diff --git a/deploy/pdserving/README.md b/deploy/pdserving/README.md
index 07b019280ae160f9b9e3c98713c7a34e924d8a9e..d3ba7d4cfbabb111831a6ecbce28c1ac352066fe 100644
--- a/deploy/pdserving/README.md
+++ b/deploy/pdserving/README.md
@@ -36,7 +36,6 @@ PaddleOCR operating environment and Paddle Serving operating environment are nee
1. Please prepare PaddleOCR operating environment reference [link](../../doc/doc_ch/installation.md).
Download the corresponding paddlepaddle whl package according to the environment, it is recommended to install version 2.2.2.
-
2. The steps of PaddleServing operating environment prepare are as follows:
@@ -194,6 +193,52 @@ The recognition model is the same.
2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
```
+## C++ Serving
+
+Service deployment based on python obviously has the advantage of convenient secondary development. However, the real application often needs to pursue better performance. PaddleServing also provides a more performant C++ deployment version.
+
+The C++ service deployment is the same as python in the environment setup and data preparation stages, the difference is when the service is started and the client sends requests.
+
+| Language | Speed | Secondary development | Do you need to compile |
+|-----|-----|---------|------------|
+| C++ | fast | Slightly difficult | Single model prediction does not need to be compiled, multi-model concatenation needs to be compiled |
+| python | general | easy | single-model/multi-model no compilation required |
+
+1. Compile Serving
+
+ To improve predictive performance, C++ services also provide multiple model concatenation services. Unlike Python Pipeline services, multiple model concatenation requires the pre - and post-model processing code to be written on the server side, so local recompilation is required to generate serving. Specific may refer to the official document: [how to compile Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_EN.md)
+
+2. Run the following command to start the service.
+ ```
+ # Start the service and save the running log in log.txt
+ python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt &
+ ```
+ After the service is successfully started, a log similar to the following will be printed in log.txt
+ ![](./imgs/start_server.png)
+
+3. Send service request
+
+ Due to the need for pre and post-processing in the C++Server part, in order to speed up the input to the C++Server is only the base64 encoded string of the picture, it needs to be manually modified
+ Change the feed_type field and shape field in ppocrv2_det_client/serving_client_conf.prototxt to the following:
+
+ ```
+ feed_var {
+ name: "x"
+ alias_name: "x"
+ is_lod_tensor: false
+ feed_type: 20
+ shape: 1
+ }
+ ```
+
+ start the client:
+
+ ```
+ python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
+ ```
+ After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
+ ![](./imgs/results.png)
+
## WINDOWS Users
Windows does not support Pipeline Serving, if we want to lauch paddle serving on Windows, we should use Web Service, for more infomation please refer to [Paddle Serving for Windows Users](https://github.com/PaddlePaddle/Serving/blob/develop/doc/Windows_Tutorial_EN.md)
diff --git a/deploy/pdserving/README_CN.md b/deploy/pdserving/README_CN.md
index afd355bac098a3c13c36476e2967d8f94e8cd306..7d6169569f92d927312ec6ba8ff667d613c4bfa7 100644
--- a/deploy/pdserving/README_CN.md
+++ b/deploy/pdserving/README_CN.md
@@ -6,6 +6,7 @@ PaddleOCR提供2种服务部署方式:
- 基于PaddleHub Serving的部署:代码路径为"`./deploy/hubserving`",使用方法参考[文档](../../deploy/hubserving/readme.md);
