diff --git a/deploy/slim/quantization/README.md b/deploy/slim/quantization/README.md
index f7d87c83602f69ada46b35e7d63260fe8bc6e055..d1aa3d71e5254cf6b5b2be7fdf6943903d42fafd 100755
--- a/deploy/slim/quantization/README.md
+++ b/deploy/slim/quantization/README.md
@@ -1,21 +1,148 @@
> 运行示例前请先安装1.2.0或更高版本PaddleSlim
+
# 模型量化压缩教程
+压缩结果:
+
+
+
+ 序号 |
+ 任务 |
+ 模型 |
+ 压缩策略 |
+ 精度(自建中文数据集) |
+ 耗时(ms) |
+ 整体耗时(ms) |
+ 加速比 |
+ 整体模型大小(M) |
+ 压缩比例 |
+ 下载链接 |
+
+
+
+
+ 0 |
+ 检测 |
+ MobileNetV3_DB |
+ 无 |
+ 61.7 |
+ 224 |
+ 375 |
+ - |
+ 8.6 |
+ - |
+ |
+
+
+ 识别 |
+ MobileNetV3_CRNN |
+ 无 |
+ 62.0 |
+ 9.52 |
+ |
+
+
+ 1 |
+ 检测 |
+ SlimTextDet |
+ PACT量化训练 |
+ 62.1 |
+ 195 |
+ 348 |
+ 8% |
+ 2.8 |
+ 67.82% |
+ |
+
+
+ 识别 |
+ SlimTextRec |
+ PACT量化训练 |
+ 61.48 |
+ 8.6 |
+ |
+
+
+ 2 |
+ 检测 |
+ SlimTextDet_quat_pruning |
+ 剪裁+PACT量化训练 |
+ 60.86 |
+ 142 |
+ 288 |
+ 30% |
+ 2.8 |
+ 67.82% |
+ |
+
+
+ 识别 |
+ SlimTextRec |
+ PACT量化训练 |
+ 61.48 |
+ 8.6 |
+ |
+
+
+ 3 |
+ 检测 |
+ SlimTextDet_pruning |
+ 剪裁 |
+ 61.57 |
+ 138 |
+ 295 |
+ 27% |
+ 2.9 |
+ 66.28% |
+ |
+
+
+ 识别 |
+ SlimTextRec |
+ PACT量化训练 |
+ 61.48 |
+ 8.6 |
+ |
+
+
+
+
+
+
## 概述
+复杂的模型有利于提高模型的性能,但也导致模型中存在一定冗余,模型量化将全精度缩减到定点数减少这种冗余,达到减少模型计算复杂度,提高模型推理性能的目的。
+
该示例使用PaddleSlim提供的[量化压缩API](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/)对OCR模型进行压缩。
在阅读该示例前,建议您先了解以下内容:
- [OCR模型的常规训练方法](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/detection.md)
-- [PaddleSlim使用文档](https://paddlepaddle.github.io/PaddleSlim/)
+- [PaddleSlim使用文档](https://paddleslim.readthedocs.io/zh_CN/latest/index.html)
+
+
## 安装PaddleSlim
-可按照[PaddleSlim使用文档](https://paddlepaddle.github.io/PaddleSlim/)中的步骤安装PaddleSlim。
+```bash
+git clone https://github.com/PaddlePaddle/PaddleSlim.git
+
+cd Paddleslim
+
+python setup.py install
+```
+
+
+
+## 获取预训练模型
+
+[识别预训练模型下载地址]()
+
+[检测预训练模型下载地址]()
## 量化训练
+加载预训练模型后,在定义好量化策略后即可对模型进行量化。量化相关功能的使用具体细节见:[模型量化](https://paddleslim.readthedocs.io/zh_CN/latest/api_cn/quantization_api.html)
进入PaddleOCR根目录,通过以下命令对模型进行量化:
@@ -25,10 +152,11 @@ python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global
+
## 导出模型
在得到量化训练保存的模型后,我们可以将其导出为inference_model,用于预测部署:
```bash
-python deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=output/quant_model/best_accuracy Global.save_model_dir=./output/quant_model
+python deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=output/quant_model/best_accuracy Global.save_model_dir=./output/quant_inference_model
```
diff --git a/deploy/slim/quantization/README_en.md b/deploy/slim/quantization/README_en.md
new file mode 100755
index 0000000000000000000000000000000000000000..4b8a2b23a254b143cd230c81a7e433d251e10ff2
--- /dev/null
+++ b/deploy/slim/quantization/README_en.md
@@ -0,0 +1,167 @@
+\> PaddleSlim 1.2.0 or higher version should be installed before runing this example.
