未验证 提交 28cfb93d 编写于 作者: M MissPenguin 提交者: GitHub

Merge pull request #772 from MissPenguin/develop

update algorithm overview
...@@ -38,6 +38,14 @@ def read_params(): ...@@ -38,6 +38,14 @@ def read_params():
cfg.rec_char_dict_path = "./ppocr/utils/ppocr_keys_v1.txt" cfg.rec_char_dict_path = "./ppocr/utils/ppocr_keys_v1.txt"
cfg.use_space_char = True cfg.use_space_char = True
#params for text classifier
cfg.use_angle_cls = True
cfg.cls_model_dir = "./inference/ch_ppocr_mobile_v1.1_cls_infer/"
cfg.cls_image_shape = "3, 48, 192"
cfg.label_list = ['0', '180']
cfg.cls_batch_num = 30
cfg.cls_thresh = 0.9
cfg.use_zero_copy_run = False cfg.use_zero_copy_run = False
return cfg return cfg
...@@ -39,11 +39,12 @@ def read_params(): ...@@ -39,11 +39,12 @@ def read_params():
cfg.use_space_char = True cfg.use_space_char = True
#params for text classifier #params for text classifier
cfg.use_angle_cls = False cfg.use_angle_cls = True
cfg.cls_model_dir = "./inference/ch_ppocr_mobile-v1.1.cls_infer/" cfg.cls_model_dir = "./inference/ch_ppocr_mobile_v1.1_cls_infer/"
cfg.cls_image_shape = "3, 48, 192" cfg.cls_image_shape = "3, 48, 192"
cfg.label_list = ['0', '180'] cfg.label_list = ['0', '180']
cfg.cls_batch_num = 30 cfg.cls_batch_num = 30
cfg.cls_thresh = 0.9
cfg.use_zero_copy_run = False cfg.use_zero_copy_run = False
......
...@@ -38,8 +38,12 @@ SET PYTHONPATH=. ...@@ -38,8 +38,12 @@ SET PYTHONPATH=.
``` ```
### 2. 下载推理模型 ### 2. 下载推理模型
安装服务模块前,需要准备推理模型并放到正确路径。默认使用的是v1.1版的超轻量模型,默认检测模型路径为: 安装服务模块前,需要准备推理模型并放到正确路径。默认使用的是v1.1版的超轻量模型,默认模型路径为:
`./inference/ch_ppocr_mobile_v1.1_det_infer/`,识别模型路径为:`./inference/ch_ppocr_mobile_v1.1_rec_infer/` ```
检测模型:./inference/ch_ppocr_mobile_v1.1_det_infer/
识别模型:./inference/ch_ppocr_mobile_v1.1_rec_infer/
方向分类器:./inference/ch_ppocr_mobile_v1.1_cls_infer/
```
**模型路径可在`params.py`中查看和修改。** 更多模型可以从PaddleOCR提供的[模型库](../../doc/doc_ch/models_list.md)下载,也可以替换成自己训练转换好的模型。 **模型路径可在`params.py`中查看和修改。** 更多模型可以从PaddleOCR提供的[模型库](../../doc/doc_ch/models_list.md)下载,也可以替换成自己训练转换好的模型。
...@@ -173,7 +177,7 @@ hub serving start -c deploy/hubserving/ocr_system/config.json ...@@ -173,7 +177,7 @@ hub serving start -c deploy/hubserving/ocr_system/config.json
```hub serving stop --port/-p XXXX``` ```hub serving stop --port/-p XXXX```
- 2、 到相应的`module.py`和`params.py`等文件中根据实际需求修改代码。 - 2、 到相应的`module.py`和`params.py`等文件中根据实际需求修改代码。
例如,如果需要替换部署服务所用模型,则需要到`params.py`中修改模型路径参数`det_model_dir`和`rec_model_dir`,当然,同时可能还需要修改其他相关参数,请根据实际情况修改调试。 **强烈建议修改后先直接运行`module.py`调试,能正确运行预测后再启动服务测试。** 例如,如果需要替换部署服务所用模型,则需要到`params.py`中修改模型路径参数`det_model_dir`和`rec_model_dir`,如果需要关闭文本方向分类器,则将参数`use_angle_cls`置为`False`,当然,同时可能还需要修改其他相关参数,请根据实际情况修改调试。 **强烈建议修改后先直接运行`module.py`调试,能正确运行预测后再启动服务测试。**
- 3、 卸载旧服务包 - 3、 卸载旧服务包
```hub uninstall ocr_system``` ```hub uninstall ocr_system```
......