- 基于PaddleServing的部署:代码路径为"`./deploy/pdserving`",按照本教程使用。
+
# 基于PaddleServing的服务部署
本文档将介绍如何使用[PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)工具部署PP-OCR动态图模型的pipeline在线服务。
@@ -17,6 +18,8 @@ PaddleOCR提供2种服务部署方式:
更多有关PaddleServing服务化部署框架介绍和使用教程参考[文档](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)。
+AIStudio演示案例可参考 [基于PaddleServing的OCR服务化部署实战](https://aistudio.baidu.com/aistudio/projectdetail/3630726)。
+
## 目录
- [环境准备](#环境准备)
- [模型转换](#模型转换)
@@ -30,7 +33,6 @@ PaddleOCR提供2种服务部署方式:
需要准备PaddleOCR的运行环境和Paddle Serving的运行环境。
- 准备PaddleOCR的运行环境[链接](../../doc/doc_ch/installation.md)
- 根据环境下载对应的paddlepaddle whl包,推荐安装2.2.2版本
- 准备PaddleServing的运行环境,步骤如下
@@ -106,7 +108,7 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
1. 下载PaddleOCR代码,若已下载可跳过此步骤
```
git clone https://github.com/PaddlePaddle/PaddleOCR
-
+
# 进入到工作目录
cd PaddleOCR/deploy/pdserving/
```
@@ -132,7 +134,7 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
python3 pipeline_http_client.py
```
成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
- ![](./imgs/results.png)
+ ![](./imgs/pipeline_result.png)
调整 config.yml 中的并发个数获得最大的QPS, 一般检测和识别的并发数为2:1
```
@@ -187,6 +189,73 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
```
+
+## Paddle Serving C++ 部署
+
+基于python的服务部署,显然具有二次开发便捷的优势,然而真正落地应用,往往需要追求更优的性能。PaddleServing 也提供了性能更优的C++部署版本。
+
+C++ 服务部署在环境搭建和数据准备阶段与 python 相同,区别在于启动服务和客户端发送请求时不同。
+
+| 语言 | 速度 | 二次开发 | 是否需要编译 |
+|-----|-----|---------|------------|
+| C++ | 很快 | 略有难度 | 单模型预测无需编译,多模型串联需要编译 |
+| python | 一般 | 容易 | 单模型/多模型 均无需编译|
+
+1. 准备 Serving 环境
+
+为了提高预测性能,C++ 服务同样提供了多模型串联服务。与python pipeline服务不同,多模型串联的过程中需要将模型前后处理代码写在服务端,因此需要在本地重新编译生成serving。
+
+首先需要下载Serving代码库, 把OCR文本检测预处理相关代码替换到Serving库中
+```
+git clone https://github.com/PaddlePaddle/Serving
+
+cp -rf general_detection_op.cpp Serving/core/general-server/op
+
+```
+
+具体可参考官方文档:[如何编译Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_CN.md),注意需要开启 WITH_OPENCV 选项。
+
+完成编译后,注意要安装编译出的三个whl包,并设置SERVING_BIN环境变量。
+
+2. 启动服务可运行如下命令:
+
+一个服务启动两个模型串联,只需要在--model后依次按顺序传入模型文件夹的相对路径,且需要在--op后依次传入自定义C++OP类名称:
+
+ ```
+ # 启动服务,运行日志保存在log.txt
+ python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt &
+ ```
+ 成功启动服务后,log.txt中会打印类似如下日志
+ ![](./imgs/start_server.png)
+
+3. 发送服务请求:
+
+ 由于需要在C++Server部分进行前后处理,为了加速传入C++Server的仅仅是图片的base64编码的字符串,故需要手动修改
+ ppocrv2_det_client/serving_client_conf.prototxt 中 feed_type 字段 和 shape 字段,修改成如下内容:
+ ```
+ feed_var {
+ name: "x"
+ alias_name: "x"
+ is_lod_tensor: false
+ feed_type: 20
+ shape: 1
+ }
+ ```
+ 启动客户端
+ ```
+ python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
+ ```
+
+ 成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
+ ![](./imgs/results.png)
+
+ 在浏览器中输入服务器 ip:端口号,可以看到当前服务的实时QPS。(端口号范围需要是8000-9000)
+
+ 在200张真实图片上测试,把检测长边限制为960。T4 GPU 上 QPS 峰值可达到51左右,约为pipeline的 2.12 倍。
+
+ ![](./imgs/c++_qps.png)
+
+
## Windows用户
diff --git a/deploy/pdserving/general_detection_op.cpp b/deploy/pdserving/general_detection_op.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..7d9182950b77148008a638d011b17267eaea5b61
--- /dev/null
+++ b/deploy/pdserving/general_detection_op.cpp
@@ -0,0 +1,367 @@
+// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "core/general-server/op/general_detection_op.h"
+#include "core/predictor/framework/infer.h"
+#include "core/predictor/framework/memory.h"
+#include "core/predictor/framework/resource.h"
+#include "core/util/include/timer.h"
+#include
+#include
+#include
+#include
+
+/*
+#include "opencv2/imgcodecs/legacy/constants_c.h"
+#include "opencv2/imgproc/types_c.h"
+*/
+
+namespace baidu {
+namespace paddle_serving {
+namespace serving {
+
+using baidu::paddle_serving::Timer;