+
+
+
+# Model compress tutorial (Quantization)
+
+Compress results:
+
+
+
+ ID |
+ Task |
+ Model |
+ Compress Strategy |
+ Criterion(Chinese dataset) |
+ Inference Time(ms) |
+ Inference Time(Total model)(ms) |
+ Acceleration Ratio |
+ Model Size(MB) |
+ Commpress Ratio |
+ Download Link |
+
+
+
+
+ 0 |
+ Detection |
+ MobileNetV3_DB |
+ None |
+ 61.7 |
+ 224 |
+ 375 |
+ - |
+ 8.6 |
+ - |
+ |
+
+
+ Recognition |
+ MobileNetV3_CRNN |
+ None |
+ 62.0 |
+ 9.52 |
+ |
+
+
+ 1 |
+ Detection |
+ SlimTextDet |
+ PACT Quant Aware Training |
+ 62.1 |
+ 195 |
+ 348 |
+ 8% |
+ 2.8 |
+ 67.82% |
+ |
+
+
+ Recognition |
+ SlimTextRec |
+ PACT Quant Aware Training |
+ 61.48 |
+ 8.6 |
+ |
+
+
+ 2 |
+ Detection |
+ SlimTextDet_quat_pruning |
+ Pruning+PACT Quant Aware Training |
+ 60.86 |
+ 142 |
+ 288 |
+ 30% |
+ 2.8 |
+ 67.82% |
+ |
+
+
+ Recognition |
+ SlimTextRec |
+ PPACT Quant Aware Training |
+ 61.48 |
+ 8.6 |
+ |
+
+
+ 3 |
+ Detection |
+ SlimTextDet_pruning |
+ Pruning |
+ 61.57 |
+ 138 |
+ 295 |
+ 27% |
+ 2.9 |
+ 66.28% |
+ |
+
+
+ Recognition |
+ SlimTextRec |
+ PACT Quant Aware Training |
+ 61.48 |
+ 8.6 |
+ |
+
+
+
+
+
+
+## Overview
+
+Generally, a more complex model would achive better performance in the task, but it also leads to some redundancy in the model. Quantization is a technique that reduces this redundancyby reducing the full precision data to a fixed number, so as to reduce model calculation complexity and improve model inference performance.
+
+This example uses PaddleSlim provided [APIs of Quantization](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/) to compress the OCR model.
+
+It is recommended that you could understand following pages before reading this example,:
+
+
+
+- [The training strategy of OCR model](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/detection.md)
+
+- [PaddleSlim Document](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/)
+
+
+
+## Install PaddleSlim
+
+```bash
+git clone https://github.com/PaddlePaddle/PaddleSlim.git
+
+cd Paddleslim
+
+python setup.py install
+
+```
+
+
+## Download Pretrain Model
+
+[Download link of Detection pretrain model]()
+
+[Download link of recognization pretrain model]()
+
+
+## Quan-Aware Training
+
+After loading the pre training model, the model can be quantified after defining the quantization strategy. For specific details of quantization method, see:[Model Quantization](https://paddleslim.readthedocs.io/zh_CN/latest/api_cn/quantization_api.html)
+
+Enter the PaddleOCR root directory,perform model quantization with the following command:
+
+```bash
+python deploy/slim/prune/sensitivity_anal.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./deploy/slim/prune/pretrain_models/det_mv3_db/best_accuracy Global.test_batch_size_per_card=1
+```
+
+
+
+## Export inference model
+
+After getting the model after pruning and finetuning we, can export it as inference_model for predictive deployment:
+
+```bash
+python deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=output/quant_model/best_accuracy Global.save_model_dir=./output/quant_inference_model
+```