cmd
}
"
"
${
status_log
}
"
set_eval_pretrain
=
$(
func_set_params
"
${
pretrain_model_key
}
"
"
${
save_log
}
/
${
train_model_name
}
"
)
# save norm trained models to set pretrain for pact training and fpgm training
if
[
${
trainer
}
=
${
trainer_norm
}
]
;
then
load_norm_train_model
=
${
set_eval_pretrain
}
fi
# run eval
if
[
${
eval_py
}
!=
"null"
]
;
then
set_eval_params1
=
$(
func_set_params
"
${
eval_key1
}
"
"
${
eval_value1
}
"
)
eval_cmd
=
"
${
python
}
${
eval_py
}
${
set_eval_pretrain
}
${
set_use_gpu
}
${
set_eval_params1
}
"
eval
$eval_cmd
status_check
$?
"
${
eval_cmd
}
"
"
${
status_log
}
"
fi
# run export model
if
[
${
run_export
}
!=
"null"
]
;
then
# run export model
save_infer_path
=
"
${
save_log
}
"
set_export_weight
=
$(
func_set_params
"
${
export_weight
}
"
"
${
save_log
}
/
${
train_model_name
}
"
)
set_save_infer_key
=
$(
func_set_params
"
${
save_infer_key
}
"
"
${
save_infer_path
}
"
)
export_cmd
=
"
${
python
}
${
run_export
}
${
set_export_weight
}
${
set_save_infer_key
}
"
eval
$export_cmd
status_check
$?
"
${
export_cmd
}
"
"
${
status_log
}
"
#run inference
eval
$env
save_infer_path
=
"
${
save_log
}
"
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"
${
save_infer_path
}
"
"
${
LOG_PATH
}
"
"
${
train_infer_img_dir
}
"
"
${
flag_quant
}
"
eval
"unset CUDA_VISIBLE_DEVICES"
fi
done
# done with: for trainer in ${trainer_list[*]}; do
done
# done with: for autocast in ${autocast_list[*]}; do
done
# done with: for gpu in ${gpu_list[*]}; do
fi
# end if [ ${MODE} = "infer" ]; then
echo
"################### run test ###################"
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录