diff --git a/ppstructure/vqa/README-en.md b/ppstructure/vqa/README-en.md index 6db0965f1f0901c3579bebefb96032c6eee9442a..1d92add03ffc2ee3099a614ad53575cbf002f22a 100644 --- a/ppstructure/vqa/README-en.md +++ b/ppstructure/vqa/README-en.md @@ -1,6 +1,6 @@ # Document Visual Q&A(DOC-VQA) -Document Visual Q&A,Mainly for the image content of the question and answer, DOC-VQA is a type of VQA task,DOC-VQA mainly asks questions about the textual content of text images. +Document Visual Q&A, mainly for the image content of the question and answer, DOC-VQA is a type of VQA task, DOC-VQA mainly asks questions about the textual content of text images. The DOC-VQA algorithm in PP-Structure is developed based on PaddleNLP natural language processing algorithm library. @@ -30,11 +30,11 @@ We evaluated the algorithm on [XFUN](https://github.com/doc-analysis/XFUND) 's -## 2. Demonstration +## 2.Demonstration **Note**: the test images are from the xfun dataset. -### 2.1 .SER +### 2.1 SER ![](./images/result_ser/zh_val_0_ser.jpg) | ![](./images/result_ser/zh_val_42_ser.jpg) ---|--- @@ -95,7 +95,7 @@ git clone https://gitee.com/paddlepaddle/PaddleOCR # Note: the code cloud hosting code may not be able to synchronize the update of this GitHub project in real time, with a delay of 3 ~ 5 days. Please give priority to the recommended method. ``` -- **(3)Install PaddleNLP** +- **(3) Install PaddleNLP** ```bash # You need to use the latest code version of paddlenlp for installation @@ -105,14 +105,14 @@ pip3 install -e . ``` -- **(4)Install requirements for VQA ** +- **(4) Install requirements for VQA ** ```bash cd ppstructure/vqa pip install -r requirements.txt ``` -## 4. Usage +## 4.Usage ### 4.1 Data and pre training model preparation @@ -224,7 +224,7 @@ python3.7 helper/eval_with_label_end2end.py --gt_json_path XFUND/zh_val/xfun_nor ``` -### 3.3 RE Task +### 4.3 RE Task * Start training