+using baidu::paddle_serving::predictor::MempoolWrapper;
+using baidu::paddle_serving::predictor::general_model::Tensor;
+using baidu::paddle_serving::predictor::general_model::Response;
+using baidu::paddle_serving::predictor::general_model::Request;
+using baidu::paddle_serving::predictor::InferManager;
+using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
+
+int GeneralDetectionOp::inference() {
+ VLOG(2) << "Going to run inference";
+ const std::vector pre_node_names = pre_names();
+ if (pre_node_names.size() != 1) {
+ LOG(ERROR) << "This op(" << op_name()
+ << ") can only have one predecessor op, but received "
+ << pre_node_names.size();
+ return -1;
+ }
+ const std::string pre_name = pre_node_names[0];
+
+ const GeneralBlob *input_blob = get_depend_argument(pre_name);
+ if (!input_blob) {
+ LOG(ERROR) << "input_blob is nullptr,error";
+ return -1;
+ }
+ uint64_t log_id = input_blob->GetLogId();
+ VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
+
+ GeneralBlob *output_blob = mutable_data();
+ if (!output_blob) {
+ LOG(ERROR) << "output_blob is nullptr,error";
+ return -1;
+ }
+ output_blob->SetLogId(log_id);
+
+ if (!input_blob) {
+ LOG(ERROR) << "(logid=" << log_id
+ << ") Failed mutable depended argument, op:" << pre_name;
+ return -1;
+ }
+
+ const TensorVector *in = &input_blob->tensor_vector;
+ TensorVector *out = &output_blob->tensor_vector;
+
+ int batch_size = input_blob->_batch_size;
+ VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size;
+
+ output_blob->_batch_size = batch_size;
+
+ std::vector input_shape;
+ int in_num = 0;
+ void *databuf_data = NULL;
+ char *databuf_char = NULL;
+ size_t databuf_size = 0;
+ // now only support single string
+ char *total_input_ptr = static_cast(in->at(0).data.data());
+ std::string base64str = total_input_ptr;
+
+ float ratio_h{};
+ float ratio_w{};
+
+ cv::Mat img = Base2Mat(base64str);
+ cv::Mat srcimg;
+ cv::Mat resize_img;
+
+ cv::Mat resize_img_rec;
+ cv::Mat crop_img;
+ img.copyTo(srcimg);
+
+ this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w,
+ this->use_tensorrt_);
+
+ this->normalize_op_.Run(&resize_img, this->mean_det, this->scale_det,
+ this->is_scale_);
+
+ std::vector input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
+ this->permute_op_.Run(&resize_img, input.data());
+
+ TensorVector *real_in = new TensorVector();
+ if (!real_in) {
+ LOG(ERROR) << "real_in is nullptr,error";
+ return -1;
+ }
+
+ for (int i = 0; i < in->size(); ++i) {
+ input_shape = {1, 3, resize_img.rows, resize_img.cols};
+ in_num = std::accumulate(input_shape.begin(), input_shape.end(), 1,
+ std::multiplies());
+ databuf_size = in_num * sizeof(float);
+ databuf_data = MempoolWrapper::instance().malloc(databuf_size);
+ if (!databuf_data) {
+ LOG(ERROR) << "Malloc failed, size: " << databuf_size;
+ return -1;
+ }
+ memcpy(databuf_data, input.data(), databuf_size);
+ databuf_char = reinterpret_cast(databuf_data);
+ paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
+ paddle::PaddleTensor tensor_in;
+ tensor_in.name = in->at(i).name;
+ tensor_in.dtype = paddle::PaddleDType::FLOAT32;
+ tensor_in.shape = {1, 3, resize_img.rows, resize_img.cols};
+ tensor_in.lod = in->at(i).lod;
+ tensor_in.data = paddleBuf;
+ real_in->push_back(tensor_in);
+ }
+
+ Timer timeline;
+ int64_t start = timeline.TimeStampUS();
+ timeline.Start();
+
+ if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
+ batch_size)) {
+ LOG(ERROR) << "(logid=" << log_id
+ << ") Failed do infer in fluid model: " << engine_name().c_str();
+ return -1;
+ }
+ delete real_in;
+
+ std::vector output_shape;
+ int out_num = 0;
