diff --git a/deploy/pdserving/README.md b/deploy/pdserving/README.md index 07b019280ae160f9b9e3c98713c7a34e924d8a9e..d3ba7d4cfbabb111831a6ecbce28c1ac352066fe 100644 --- a/deploy/pdserving/README.md +++ b/deploy/pdserving/README.md @@ -36,7 +36,6 @@ PaddleOCR operating environment and Paddle Serving operating environment are nee 1. Please prepare PaddleOCR operating environment reference [link](../../doc/doc_ch/installation.md). Download the corresponding paddlepaddle whl package according to the environment, it is recommended to install version 2.2.2. - 2. The steps of PaddleServing operating environment prepare are as follows: @@ -194,6 +193,52 @@ The recognition model is the same. 2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0] ``` +## C++ Serving + +Service deployment based on python obviously has the advantage of convenient secondary development. However, the real application often needs to pursue better performance. PaddleServing also provides a more performant C++ deployment version. + +The C++ service deployment is the same as python in the environment setup and data preparation stages, the difference is when the service is started and the client sends requests. + +| Language | Speed ​​| Secondary development | Do you need to compile | +|-----|-----|---------|------------| +| C++ | fast | Slightly difficult | Single model prediction does not need to be compiled, multi-model concatenation needs to be compiled | +| python | general | easy | single-model/multi-model no compilation required | + +1. Compile Serving + + To improve predictive performance, C++ services also provide multiple model concatenation services. Unlike Python Pipeline services, multiple model concatenation requires the pre - and post-model processing code to be written on the server side, so local recompilation is required to generate serving. Specific may refer to the official document: [how to compile Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_EN.md) + +2. Run the following command to start the service. + ``` + # Start the service and save the running log in log.txt + python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt & + ``` + After the service is successfully started, a log similar to the following will be printed in log.txt + ![](./imgs/start_server.png) + +3. Send service request + + Due to the need for pre and post-processing in the C++Server part, in order to speed up the input to the C++Server is only the base64 encoded string of the picture, it needs to be manually modified + Change the feed_type field and shape field in ppocrv2_det_client/serving_client_conf.prototxt to the following: + + ``` + feed_var { + name: "x" + alias_name: "x" + is_lod_tensor: false + feed_type: 20 + shape: 1 + } + ``` + + start the client: + + ``` + python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client + ``` + After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is: + ![](./imgs/results.png) + ## WINDOWS Users Windows does not support Pipeline Serving, if we want to lauch paddle serving on Windows, we should use Web Service, for more infomation please refer to [Paddle Serving for Windows Users](https://github.com/PaddlePaddle/Serving/blob/develop/doc/Windows_Tutorial_EN.md) diff --git a/deploy/pdserving/README_CN.md b/deploy/pdserving/README_CN.md index afd355bac098a3c13c36476e2967d8f94e8cd306..7d6169569f92d927312ec6ba8ff667d613c4bfa7 100644 --- a/deploy/pdserving/README_CN.md +++ b/deploy/pdserving/README_CN.md @@ -6,6 +6,7 @@ PaddleOCR提供2种服务部署方式: - 基于PaddleHub Serving的部署:代码路径为"`./deploy/hubserving`",使用方法参考[文档](../../deploy/hubserving/readme.md); - 基于PaddleServing的部署:代码路径为"`./deploy/pdserving`",按照本教程使用。 + # 基于PaddleServing的服务部署 本文档将介绍如何使用[PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)工具部署PP-OCR动态图模型的pipeline在线服务。 @@ -17,6 +18,8 @@ PaddleOCR提供2种服务部署方式: 更多有关PaddleServing服务化部署框架介绍和使用教程参考[文档](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)。 +AIStudio演示案例可参考 [基于PaddleServing的OCR服务化部署实战](https://aistudio.baidu.com/aistudio/projectdetail/3630726)。 + ## 目录 - [环境准备](#环境准备) - [模型转换](#模型转换) @@ -30,7 +33,6 @@ PaddleOCR提供2种服务部署方式: 需要准备PaddleOCR的运行环境和Paddle Serving的运行环境。 - 准备PaddleOCR的运行环境[链接](../../doc/doc_ch/installation.md) - 根据环境下载对应的paddlepaddle whl包,推荐安装2.2.2版本 - 准备PaddleServing的运行环境,步骤如下 @@ -106,7 +108,7 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \ 1. 下载PaddleOCR代码,若已下载可跳过此步骤 ``` git clone https://github.com/PaddlePaddle/PaddleOCR - + # 进入到工作目录 cd PaddleOCR/deploy/pdserving/ ``` @@ -132,7 +134,7 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \ python3 pipeline_http_client.py ``` 成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为: - ![](./imgs/results.png) + ![](./imgs/pipeline_result.png) 调整 config.yml 中的并发个数获得最大的QPS, 一般检测和识别的并发数为2:1 ``` @@ -187,6 +189,73 @@ python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \ 2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0] ``` + +## Paddle Serving C++ 部署 + +基于python的服务部署,显然具有二次开发便捷的优势,然而真正落地应用,往往需要追求更优的性能。PaddleServing 也提供了性能更优的C++部署版本。 + +C++ 服务部署在环境搭建和数据准备阶段与 python 相同,区别在于启动服务和客户端发送请求时不同。 + +| 语言 | 速度 | 二次开发 | 是否需要编译 | +|-----|-----|---------|------------| +| C++ | 很快 | 略有难度 | 单模型预测无需编译,多模型串联需要编译 | +| python | 一般 | 容易 | 单模型/多模型 均无需编译| + +1. 准备 Serving 环境 + +为了提高预测性能,C++ 服务同样提供了多模型串联服务。与python pipeline服务不同,多模型串联的过程中需要将模型前后处理代码写在服务端,因此需要在本地重新编译生成serving。 + +首先需要下载Serving代码库, 把OCR文本检测预处理相关代码替换到Serving库中 +``` +git clone https://github.com/PaddlePaddle/Serving + +cp -rf general_detection_op.cpp Serving/core/general-server/op + +``` + +具体可参考官方文档:[如何编译Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_CN.md),注意需要开启 WITH_OPENCV 选项。 + +完成编译后,注意要安装编译出的三个whl包,并设置SERVING_BIN环境变量。 + +2. 启动服务可运行如下命令: + +一个服务启动两个模型串联,只需要在--model后依次按顺序传入模型文件夹的相对路径,且需要在--op后依次传入自定义C++OP类名称: + + ``` + # 启动服务,运行日志保存在log.txt + python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt & + ``` + 成功启动服务后,log.txt中会打印类似如下日志 + ![](./imgs/start_server.png) + +3. 发送服务请求: + + 由于需要在C++Server部分进行前后处理,为了加速传入C++Server的仅仅是图片的base64编码的字符串,故需要手动修改 + ppocrv2_det_client/serving_client_conf.prototxt 中 feed_type 字段 和 shape 字段,修改成如下内容: + ``` + feed_var { + name: "x" + alias_name: "x" + is_lod_tensor: false + feed_type: 20 + shape: 1 + } + ``` + 启动客户端 + ``` + python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client + ``` + + 成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为: + ![](./imgs/results.png) + + 在浏览器中输入服务器 ip:端口号,可以看到当前服务的实时QPS。(端口号范围需要是8000-9000) + + 在200张真实图片上测试,把检测长边限制为960。T4 GPU 上 QPS 峰值可达到51左右,约为pipeline的 2.12 倍。 + + ![](./imgs/c++_qps.png) + + ## Windows用户 diff --git a/deploy/pdserving/general_detection_op.cpp b/deploy/pdserving/general_detection_op.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7d9182950b77148008a638d011b17267eaea5b61 --- /dev/null +++ b/deploy/pdserving/general_detection_op.cpp @@ -0,0 +1,367 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "core/general-server/op/general_detection_op.h" +#include "core/predictor/framework/infer.h" +#include "core/predictor/framework/memory.h" +#include "core/predictor/framework/resource.h" +#include "core/util/include/timer.h" +#include +#include +#include +#include + +/* +#include "opencv2/imgcodecs/legacy/constants_c.h" +#include "opencv2/imgproc/types_c.h" +*/ + +namespace baidu { +namespace paddle_serving { +namespace serving { + +using baidu::paddle_serving::Timer; +using