From 253c7d82b150eb748907b5596871ce5f29442d44 Mon Sep 17 00:00:00 2001 From: LDOUBLEV Date: Mon, 21 Feb 2022 19:40:26 +0800 Subject: [PATCH] benchmark --- benchmark/analysis.py | 346 +++++++++++++++++++++++++++++++++ benchmark/readme.md | 30 +++ benchmark/run_benchmark_det.sh | 61 ++++++ benchmark/run_det.sh | 39 ++++ 4 files changed, 476 insertions(+) create mode 100644 benchmark/analysis.py create mode 100644 benchmark/readme.md create mode 100644 benchmark/run_benchmark_det.sh create mode 100644 benchmark/run_det.sh diff --git a/benchmark/analysis.py b/benchmark/analysis.py new file mode 100644 index 00000000..7322f00a --- /dev/null +++ b/benchmark/analysis.py @@ -0,0 +1,346 @@ +# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import argparse +import json +import os +import re +import traceback + + +def parse_args(): + parser = argparse.ArgumentParser(description=__doc__) + parser.add_argument( + "--filename", type=str, help="The name of log which need to analysis.") + parser.add_argument( + "--log_with_profiler", + type=str, + help="The path of train log with profiler") + parser.add_argument( + "--profiler_path", type=str, help="The path of profiler timeline log.") + parser.add_argument( + "--keyword", type=str, help="Keyword to specify analysis data") + parser.add_argument( + "--separator", + type=str, + default=None, + help="Separator of different field in log") + parser.add_argument( + '--position', type=int, default=None, help='The position of data field') + parser.add_argument( + '--range', + type=str, + default="", + help='The range of data field to intercept') + parser.add_argument( + '--base_batch_size', type=int, help='base_batch size on gpu') + parser.add_argument( + '--skip_steps', + type=int, + default=0, + help='The number of steps to be skipped') + parser.add_argument( + '--model_mode', + type=int, + default=-1, + help='Analysis mode, default value is -1') + parser.add_argument('--ips_unit', type=str, default=None, help='IPS unit') + parser.add_argument( + '--model_name', + type=str, + default=0, + help='training model_name, transformer_base') + parser.add_argument( + '--mission_name', type=str, default=0, help='training mission name') + parser.add_argument( + '--direction_id', type=int, default=0, help='training direction_id') + parser.add_argument( + '--run_mode', + type=str, + default="sp", + help='multi process or single process') + parser.add_argument( + '--index', + type=int, + default=1, + help='{1: speed, 2:mem, 3:profiler, 6:max_batch_size}') + parser.add_argument( + '--gpu_num', type=int, default=1, help='nums of training gpus') + args = parser.parse_args() + args.separator = None if args.separator == "None" else args.separator + return args + + +def _is_number(num): + pattern = re.compile(r'^[-+]?[-0-9]\d*\.\d*|[-+]?\.?[0-9]\d*$') + result = pattern.match(num) + if result: + return True + else: + return False + + +class TimeAnalyzer(object): + def __init__(self, + filename, + keyword=None, + separator=None, + position=None, + range="-1"): + if filename is None: + raise Exception("Please specify the filename!") + + if keyword is None: + raise Exception("Please specify the keyword!") + + self.filename = filename + self.keyword = keyword + self.separator = separator + self.position = position + self.range = range + self.records = None + self._distil() + + def _distil(self): + self.records = [] + with open(self.filename, "r") as f_object: + lines = f_object.readlines() + for line in lines: + if self.keyword not in line: + continue + try: + result = None + + # Distil the string from a line. + line = line.strip() + line_words = line.split( + self.separator) if self.separator else line.split() + if args.position: + result = line_words[self.position] + else: + # Distil the string following the keyword. + for i in range(len(line_words) - 