+ void *databuf_data_out = NULL;
+ char *databuf_char_out = NULL;
+ size_t databuf_size_out = 0;
+ // this is special add for PaddleOCR postprecess
+ int infer_outnum = out->size();
+ for (int k = 0; k < infer_outnum; ++k) {
+ int n2 = out->at(k).shape[2];
+ int n3 = out->at(k).shape[3];
+ int n = n2 * n3;
+
+ float *out_data = static_cast(out->at(k).data.data());
+ std::vector pred(n, 0.0);
+ std::vector cbuf(n, ' ');
+
+ for (int i = 0; i < n; i++) {
+ pred[i] = float(out_data[i]);
+ cbuf[i] = (unsigned char)((out_data[i]) * 255);
+ }
+
+ cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char *)cbuf.data());
+ cv::Mat pred_map(n2, n3, CV_32F, (float *)pred.data());
+
+ const double threshold = this->det_db_thresh_ * 255;
+ const double maxvalue = 255;
+ cv::Mat bit_map;
+ cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
+ cv::Mat dilation_map;
+ cv::Mat dila_ele =
+ cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
+ cv::dilate(bit_map, dilation_map, dila_ele);
+ boxes = post_processor_.BoxesFromBitmap(pred_map, dilation_map,
+ this->det_db_box_thresh_,
+ this->det_db_unclip_ratio_);
+
+ boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
+
+ float max_wh_ratio = 0.0f;
+ std::vector crop_imgs;
+ std::vector resize_imgs;
+ int max_resize_w = 0;
+ int max_resize_h = 0;
+ int box_num = boxes.size();
+ std::vector> output_rec;
+ for (int i = 0; i < box_num; ++i) {
+ cv::Mat line_img = GetRotateCropImage(img, boxes[i]);
+ float wh_ratio = float(line_img.cols) / float(line_img.rows);
+ max_wh_ratio = max_wh_ratio > wh_ratio ? max_wh_ratio : wh_ratio;
+ crop_imgs.push_back(line_img);
+ }
+
+ for (int i = 0; i < box_num; ++i) {
+ cv::Mat resize_img;
+ crop_img = crop_imgs[i];
+ this->resize_op_rec.Run(crop_img, resize_img, max_wh_ratio,
+ this->use_tensorrt_);
+
+ this->normalize_op_.Run(&resize_img, this->mean_rec, this->scale_rec,
+ this->is_scale_);
+
+ max_resize_w = std::max(max_resize_w, resize_img.cols);
+ max_resize_h = std::max(max_resize_h, resize_img.rows);
+ resize_imgs.push_back(resize_img);
+ }
+ int buf_size = 3 * max_resize_h * max_resize_w;
+ output_rec = std::vector>(
+ box_num, std::vector(buf_size, 0.0f));
+ for (int i = 0; i < box_num; ++i) {
+ resize_img_rec = resize_imgs[i];
+
+ this->permute_op_.Run(&resize_img_rec, output_rec[i].data());
+ }
+
+ // Inference.
+ output_shape = {box_num, 3, max_resize_h, max_resize_w};
+ out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
+ std::multiplies());
+ databuf_size_out = out_num * sizeof(float);
+ databuf_data_out = MempoolWrapper::instance().malloc(databuf_size_out);
+ if (!databuf_data_out) {
+ LOG(ERROR) << "Malloc failed, size: " << databuf_size_out;
+ return -1;
+ }
+ int offset = buf_size * sizeof(float);
+ for (int i = 0; i < box_num; ++i) {
+ memcpy(databuf_data_out + i * offset, output_rec[i].data(), offset);
+ }
+ databuf_char_out = reinterpret_cast(databuf_data_out);
+ paddle::PaddleBuf paddleBuf(databuf_char_out, databuf_size_out);
+ paddle::PaddleTensor tensor_out;
+ tensor_out.name = "x";
+ tensor_out.dtype = paddle::PaddleDType::FLOAT32;
+ tensor_out.shape = output_shape;
+ tensor_out.data = paddleBuf;
+ out->push_back(tensor_out);
+ }
+ out->erase(out->begin(), out->begin() + infer_outnum);
+
+ int64_t end = timeline.TimeStampUS();
+ CopyBlobInfo(input_blob, output_blob);
+ AddBlobInfo(output_blob, start);
+ AddBlobInfo(output_blob, end);
+ return 0;
+}
+
+cv::Mat GeneralDetectionOp::Base2Mat(std::string &base64_data) {
+ cv::Mat img;
+ std::string s_mat;
+ s_mat = base64Decode(base64_data.data(), base64_data.size());
+ std::vector base64_img(s_mat.begin(), s_mat.end());