baidu::paddle_serving::predictor::MempoolWrapper; +using baidu::paddle_serving::predictor::general_model::Tensor; +using baidu::paddle_serving::predictor::general_model::Response; +using baidu::paddle_serving::predictor::general_model::Request; +using baidu::paddle_serving::predictor::InferManager; +using baidu::paddle_serving::predictor::PaddleGeneralModelConfig; + +int GeneralDetectionOp::inference() { + VLOG(2) << "Going to run inference"; + const std::vector pre_node_names = pre_names(); + if (pre_node_names.size() != 1) { + LOG(ERROR) << "This op(" << op_name() + << ") can only have one predecessor op, but received " + << pre_node_names.size(); + return -1; + } + const std::string pre_name = pre_node_names[0]; + + const GeneralBlob *input_blob = get_depend_argument(pre_name); + if (!input_blob) { + LOG(ERROR) << "input_blob is nullptr,error"; + return -1; + } + uint64_t log_id = input_blob->GetLogId(); + VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name; + + GeneralBlob *output_blob = mutable_data(); + if (!output_blob) { + LOG(ERROR) << "output_blob is nullptr,error"; + return -1; + } + output_blob->SetLogId(log_id); + + if (!input_blob) { + LOG(ERROR) << "(logid=" << log_id + << ") Failed mutable depended argument, op:" << pre_name; + return -1; + } + + const TensorVector *in = &input_blob->tensor_vector; + TensorVector *out = &output_blob->tensor_vector; + + int batch_size = input_blob->_batch_size; + VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size; + + output_blob->_batch_size = batch_size; + + std::vector input_shape; + int in_num = 0; + void *databuf_data = NULL; + char *databuf_char = NULL; + size_t databuf_size = 0; + // now only support single string + char *total_input_ptr = static_cast(in->at(0).data.data()); + std::string base64str = total_input_ptr; + + float ratio_h{}; + float ratio_w{}; + + cv::Mat img = Base2Mat(base64str); + cv::Mat srcimg; + cv::Mat resize_img; + + cv::Mat resize_img_rec; + cv::Mat crop_img; + img.copyTo(srcimg); + + this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w, + this->use_tensorrt_); + + this->normalize_op_.Run(&resize_img, this->mean_det, this->scale_det, + this->is_scale_); + + std::vector input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f); + this->permute_op_.Run(&resize_img, input.data()); + + TensorVector *real_in = new TensorVector(); + if (!real_in) { + LOG(ERROR) << "real_in is nullptr,error"; + return -1; + } + + for (int i = 0; i < in->size(); ++i) { + input_shape = {1, 3, resize_img.rows, resize_img.cols}; + in_num = std::accumulate(input_shape.begin(), input_shape.end(), 1, + std::multiplies()); + databuf_size = in_num * sizeof(float); + databuf_data = MempoolWrapper::instance().malloc(databuf_size); + if (!databuf_data) { + LOG(ERROR) << "Malloc failed, size: " << databuf_size; + return -1; + } + memcpy(databuf_data, input.data(), databuf_size); + databuf_char = reinterpret_cast(databuf_data); + paddle::PaddleBuf paddleBuf(databuf_char, databuf_size); + paddle::PaddleTensor tensor_in; + tensor_in.name = in->at(i).name; + tensor_in.dtype = paddle::PaddleDType::FLOAT32; + tensor_in.shape = {1, 3, resize_img.rows, resize_img.cols}; + tensor_in.lod = in->at(i).lod; + tensor_in.data = paddleBuf; + real_in->push_back(tensor_in); + } + + Timer timeline; + int64_t start = timeline.TimeStampUS(); + timeline.Start(); + + if (InferManager::instance().infer(engine_name().c_str(), real_in, out, + batch_size)) { + LOG(ERROR) << "(logid=" << log_id + << ") Failed do infer in fluid model: " << engine_name().c_str(); + return -1; + } + delete real_in; + + std::vector output_shape; + int out_num = 0; + void *databuf_data_out = NULL; + char *databuf_char_out = NULL; + size_t databuf_size_out = 0; + // this is special add for PaddleOCR postprecess + int infer_outnum = out->size(); + for (int k = 0; k < infer_outnum; ++k) { + int n2 = out->at(k).shape[2]; + int n3 = out->at(k).shape[3]; + int n = n2 * n3; + + float *out_data = static_cast(out->at(k).data.data()); + std::vector pred(n, 0.0); + std::vector cbuf(n, ' '); + + for (int i = 0; i < n; i++) { + pred[i] = float(out_data[i]); + cbuf[i] = (unsigned char)((out_data[i]) * 255); + } + + cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char *)cbuf.data()); + cv::Mat pred_map(n2, n3, CV_32F, (float *)pred.data()); + + const double threshold = this->det_db_thresh_ * 255; + const double maxvalue = 255; + cv::Mat bit_map; + cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY); + cv::Mat dilation_map; + cv::Mat dila_ele = + cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2)); + cv::dilate(bit_map, dilation_map, dila_ele); + boxes = post_processor_.BoxesFromBitmap(pred_map, dilation_map, + this->det_db_box_thresh_, + this->det_db_unclip_ratio_); + + boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg); + + float max_wh_ratio = 0.0f; + std::vector crop_imgs; + std::vector resize_imgs; + int max_resize_w = 0; + int max_resize_h = 0; + int box_num = boxes.size(); + std::vector> output_rec; + for (int i = 0; i < box_num; ++i) { + cv::Mat line_img = GetRotateCropImage(img, boxes[i]); + float wh_ratio = float(line_img.cols) / float(line_img.rows); + max_wh_ratio = max_wh_ratio > wh_ratio ? max_wh_ratio : wh_ratio; + crop_imgs.push_back(line_img); + } + + for (int i = 0; i < box_num; ++i) { + cv::Mat resize_img; + crop_img = crop_imgs[i]; + this->resize_op_rec.Run(crop_img, resize_img, max_wh_ratio, + this->use_tensorrt_); + + this->normalize_op_.Run(&resize_img, this->mean_rec, this->scale_rec, + this->is_scale_); + + max_resize_w = std::max(max_resize_w, resize_img.cols); + max_resize_h = std::max(max_resize_h, resize_img.rows); + resize_imgs.push_back(resize_img); + } + int buf_size = 3 * max_resize_h * max_resize_w; + output_rec = std::vector>( + box_num, std::vector(buf_size, 0.0f)); + for (int i = 0; i < box_num; ++i) { + resize_img_rec = resize_imgs[i]; + + this->permute_op_.Run(&resize_img_rec, output_rec[i].data()); + } + + // Inference. + output_shape = {box_num, 3, max_resize_h, max_resize_w}; + out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1, + std::multiplies()); + databuf_size_out = out_num * sizeof(float); + databuf_data_out = MempoolWrapper::instance().malloc(databuf_size_out); + if (!databuf_data_out) { + LOG(ERROR) << "Malloc failed, size: " << databuf_size_out; + return -1; + } + int offset = buf_size * sizeof(float); + for (int i = 0; i < box_num; ++i) { + memcpy(databuf_data_out + i * offset, output_rec[i].data(), offset); + } + databuf_char_out = reinterpret_cast(databuf_data_out); + paddle::PaddleBuf paddleBuf(databuf_char_out, databuf_size_out); + paddle::PaddleTensor tensor_out; + tensor_out.name = "x"; + tensor_out.dtype = paddle::PaddleDType::FLOAT32; + tensor_out.shape = output_shape; + tensor_out.data = paddleBuf; + out->push_back(tensor_out); + } + out->erase(out->begin(), out->begin() + infer_outnum); + + int64_t end = timeline.TimeStampUS(); + CopyBlobInfo(input_blob, output_blob); + AddBlobInfo(output_blob, start); + AddBlobInfo(output_blob, end); + return 0; +} + +cv::Mat GeneralDetectionOp::Base2Mat(std::string &base64_data) { + cv::Mat img; + std::string s_mat; + s_mat = base64Decode(base64_data.data(), base64_data.size()); + std::vector base64_img(s_mat.begin(), s_mat.end()); + img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR + return img; +} + +std::string GeneralDetectionOp::base64Decode(const char *Data, int DataByte) { + const char DecodeTable[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, + 62, // '+' + 0, 0, 0, + 63, // '/' + 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9' + 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z' + 0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, + 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z' + }; + + std::string strDecode; + int nValue; + int i = 0; + while (i < DataByte) { + if (*Data != '\r' && *Data != '\n') { + nValue = DecodeTable[*Data++] << 18; + nValue += DecodeTable[*Data++] << 12; + strDecode += (nValue & 0x00FF0000) >> 16; + if (*Data != '=') { + nValue += DecodeTable[*Data++] << 6; + strDecode += (nValue & 0x0000FF00) >> 8; + if (*Data != '=') { + nValue += DecodeTable[*Data++]; + strDecode += nValue & 0x000000FF; + } + } + i += 4; + } else // 回车换行,跳过 + { + Data++; + i++; + } + } + return strDecode; +} + +cv::Mat +GeneralDetectionOp::GetRotateCropImage(const cv::Mat &srcimage, + std::vector> box) { + cv::Mat image; + srcimage.copyTo(image); + std::vector> points = box; + + int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]}; + int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]}; + int left = int(*std::min_element(x_collect, x_collect + 4)); + int right = int(*std::max_element(x_collect, x_collect + 4)); + int top = int(*std::min_element(y_collect, y_collect + 4)); + int bottom = int(*std::max_element(y_collect, y_collect + 4)); + + cv::Mat img_crop; + image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop); + + for (int i = 0; i < points.size(); i++) { + points[i][0] -= left; + points[i][1] -= top; + } + + int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) + + pow(points[0][1] - points[1][1], 2))); + int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) + + pow(points[0][1] - points[3][1], 2))); + + cv::Point2f pts_std[4]; + pts_std[0] = cv::Point2f(0., 0.); + pts_std[1] = cv::Point2f(img_crop_width, 0.); + pts_std[2] = cv::Point2f(img_crop_width, img_crop_height); + pts_std[3] = cv::Point2f(0.f, img_crop_height); + + cv::Point2f pointsf[4]; + pointsf[0] = cv::Point2f(points[0][0], points[0][1]); + pointsf[1] = cv::Point2f(points[1][0], points[1][1]); + pointsf[2] = cv::Point2f(points[2][0], points[2][1]); + pointsf[3] = cv::Point2f(points[3][0], points[3][1]); + + cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std); + + cv::Mat dst_img; + cv::warpPerspective(img_crop, dst_img, M, + cv::Size(img_crop_width, img_crop_height), + cv::BORDER_REPLICATE); + + if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) { + cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth()); + cv::transpose(dst_img, srcCopy); + cv::flip(srcCopy, srcCopy, 0); + return srcCopy; + } else { + return dst_img; + } +} + +DEFINE_OP(GeneralDetectionOp); + +} // namespace serving +} // namespace paddle_serving +} // namespace baidu diff --git a/deploy/pdserving/imgs/pipeline_result.png b/deploy/pdserving/imgs/pipeline_result.png new file mode 100644 index 0000000000000000000000000000000000000000..ba7f24a2cce6e1fa9889b175fe83a5944e8b7c67 Binary files /dev/null and b/deploy/pdserving/imgs/pipeline_result.png differ diff --git a/deploy/pdserving/ocr_cpp_client.py b/deploy/pdserving/ocr_cpp_client.py index 2baa7565ac78b9551c788c7b36457bce38828eb5..cb42943923879d1138e065881a15da893a505083 100755 --- a/deploy/pdserving/ocr_cpp_client.py +++ b/deploy/pdserving/ocr_cpp_client.py @@ -45,10 +45,8 @@ for img_file in os.listdir(test_img_dir): image_data = file.read() image = cv2_to_base64(image_data) res_list = [] - #print(image) fetch_map = client.predict( feed={"x": image}, fetch=["save_infer_model/scale_0.tmp_1"], batch=True) - print("fetrch map:", fetch_map) one_batch_res = ocr_reader.postprocess(fetch_map, with_score=True) for res in one_batch_res: res_list.append(res[0]) diff --git a/deploy/pdserving/pipeline_http_client.py b/deploy/pdserving/pipeline_http_client.py index 61d13178220118eaf53c51723a9ef65201373ffb..7bc4d882e5039640e138f3e634b2c33fc6a8e48c 100644 --- a/deploy/pdserving/pipeline_http_client.py +++ b/deploy/pdserving/pipeline_http_client.py @@ -34,12 +34,28 @@ test_img_dir = args.image_dir for idx, img_file in enumerate(os.listdir(test_img_dir)): with open(os.path.join(test_img_dir, img_file), 'rb') as file: image_data1 = file.read() + # print file name + print('{}{}{}'.format('*' * 10, img_file, '*' * 10)) image = cv2_to_base64(image_data1) - for i in range(1): - data = {"key": ["image"], "value": [image]} - r = requests.post(url=url, data=json.dumps(data)) - print(r.json()) - + data = {"key": ["image"], "value": [image]} + r = requests.post(url=url, data=json.dumps(data)) + result = r.json() + print("erro_no:{}, err_msg:{}".format(result["err_no"], result["err_msg"])) + # check success + if result["err_no"] == 0: + ocr_result = result["value"][0] + try: + for item in eval(ocr_result): + # return transcription and points + print("{}, {}".format(item[0], item[1])) + except Exception as e: + print("No results") + continue + + else: + print( + "For details about error message, see PipelineServingLogs/pipeline.log" + ) print("==> total number of test imgs: ", len(os.listdir(test_img_dir))) diff --git a/deploy/pdserving/web_service.py b/deploy/pdserving/web_service.py index b97c6e1f564a61bb9792542b9e9f1e88d782e80d..07fd6102beaef4001f87574a2f0631e2b1012613 100644 --- a/deploy/pdserving/web_service.py +++ b/deploy/pdserving/web_service.py @@ -15,6 +15,7 @@ from paddle_serving_server.web_service import WebService, Op import logging import numpy as np +import copy import cv2 import base64 # from paddle_serving_app.reader import OCRReader @@ -36,7 +37,7 @@ class DetOp(Op): self.filter_func = FilterBoxes(10, 10) self.post_func = DBPostProcess({ "thresh": 0.3, - "box_thresh": 0.5, + "box_thresh": 0.6, "max_candidates": 1000, "unclip_ratio": 1.5, "min_size": 3 @@ -79,8 +80,10 @@ class RecOp(Op): raw_im = input_dict["image"] data = np.frombuffer(raw_im, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) - dt_boxes = input_dict["dt_boxes"] - dt_boxes = self.sorted_boxes(dt_boxes) + self.dt_list = input_dict["dt_boxes"] + self.dt_list = self.sorted_boxes(self.dt_list) + # deepcopy to save origin dt_boxes + dt_boxes = copy.deepcopy(self.dt_list) feed_list = [] img_list = [] max_wh_ratio = 0 @@ -126,25 +129,29 @@ class RecOp(Op): imgs[id] = norm_img feed = {"x": imgs.copy()} feed_list.append(feed) - return feed_list, False, None, "" def postprocess(self, input_dicts, fetch_data, data_id, log_id): - res_list = [] + rec_list = [] + dt_num = len(self.dt_list) if isinstance(fetch_data, dict): if len(fetch_data) > 0: rec_batch_res = self.ocr_reader.postprocess( fetch_data, with_score=True) for res in rec_batch_res: - res_list.append(res[0]) + rec_list.append(res) elif isinstance(fetch_data, list): for one_batch in fetch_data: one_batch_res = self.ocr_reader.postprocess( one_batch, with_score=True) for res in one_batch_res: - res_list.append(res[0]) - - res = {"res": str(res_list)} + rec_list.append(res) + result_list = [] + for i in range(dt_num): + text = rec_list[i] + dt_box = self.dt_list[i] + result_list.append([text, dt_box.tolist()]) + res = {"result": str(result_list)} return res, None, ""