1): + if line_words[i] == self.keyword: + result = line_words[i + 1] + break + + # Distil the result from the picked string. + if not self.range: + result = result[0:] + elif _is_number(self.range): + result = result[0:int(self.range)] + else: + result = result[int(self.range.split(":")[0]):int( + self.range.split(":")[1])] + self.records.append(float(result)) + except Exception as exc: + print("line is: {}; separator={}; position={}".format( + line, self.separator, self.position)) + + print("Extract {} records: separator={}; position={}".format( + len(self.records), self.separator, self.position)) + + def _get_fps(self, + mode, + batch_size, + gpu_num, + avg_of_records, + run_mode, + unit=None): + if mode == -1 and run_mode == 'sp': + assert unit, "Please set the unit when mode is -1." + fps = gpu_num * avg_of_records + elif mode == -1 and run_mode == 'mp': + assert unit, "Please set the unit when mode is -1." + fps = gpu_num * avg_of_records #temporarily, not used now + print("------------this is mp") + elif mode == 0: + # s/step -> samples/s + fps = (batch_size * gpu_num) / avg_of_records + unit = "samples/s" + elif mode == 1: + # steps/s -> steps/s + fps = avg_of_records + unit = "steps/s" + elif mode == 2: + # s/step -> steps/s + fps = 1 / avg_of_records + unit = "steps/s" + elif mode == 3: + # steps/s -> samples/s + fps = batch_size * gpu_num * avg_of_records + unit = "samples/s" + elif mode == 4: + # s/epoch -> s/epoch + fps = avg_of_records + unit = "s/epoch" + else: + ValueError("Unsupported analysis mode.") + + return fps, unit + + def analysis(self, + batch_size, + gpu_num=1, + skip_steps=0, + mode=-1, + run_mode='sp', + unit=None): + if batch_size <= 0: + print("base_batch_size should larger than 0.") + return 0, '' + + if len( + self.records + ) <= skip_steps: # to address the condition which item of log equals to skip_steps + print("no records") + return 0, '' + + sum_of_records = 0 + sum_of_records_skipped = 0 + skip_min = self.records[skip_steps] + skip_max = self.records[skip_steps] + + count = len(self.records) + for i in range(count): + sum_of_records += self.records[i] + if i >= skip_steps: + sum_of_records_skipped += self.records[i] + if self.records[i] < skip_min: + skip_min = self.records[i] + if self.records[i] > skip_max: + skip_max = self.records[i] + + avg_of_records = sum_of_records / float(count) + avg_of_records_skipped = sum_of_records_skipped / float(count - + skip_steps) + + fps, fps_unit = self._get_fps(mode, batch_size, gpu_num, avg_of_records, + run_mode, unit) + fps_skipped, _ = self._get_fps(mode, batch_size, gpu_num, + avg_of_records_skipped, run_mode, unit) + if mode == -1: + print("average ips of %d steps, skip 0 step:" % count) + print("\tAvg: %.3f %s" % (avg_of_records, fps_unit)) + print("\tFPS: %.3f %s" % (fps, fps_unit)) + if skip_steps > 0: + print("average ips of %d steps, skip %d steps:" % + (count, skip_steps)) + print("\tAvg: %.3f %s" % (avg_of_records_skipped, fps_unit)) + print("\tMin: %.3f %s" % (skip_min, fps_unit)) + print("\tMax: %.3f %s" % (skip_max, fps_unit)) + print("\tFPS: %.3f %s" % (fps_skipped, fps_unit)) + elif mode == 1 or mode == 3: + print("average latency of %d steps, skip 0 step:" % count) + print("\tAvg: %.3f steps/s" % avg_of_records) + print("\tFPS: %.3f %s" % (fps, fps_unit)) + if skip_steps > 0: + print("average latency of %d steps, skip %d steps:" % + (count, skip_steps)) + print("\tAvg: %.3f steps/s" % avg_of_records_skipped) + print("\tMin: %.3f steps/s" % skip_min) + print("\tMax: %.3f steps/s" % skip_max) + print("\tFPS: %.3f %s" % (fps_skipped, fps_unit)) + elif mode == 0 or mode == 2: + print("average latency of %d steps, skip 0 step:" % count) + print("\tAvg: %.3f s/step" % avg_of_records) + print("\tFPS: %.3f %s" % (fps, fps_unit)) + if skip_steps > 0: + print("average latency