+ img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
+ return img;
+}
+
+std::string GeneralDetectionOp::base64Decode(const char *Data, int DataByte) {
+ const char DecodeTable[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 62, // '+'
+ 0, 0, 0,
+ 63, // '/'
+ 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
+ 0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
+ 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
+ };
+
+ std::string strDecode;
+ int nValue;
+ int i = 0;
+ while (i < DataByte) {
+ if (*Data != '\r' && *Data != '\n') {
+ nValue = DecodeTable[*Data++] << 18;
+ nValue += DecodeTable[*Data++] << 12;
+ strDecode += (nValue & 0x00FF0000) >> 16;
+ if (*Data != '=') {
+ nValue += DecodeTable[*Data++] << 6;
+ strDecode += (nValue & 0x0000FF00) >> 8;
+ if (*Data != '=') {
+ nValue += DecodeTable[*Data++];
+ strDecode += nValue & 0x000000FF;
+ }
+ }
+ i += 4;
+ } else // 回车换行,跳过
+ {
+ Data++;
+ i++;
+ }
+ }
+ return strDecode;
+}
+
+cv::Mat
+GeneralDetectionOp::GetRotateCropImage(const cv::Mat &srcimage,
+ std::vector> box) {
+ cv::Mat image;
+ srcimage.copyTo(image);
+ std::vector> points = box;
+
+ int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
+ int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
+ int left = int(*std::min_element(x_collect, x_collect + 4));
+ int right = int(*std::max_element(x_collect, x_collect + 4));
+ int top = int(*std::min_element(y_collect, y_collect + 4));
+ int bottom = int(*std::max_element(y_collect, y_collect + 4));
+
+ cv::Mat img_crop;
+ image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
+
+ for (int i = 0; i < points.size(); i++) {
+ points[i][0] -= left;
+ points[i][1] -= top;
+ }
+
+ int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
+ pow(points[0][1] - points[1][1], 2)));
+ int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
+ pow(points[0][1] - points[3][1], 2)));
+
+ cv::Point2f pts_std[4];
+ pts_std[0] = cv::Point2f(0., 0.);
+ pts_std[1] = cv::Point2f(img_crop_width, 0.);
+ pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
+ pts_std[3] = cv::Point2f(0.f, img_crop_height);
+
+ cv::Point2f pointsf[4];
+ pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
+ pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
+ pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
+ pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
+
+ cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
+
+ cv::Mat dst_img;
+ cv::warpPerspective(img_crop, dst_img, M,
+ cv::Size(img_crop_width, img_crop_height),
+ cv::BORDER_REPLICATE);
+
+ if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
+ cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
+ cv::transpose(dst_img, srcCopy);
+ cv::flip(srcCopy, srcCopy, 0);
+ return srcCopy;
+ } else {
+ return dst_img;
+ }
+}
+
+DEFINE_OP(GeneralDetectionOp);
+
+} // namespace serving
+} // namespace paddle_serving
+} // namespace baidu
diff --git a/deploy/pdserving/imgs/pipeline_result.png b/deploy/pdserving/imgs/pipeline_result.png
new file mode 100644
index 0000000000000000000000000000000000000000..ba7f24a2cce6e1fa9889b175fe83a5944e8b7c67
Binary files /dev/null and b/deploy/pdserving/imgs/pipeline_result.png differ
diff --git a/deploy/pdserving/ocr_cpp_client.py b/deploy/pdserving/ocr_cpp_client.py
index 2baa7565ac78b9551c788c7b36457bce38828eb5..cb42943923879d1138e065881a15da893a505083 100755
--- a/deploy/pdserving/ocr_cpp_client.py
+++ b/deploy/pdserving/ocr_cpp_client.py
@@ -45,10 +45,8 @@ for img_file in os.listdir(test_img_dir):
image_data = file.read()
image = cv2_to_base64(image_data)
res_list = []
- #print(image)