...@@ -39,7 +39,12 @@ SET PYTHONPATH=. ...@@ -39,7 +39,12 @@ SET PYTHONPATH=.
``` ```
### 2. Download inference model ### 2. Download inference model
Before installing the service module, you need to prepare the inference model and put it in the correct path. By default, the ultra lightweight model of v1.1 is used, and the default detection model path is: `./inference/ch_ppocr_mobile_v1.1_det_infer/`, the default recognition model path is: `./inference/ch_ppocr_mobile_v1.1_rec_infer/`. Before installing the service module, you need to prepare the inference model and put it in the correct path. By default, the ultra lightweight model of v1.1 is used, and the default model path is:
```
detection model: ./inference/ch_ppocr_mobile_v1.1_det_infer/
recognition model: ./inference/ch_ppocr_mobile_v1.1_rec_infer/
text direction classifier: ./inference/ch_ppocr_mobile_v1.1_cls_infer/
```
**The model path can be found and modified in `params.py`.** More models provided by PaddleOCR can be obtained from the [model library](../../doc/doc_en/models_list_en.md). You can also use models trained by yourself. **The model path can be found and modified in `params.py`.** More models provided by PaddleOCR can be obtained from the [model library](../../doc/doc_en/models_list_en.md). You can also use models trained by yourself.
...@@ -180,7 +185,7 @@ If you need to modify the service logic, the following steps are generally requi ...@@ -180,7 +185,7 @@ If you need to modify the service logic, the following steps are generally requi
hub serving stop --port/-p XXXX hub serving stop --port/-p XXXX
``` ```
- 2. Modify the code in the corresponding files, like `module.py` and `params.py`, according to the actual needs. - 2. Modify the code in the corresponding files, like `module.py` and `params.py`, according to the actual needs.
For example, if you need to replace the model used by the deployed service, you need to modify model path parameters `det_model_dir` and `rec_model_dir` in `params.py`. Of course, other related parameters may need to be modified at the same time. Please modify and debug according to the actual situation. It is suggested to run `module.py` directly for debugging after modification before starting the service test. For example, if you need to replace the model used by the deployed service, you need to modify model path parameters `det_model_dir` and `rec_model_dir` in `params.py`. If you want to turn off the text direction classifier, set the parameter `use_angle_cls` to `False`. Of course, other related parameters may need to be modified at the same time. Please modify and debug according to the actual situation. It is suggested to run `module.py` directly for debugging after modification before starting the service test.
- 3. Uninstall old service module - 3. Uninstall old service module
```shell ```shell
hub uninstall ocr_system hub uninstall ocr_system
......
<a name="算法介绍"></a> <a name="算法介绍"></a>
## 算法介绍 ## 算法介绍
本文给出了PaddleOCR已支持的文本检测算法和文本识别算法列表,以及每个算法在**英文公开数据集**上的模型和指标,主要用于算法简介和算法性能对比,更多包括中文在内的其他数据集上的模型请参考[PP-OCR v1.1 系列模型下载](./models_list.md)
- [1.文本检测算法](#文本检测算法) - [1.文本检测算法](#文本检测算法)
- [2.文本识别算法](#文本识别算法) - [2.文本识别算法](#文本识别算法)
...@@ -29,18 +31,9 @@ PaddleOCR开源的文本检测算法列表: ...@@ -29,18 +31,9 @@ PaddleOCR开源的文本检测算法列表:
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:[百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi) **说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:[百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
使用[LSVT](./datasets.md#1icdar2019-lsvt)街景数据集共3w张数据,训练中文检测模型的相关配置和预训练文件如下:
|模型|骨干网络|配置文件|预训练模型|
|-|-|-|-|
|超轻量中文模型|MobileNetV3|det_mv3_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
|通用中文OCR模型|ResNet50_vd|det_r50_vd_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
* 注: 上述DB模型的训练和评估,需设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化
PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训练/评估中的文本检测部分](./detection.md) PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训练/评估中的文本检测部分](./detection.md)
<a name="文本识别算法"></a> <a name="文本识别算法"></a>
### 2.文本识别算法 ### 2.文本识别算法
...@@ -68,11 +61,4 @@ PaddleOCR开源的文本识别算法列表: ...@@ -68,11 +61,4 @@ PaddleOCR开源的文本识别算法列表:
**说明:** SRN模型使用了数据扰动方法对上述提到对两个训练集进行增广,增广后的数据可以在[百度网盘](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA)上下载,提取码: y3ry。 **说明:** SRN模型使用了数据扰动方法对上述提到对两个训练集进行增广,增广后的数据可以在[百度网盘](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA)上下载,提取码: y3ry。
原始论文使用两阶段训练平均精度为89.74%,PaddleOCR中使用one-stage训练,平均精度为88.33%。两种预训练权重均在[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)中。 原始论文使用两阶段训练平均精度为89.74%,PaddleOCR中使用one-stage训练,平均精度为88.33%。两种预训练权重均在[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)中。
使用[LSVT](./datasets.md#1icdar2019-lsvt)街景数据集根据真值将图crop出来30w数据,进行位置校准。此外基于LSVT语料生成500w合成数据训练中文模型,相关配置和预训练文件如下:
|模型|骨干网络|配置文件|预训练模型|
|-|-|-|-|
|超轻量中文模型|MobileNetV3|rec_chinese_lite_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
|通用中文OCR模型|Resnet34_vd|rec_chinese_common_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md) PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)
<a name="Algorithm_introduction"></a>
## Algorithm introduction ## Algorithm introduction
[TOC] This tutorial lists the text detection algorithms and text recognition algorithms supported by PaddleOCR, as well as the models and metrics of each algorithm on **English public datasets**. It is mainly used for algorithm introduction and algorithm performance comparison. For more models on other datasets including Chinese, please refer to [PP-OCR v1.1 models list](./models_list_en.md).
<a name="TEXTDETECTIONALGORITHM"></a>
- [1. Text Detection Algorithm](#TEXTDETECTIONALGORITHM)
- [2. Text Recognition Algorithm](#TEXTRECOGNITIONALGORITHM)
<a name="TEXTDETECTIONALGORITHM"></a>
### 1. Text Detection Algorithm ### 1. Text Detection Algorithm
PaddleOCR open source text detection algorithms list: PaddleOCR open source text detection algorithms list:
...@@ -29,14 +33,6 @@ On Total-Text dataset, the text detection result is as follows: ...@@ -29,14 +33,6 @@ On Total-Text dataset, the text detection result is as follows:
**Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi). **Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi).
For use of [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) street view dataset with a total of 3w training data,the related configuration and pre-trained models for text detection task are as follows:
|Model|Backbone|Configuration file|Pre-trained model|
|-|-|-|-|
|ultra-lightweight OCR model|MobileNetV3|det_mv3_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
|General OCR model|ResNet50_vd|det_r50_vd_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
* Note: For the training and evaluation of the above DB model, post-processing parameters box_thresh=0.6 and unclip_ratio=1.5 need to be set. If using different datasets and different models for training, these two parameters can be adjusted for better result.
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md) For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
<a name="TEXTRECOGNITIONALGORITHM"></a> <a name="TEXTRECOGNITIONALGORITHM"></a>
...@@ -67,11 +63,4 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r ...@@ -67,11 +63,4 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
The average accuracy of the two-stage training in the original paper is 89.74%, and that of one stage training in paddleocr is 88.33%. Both pre-trained weights can be downloaded [here](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar). The average accuracy of the two-stage training in the original paper is 89.74%, and that of one stage training in paddleocr is 88.33%. Both pre-trained weights can be downloaded [here](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar).
We use [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) dataset and cropout 30w training data from original photos by using position groundtruth and make some calibration needed. In addition, based on the LSVT corpus, 500w synthetic data is generated to train the model. The related configuration and pre-trained models are as follows:
|Model|Backbone|Configuration file|Pre-trained model|
|-|-|-|-|
|ultra-lightweight OCR model|MobileNetV3|rec_chinese_lite_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)|
|General OCR model|Resnet34_vd|rec_chinese_common_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)|
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md) Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册