of %d steps, skip %d steps:" % + (count, skip_steps)) + print("\tAvg: %.3f s/step" % avg_of_records_skipped) + print("\tMin: %.3f s/step" % skip_min) + print("\tMax: %.3f s/step" % skip_max) + print("\tFPS: %.3f %s" % (fps_skipped, fps_unit)) + + return round(fps_skipped, 3), fps_unit + + +if __name__ == "__main__": + args = parse_args() + run_info = dict() + run_info["log_file"] = args.filename + run_info["model_name"] = args.model_name + run_info["mission_name"] = args.mission_name + run_info["direction_id"] = args.direction_id + run_info["run_mode"] = args.run_mode + run_info["index"] = args.index + run_info["gpu_num"] = args.gpu_num + run_info["FINAL_RESULT"] = 0 + run_info["JOB_FAIL_FLAG"] = 0 + + try: + if args.index == 1: + if args.gpu_num == 1: + run_info["log_with_profiler"] = args.log_with_profiler + run_info["profiler_path"] = args.profiler_path + analyzer = TimeAnalyzer(args.filename, args.keyword, args.separator, + args.position, args.range) + run_info["FINAL_RESULT"], run_info["UNIT"] = analyzer.analysis( + batch_size=args.base_batch_size, + gpu_num=args.gpu_num, + skip_steps=args.skip_steps, + mode=args.model_mode, + run_mode=args.run_mode, + unit=args.ips_unit) + try: + if int(os.getenv('job_fail_flag')) == 1 or int(run_info[ + "FINAL_RESULT"]) == 0: + run_info["JOB_FAIL_FLAG"] = 1 + except: + pass + elif args.index == 3: + run_info["FINAL_RESULT"] = {} + records_fo_total = TimeAnalyzer(args.filename, 'Framework overhead', + None, 3, '').records + records_fo_ratio = TimeAnalyzer(args.filename, 'Framework overhead', + None, 5).records + records_ct_total = TimeAnalyzer(args.filename, 'Computation time', + None, 3, '').records + records_gm_total = TimeAnalyzer(args.filename, + 'GpuMemcpy Calls', + None, 4, '').records + records_gm_ratio = TimeAnalyzer(args.filename, + 'GpuMemcpy Calls', + None, 6).records + records_gmas_total = TimeAnalyzer(args.filename, + 'GpuMemcpyAsync Calls', + None, 4, '').records + records_gms_total = TimeAnalyzer(args.filename, + 'GpuMemcpySync Calls', + None, 4, '').records + run_info["FINAL_RESULT"]["Framework_Total"] = records_fo_total[ + 0] if records_fo_total else 0 + run_info["FINAL_RESULT"]["Framework_Ratio"] = records_fo_ratio[ + 0] if records_fo_ratio else 0 + run_info["FINAL_RESULT"][ + "ComputationTime_Total"] = records_ct_total[ + 0] if records_ct_total else 0 + run_info["FINAL_RESULT"]["GpuMemcpy_Total"] = records_gm_total[ + 0] if records_gm_total else 0 + run_info["FINAL_RESULT"]["GpuMemcpy_Ratio"] = records_gm_ratio[ + 0] if records_gm_ratio else 0 + run_info["FINAL_RESULT"][ + "GpuMemcpyAsync_Total"] = records_gmas_total[ + 0] if records_gmas_total else 0 + run_info["FINAL_RESULT"]["GpuMemcpySync_Total"] = records_gms_total[ + 0] if records_gms_total else 0 + else: + print("Not support!") + except Exception: + traceback.print_exc() + print("{}".format(json.dumps(run_info)) + ) # it's required, for the log file path insert to the database diff --git a/benchmark/readme.md b/benchmark/readme.md new file mode 100644 index 00000000..d90d2146 --- /dev/null +++ b/benchmark/readme.md @@ -0,0 +1,30 @@ + +# PaddleOCR DB/EAST/PSE 算法训练benchmark测试 + +PaddleOCR/benchmark目录下的文件用于获取并分析训练日志。 +训练采用icdar2015数据集,包括1000张训练图像和500张测试图像。模型配置采用resnet18_vd作为backbone,分别训练batch_size=8和batch_size=16的情况。 + +## 运行训练benchmark + +benchmark/run_det.sh 中包含了三个过程: +- 安装依赖 +- 下载数据 +- 执行训练 +- 日志分析获取IPS + +在执行训练部分,会执行单机单卡(默认0号卡)单机多卡训练,并分别执行batch_size=8和batch_size=16的情况。所以执行完后,每种模型会得到4个日志文件。 + +run_det.sh 执行方式如下: + +``` +# cd PaddleOCR/ +bash benchmark/run_det.sh +``` + +以DB为例,将得到四个日志文件,如下: +``` +det_res18_db_v2.0_sp_bs16_fp32_1 +det_res18_db_v2.0_sp_bs8_fp32_1 +det_res18_db_v2.0_mp_bs16_fp32_1 +det_res18_db_v2.0_mp_bs8_fp32_1 +``` diff --git a/benchmark/run_benchmark_det.sh b/benchmark/run_benchmark_det.sh new file mode 100644 index 00000000..818aa7e3 --- /dev/null +++ b/benchmark/run_benchmark_det.sh @@ -0,0 +1,61 @@ +#!