fetch_map = client.predict(
feed={"x": image}, fetch=["save_infer_model/scale_0.tmp_1"], batch=True)
- print("fetrch map:", fetch_map)
one_batch_res = ocr_reader.postprocess(fetch_map, with_score=True)
for res in one_batch_res:
res_list.append(res[0])
diff --git a/deploy/pdserving/pipeline_http_client.py b/deploy/pdserving/pipeline_http_client.py
index 61d13178220118eaf53c51723a9ef65201373ffb..7bc4d882e5039640e138f3e634b2c33fc6a8e48c 100644
--- a/deploy/pdserving/pipeline_http_client.py
+++ b/deploy/pdserving/pipeline_http_client.py
@@ -34,12 +34,28 @@ test_img_dir = args.image_dir
for idx, img_file in enumerate(os.listdir(test_img_dir)):
with open(os.path.join(test_img_dir, img_file), 'rb') as file:
image_data1 = file.read()
+ # print file name
+ print('{}{}{}'.format('*' * 10, img_file, '*' * 10))
image = cv2_to_base64(image_data1)
- for i in range(1):
- data = {"key": ["image"], "value": [image]}
- r = requests.post(url=url, data=json.dumps(data))
- print(r.json())
-
+ data = {"key": ["image"], "value": [image]}
+ r = requests.post(url=url, data=json.dumps(data))
+ result = r.json()
+ print("erro_no:{}, err_msg:{}".format(result["err_no"], result["err_msg"]))
+ # check success
+ if result["err_no"] == 0:
+ ocr_result = result["value"][0]
+ try:
+ for item in eval(ocr_result):
+ # return transcription and points
+ print("{}, {}".format(item[0], item[1]))
+ except Exception as e:
+ print("No results")
+ continue
+
+ else:
+ print(
+ "For details about error message, see PipelineServingLogs/pipeline.log"
+ )
print("==> total number of test imgs: ", len(os.listdir(test_img_dir)))
diff --git a/deploy/pdserving/web_service.py b/deploy/pdserving/web_service.py
index b97c6e1f564a61bb9792542b9e9f1e88d782e80d..07fd6102beaef4001f87574a2f0631e2b1012613 100644
--- a/deploy/pdserving/web_service.py
+++ b/deploy/pdserving/web_service.py
@@ -15,6 +15,7 @@ from paddle_serving_server.web_service import WebService, Op
import logging
import numpy as np
+import copy
import cv2
import base64
# from paddle_serving_app.reader import OCRReader
@@ -36,7 +37,7 @@ class DetOp(Op):
self.filter_func = FilterBoxes(10, 10)
self.post_func = DBPostProcess({
"thresh": 0.3,
- "box_thresh": 0.5,
+ "box_thresh": 0.6,
"max_candidates": 1000,
"unclip_ratio": 1.5,
"min_size": 3
@@ -79,8 +80,10 @@ class RecOp(Op):
raw_im = input_dict["image"]
data = np.frombuffer(raw_im, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
- dt_boxes = input_dict["dt_boxes"]
- dt_boxes = self.sorted_boxes(dt_boxes)
+ self.dt_list = input_dict["dt_boxes"]
+ self.dt_list = self.sorted_boxes(self.dt_list)
+ # deepcopy to save origin dt_boxes
+ dt_boxes = copy.deepcopy(self.dt_list)
feed_list = []
img_list = []
max_wh_ratio = 0
@@ -126,25 +129,29 @@ class RecOp(Op):
imgs[id] = norm_img
feed = {"x": imgs.copy()}
feed_list.append(feed)
-
return feed_list, False, None, ""
def postprocess(self, input_dicts, fetch_data, data_id, log_id):
- res_list = []
+ rec_list = []
+ dt_num = len(self.dt_list)
if isinstance(fetch_data, dict):
if len(fetch_data) > 0:
rec_batch_res = self.ocr_reader.postprocess(
fetch_data, with_score=True)
for res in rec_batch_res:
- res_list.append(res[0])
+ rec_list.append(res)
elif isinstance(fetch_data, list):
for one_batch in fetch_data:
one_batch_res = self.ocr_reader.postprocess(
one_batch, with_score=True)
for res in one_batch_res:
- res_list.append(res[0])
-
- res = {"res": str(res_list)}
+ rec_list.append(res)
+ result_list = []
+ for i in range(dt_num):
+ text = rec_list[i]
+ dt_box = self.dt_list[i]
+ result_list.append([text, dt_box.tolist()])
+ res = {"result": str(result_list)}
return res, None, ""