/usr/bin/env bash +set -xe +# 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode} +# 参数说明 +function _set_params(){ + run_mode=${1:-"sp"} # 单卡sp|多卡mp + batch_size=${2:-"64"} + fp_item=${3:-"fp32"} # fp32|fp16 + max_epoch=${4:-"10"} # 可选,如果需要修改代码提前中断 + model_item=${5:-"model_item"} + run_log_path=${TRAIN_LOG_DIR:-$(pwd)} # TRAIN_LOG_DIR 后续QA设置该参数 +# 日志解析所需参数 + base_batch_size=${batch_size} + mission_name="OCR" + direction_id="0" + ips_unit="images/sec" + skip_steps=2 # 解析日志,有些模型前几个step耗时长,需要跳过 (必填) + keyword="ips:" # 解析日志,筛选出数据所在行的关键字 (必填) + index="1" + model_name=${model_item}_bs${batch_size}_${fp_item} # model_item 用于yml文件名匹配,model_name 用于数据入库前端展示 +# 以下不用修改 + device=${CUDA_VISIBLE_DEVICES//,/ } + arr=(${device}) + num_gpu_devices=${#arr[*]} + log_file=${run_log_path}/${model_item}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices} +} +function _train(){ + echo "Train on ${num_gpu_devices} GPUs" + echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size" + + train_cmd="-c configs/det/${model_item}.yml -o Train.loader.batch_size_per_card=${batch_size} Global.epoch_num=${max_epoch} Global.eval_batch_step=[0,20000] Global.print_batch_step=2" + case ${run_mode} in + sp) + train_cmd="python tools/train.py "${train_cmd}"" + ;; + mp) + train_cmd="python -m paddle.distributed.launch --log_dir=./mylog --gpus=$CUDA_VISIBLE_DEVICES tools/train.py ${train_cmd}" + ;; + *) echo "choose run_mode(sp or mp)"; exit 1; + esac +# 以下不用修改 + timeout 15m ${train_cmd} > ${log_file} 2>&1 + if [ $? -ne 0 ];then + echo -e "${model_name}, FAIL" + export job_fail_flag=1 + else + echo -e "${model_name}, SUCCESS" + export job_fail_flag=0 + fi + + if [ $run_mode = "mp" -a -d mylog ]; then + rm ${log_file} + cp mylog/workerlog.0 ${log_file} + fi +} + +source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在连调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开 +_set_params $@ +#_train # 如果只想产出训练log,不解析,可取消注释 +_run # 该函数在run_model.sh中,执行时会调用_train; 如果不联调只想要产出训练log可以注掉本行,提交时需打开 + diff --git a/benchmark/run_det.sh b/benchmark/run_det.sh new file mode 100644 index 00000000..981510c9 --- /dev/null +++ b/benchmark/run_det.sh @@ -0,0 +1,39 @@ +#!/bin/bash +# 提供可稳定复现性能的脚本,默认在标准docker环境内py37执行: paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7 paddle=2.1.2 py=37 +# 执行目录: ./PaddleOCR +# 1 安装该模型需要的依赖 (如需开启优化策略请注明) +log_path=${LOG_PATH_INDEX_DIR:-$(pwd)} +python -m pip install -r requirements.txt +# 2 拷贝该模型需要数据、预训练模型 +wget -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar && cd train_data && tar xf icdar2015.tar && cd ../ +wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams +wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams +wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams +# 3 批量运行(如不方便批量,1,2需放到单个模型中) + +model_mode_list=(det_res18_db_v2.0 det_r50_vd_east det_r50_vd_pse) +fp_item_list=(fp32) +for model_mode in ${model_mode_list[@]}; do + for fp_item in ${fp_item_list[@]}; do + if [ ${model_mode} == "det_r50_vd_east" ]; then + bs_list=(16) + else + bs_list=(8 16) + fi + for bs_item in ${bs_list[@]}; do + echo "index is speed, 1gpus, begin, ${model_name}" + run_mode=sp + log_name=ocr_${model_mode}_bs${bs_item}_${fp_item}_${run_mode} + CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark_det.sh ${run_mode} ${bs_item} ${fp_item} 1 ${model_mode} | tee ${log_path}/${log_name}_speed_1gpus 2>&1 # (5min) + sleep 60 + echo "index is speed, 8gpus, run_mode is multi_process, begin, ${model_name}" + run_mode=mp + log_name=ocr_${model_mode}_bs${bs_item}_${fp_item}_${run_mode} + CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark_det.sh ${run_mode} ${bs_item} ${fp_item} 2 ${model_mode} | tee ${log_path}/${log_name}_speed_8gpus8p 2>&1 + sleep 60 + done + done +done + + + -- GitLab