From 1af19469db1ad2abd5cffc33481270163b29dec6 Mon Sep 17 00:00:00 2001 From: WZMIAOMIAO <605169423@qq.com> Date: Thu, 30 Dec 2021 15:16:17 +0800 Subject: [PATCH] add content --- doc/doc_ch/knowledge_distillation.md | 309 ++++++++++++++++++++++++++- 1 file changed, 302 insertions(+), 7 deletions(-) diff --git a/doc/doc_ch/knowledge_distillation.md b/doc/doc_ch/knowledge_distillation.md index b2772454..0923fc9c 100644 --- a/doc/doc_ch/knowledge_distillation.md +++ b/doc/doc_ch/knowledge_distillation.md @@ -1,8 +1,27 @@ + # 知识蒸馏 - ++ [知识蒸馏](#0) + + [1. 简介](#1) + - [1.1 知识蒸馏介绍](#11) + - [1.2 PaddleOCR知识蒸馏简介](#12) + + [2. 配置文件解析](#2) + + [2.1 识别配置文件解析](#21) + - [2.1.1 模型结构](#211) + - [2.1.2 损失函数](#212) + - [2.1.3 后处理](#213) + - [2.1.4 指标计算](#214) + - [2.1.5 蒸馏模型微调](#215) + + [2.2 检测配置文件解析](#22) + - [2.2.1 模型结构](#221) + - [2.2.2 损失函数](#222) + - [2.2.3 后处理](#223) + - [2.2.4 蒸馏指标计算](#224) + - [2.2.5 检测蒸馏模型Fine-tune](#225) + + ## 1. 简介 - + ### 1.1 知识蒸馏介绍 近年来,深度神经网络在计算机视觉、自然语言处理等领域被验证是一种极其有效的解决问题的方法。通过构建合适的神经网络,加以训练,最终网络模型的性能指标基本上都会超过传统算法。 @@ -13,6 +32,7 @@ 此外,在知识蒸馏任务中,也衍生出了互学习的模型训练方法,论文[Deep Mutual Learning](https://arxiv.org/abs/1706.00384)中指出,使用两个完全相同的模型在训练的过程中互相监督,可以达到比单个模型训练更好的效果。 + ### 1.2 PaddleOCR知识蒸馏简介 无论是大模型蒸馏小模型,还是小模型之间互相学习,更新参数,他们本质上是都是不同模型之间输出或者特征图(feature map)之间的相互监督,区别仅在于 (1) 模型是否需要固定参数。(2) 模型是否需要加载预训练模型。 @@ -30,17 +50,19 @@ PaddleOCR中集成了知识蒸馏的算法,具体地,有以下几个主要 通过知识蒸馏,在中英文通用文字识别任务中,不增加任何预测耗时的情况下,可以给模型带来3%以上的精度提升,结合学习率调整策略以及模型结构微调策略,最终提升提升超过5%。 - + ## 2. 配置文件解析 在知识蒸馏训练的过程中,数据预处理、优化器、学习率、全局的一些属性没有任何变化。模型结构、损失函数、后处理、指标计算等模块的配置文件需要进行微调。 下面以识别与检测的知识蒸馏配置文件为例,对知识蒸馏的训练与配置进行解析。 + ### 2.1 识别配置文件解析 配置文件在[ch_PP-OCRv2_rec_distillation.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec_distillation.yml)。 + #### 2.1.1 模型结构 知识蒸馏任务中,模型结构配置如下所示。 @@ -176,6 +198,7 @@ Architecture: } ``` + #### 2.1.2 损失函数 知识蒸馏任务中,损失函数配置如下所示。 @@ -212,7 +235,7 @@ Loss: 关于`CombinedLoss`更加具体的实现可以参考: [combined_loss.py](../../ppocr/losses/combined_loss.py#L23)。关于`DistillationCTCLoss`等蒸馏损失函数更加具体的实现可以参考[distillation_loss.py](../../ppocr/losses/distillation_loss.py)。 - + #### 2.1.3 后处理 知识蒸馏任务中,后处理配置如下所示。 @@ -228,7 +251,7 @@ PostProcess: 关于`DistillationCTCLabelDecode`更加具体的实现可以参考: [rec_postprocess.py](../../ppocr/postprocess/rec_postprocess.py#L128) - + #### 2.1.4 指标计算 知识蒸馏任务中,指标计算配置如下所示。 @@ -245,7 +268,7 @@ Metric: 关于`DistillationMetric`更加具体的实现可以参考: [distillation_metric.py](../../ppocr/metrics/distillation_metric.py#L24)。 - + #### 2.1.5 蒸馏模型微调 对蒸馏得到的识别蒸馏进行微调有2种方式。 @@ -279,6 +302,278 @@ paddle.save(s_params, "ch_PP-OCRv2_rec_train/student.pdparams") 转化完成之后,使用[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml),修改预训练模型的路径(为导出的`student.pdparams`模型路径)以及自己的数据路径,即可进行模型微调。 + ### 2.2 检测配置文件解析 -* coming soon! +检测模型蒸馏的配置文件在PaddleOCR/configs/det/ch_PP-OCRv2/目录下,包含三个蒸馏配置文件: +- ch_PP-OCRv2_det_cml.yml,采用cml蒸馏,采用一个大模型蒸馏两个小模型,且两个小模型互相学习的方法 +- ch_PP-OCRv2_det_dml.yml,采用DML的蒸馏,两个Student模型互蒸馏的方法 +- ch_PP-OCRv2_det_distill.yml,采用Teacher大模型蒸馏小模型Student的方法 + + +#### 2.2.1 模型结构 + +知识蒸馏任务中,模型结构配置如下所示: + +``` +Architecture: + name: DistillationModel # 结构名称,蒸馏任务中,为DistillationModel,用于构建对应的结构 + algorithm: Distillation # 算法名称 + Models: # 模型,包含子网络的配置信息 + Student: # 子网络名称,至少需要包含`pretrained`与`freeze_params`信息,其他的参数为子网络的构造参数 + pretrained: ./pretrain_models/MobileNetV3_large_x0_5_pretrained + freeze_params: false # 是否需要固定参数 + return_all_feats: false # 子网络的参数,表示是否需要返回所有的features,如果为False,则只返回最后的输出 + model_type: det + algorithm: DB + Backbone: + name: MobileNetV3 + scale: 0.5 + model_name: large + disable_se: True + Neck: + name: DBFPN + out_channels: 96 + Head: + name: DBHead + k: 50 + Teacher: # 另外一个子网络,这里给的是普通大模型蒸小模型的蒸馏示例, + pretrained: ./pretrain_models/ch_ppocr_server_v2.0_det_train/best_accuracy + freeze_params: true # Teacher模型是训练好的,不需要参与训练,freeze_params设置为True + return_all_feats: false + model_type: det + algorithm: DB + Transform: + Backbone: + name: ResNet + layers: 18 + Neck: + name: DBFPN + out_channels: 256 + Head: + name: DBHead + k: 50 + +``` + +如果是采用DML,即两个小模型互相学习的方法,上述配置文件里的Teacher网络结构需要设置为Student模型一样的配置,具体参考配置文件[ch_PP-OCRv2_det_dml.yml](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.4/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_dml.yml)。 + +下面介绍[ch_PP-OCRv2_det_cml.yml](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.4/configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_cml.yml)的配置文件参数: + +``` +Architecture: + name: DistillationModel + algorithm: Distillation + model_type: det + Models: + Teacher: # CML蒸馏的Teacher模型配置 + pretrained: ./pretrain_models/ch_ppocr_server_v2.0_det_train/best_accuracy + freeze_params: true # Teacher 不训练 + return_all_feats: false + model_type: det + algorithm: DB + Transform: + Backbone: + name: ResNet + layers: 18 + Neck: + name: DBFPN + out_channels: 256 + Head: + name: DBHead + k: 50 + Student: # CML蒸馏的Student模型配置 + pretrained: ./pretrain_models/MobileNetV3_large_x0_5_pretrained + freeze_params: false + return_all_feats: false + model_type: det + algorithm: DB + Backbone: + name: MobileNetV3 + scale: 0.5 + model_name: large + disable_se: True + Neck: + name: DBFPN + out_channels: 96 + Head: + name: DBHead + k: 50 + Student2: # CML蒸馏的Student2模型配置 + pretrained: ./pretrain_models/MobileNetV3_large_x0_5_pretrained + freeze_params: false + return_all_feats: false + model_type: det + algorithm: DB + Transform: + Backbone: + name: MobileNetV3 + scale: 0.5 + model_name: large + disable_se: True + Neck: + name: DBFPN + out_channels: 96 + Head: + name: DBHead + k: 50 + +``` + + +蒸馏模型`DistillationModel`类的具体实现代码可以参考[distillation_model.py](../../ppocr/modeling/architectures/distillation_model.py)。 + +最终模型`forward`输出为一个字典,key为所有的子网络名称,例如这里为`Student`与`Teacher`,value为对应子网络的输出,可以为`Tensor`(只返回该网络的最后一层)和`dict`(也返回了中间的特征信息)。 + +在蒸馏任务中,为了方便添加蒸馏损失函数,每个网络的输出保存为`dict`,其中包含子模块输出。每个子网络的输出结果均为`dict`,key包含`backbone_out`,`neck_out`, `head_out`,`value`为对应模块的tensor,最终对于上述配置文件,`DistillationModel`的输出格式如下。 + +```json +{ + "Teacher": { + "backbone_out": tensor, + "neck_out": tensor, + "head_out": tensor, + }, + "Student": { + "backbone_out": tensor, + "neck_out": tensor, + "head_out": tensor, + } +} +``` + + +#### 2.2.2 损失函数 + +知识蒸馏任务中,检测ch_PP-OCRv2_det_distill.yml蒸馏损失函数配置如下所示。 + +```yaml +Loss: + name: CombinedLoss # 损失函数名称,基于改名称,构建用于损失函数的类 + loss_config_list: # 损失函数配置文件列表,为CombinedLoss的必备函数 + - DistillationDilaDBLoss: # 基于蒸馏的DB损失函数,继承自标准的DBloss + weight: 1.0 # 损失函数的权重,loss_config_list中,每个损失函数的配置都必须包含该字段 + model_name_pairs: # 对于蒸馏模型的预测结果,提取这两个子网络的输出,计算Teacher模型和Student模型输出的loss + - ["Student", "Teacher"] + key: maps # 取子网络输出dict中,该key对应的tensor + balance_loss: true # 以下几个参数为标准DBloss的配置参数 + main_loss_type: DiceLoss + alpha: 5 + beta: 10 + ohem_ratio: 3 + - DistillationDBLoss: # 基于蒸馏的DB损失函数,继承自标准的DBloss,用于计算Student和GT之间的loss + weight: 1.0 + model_name_list: ["Student"] # 模型名字只有Student,表示计算Student和GT之间的loss + name: DBLoss + balance_loss: true + main_loss_type: DiceLoss + alpha: 5 + beta: 10 + ohem_ratio: 3 +``` + +同理,检测ch_PP-OCRv2_det_cml.yml蒸馏损失函数配置如下所示。相比较于ch_PP-OCRv2_det_distill.yml的损失函数配置,cml蒸馏的损失函数配置做了3个改动: +```yaml +Loss: + name: CombinedLoss + loss_config_list: + - DistillationDilaDBLoss: + weight: 1.0 + model_name_pairs: + - ["Student", "Teacher"] + - ["Student2", "Teacher"] # 改动1,计算两个Student和Teacher的损失 + key: maps + balance_loss: true + main_loss_type: DiceLoss + alpha: 5 + beta: 10 + ohem_ratio: 3 + - DistillationDMLLoss: # 改动2,增加计算两个Student之间的损失 + model_name_pairs: + - ["Student", "Student2"] + maps_name: "thrink_maps" + weight: 1.0 + # act: None + key: maps + - DistillationDBLoss: + weight: 1.0 + model_name_list: ["Student", "Student2"] # 改动3,计算两个Student和GT之间的损失 + balance_loss: true + main_loss_type: DiceLoss + alpha: 5 + beta: 10 + ohem_ratio: 3 + +``` + +关于`DistillationDilaDBLoss`更加具体的实现可以参考: [distillation_loss.py](https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/ppocr/losses/distillation_loss.py#L185)。关于`DistillationDBLoss`等蒸馏损失函数更加具体的实现可以参考[distillation_loss.py](https://github.com/PaddlePaddle/PaddleOCR/blob/04c44974b13163450dfb6bd2c327863f8a194b3c/ppocr/losses/distillation_loss.py?_pjax=%23js-repo-pjax-container%2C%20div%5Bitemtype%3D%22http%3A%2F%2Fschema.org%2FSoftwareSourceCode%22%5D%20main%2C%20%5Bdata-pjax-container%5D#L148)。 + + +#### 2.2.3 后处理 + +知识蒸馏任务中,检测蒸馏后处理配置如下所示。 + +```yaml +PostProcess: + name: DistillationDBPostProcess # DB检测蒸馏任务的CTC解码后处理,继承自标准的DBPostProcess类 + model_name: ["Student", "Student2", "Teacher"] # 对于蒸馏模型的预测结果,提取多个子网络的输出,进行解码,不需要后处理的网络可以不在model_name中设置 + thresh: 0.3 + box_thresh: 0.6 + max_candidates: 1000 + unclip_ratio: 1.5 +``` + +以上述配置为例,最终会同时计算`Student`,`Student2`和`Teacher` 3个子网络的输出做后处理计算。同时,由于有多个输入,后处理返回的输出也有多个, + +关于`DistillationDBPostProcess`更加具体的实现可以参考: [db_postprocess.py](../../ppocr/postprocess/db_postprocess.py#L195) + + + +#### 2.2.4 蒸馏指标计算 + +知识蒸馏任务中,检测蒸馏指标计算配置如下所示。 + +```yaml +Metric: + name: DistillationMetric + base_metric_name: DetMetric + main_indicator: hmean + key: "Student" +``` + +由于蒸馏需要包含多个网络,甚至多个Student网络,在计算指标的时候只需要计算一个Student网络的指标即可,`key`字段设置为`Student`则表示只计算`Student`网络的精度。 + + +#### 2.2.5 检测蒸馏模型finetune + +检测蒸馏有三种方式: +- 采用ch_PP-OCRv2_det_distill.yml,Teacher模型设置为PaddleOCR提供的模型或者您训练好的大模型 +- 采用ch_PP-OCRv2_det_cml.yml,采用cml蒸馏,同样Teacher模型设置为PaddleOCR提供的模型或者您训练好的大模型 +- 采用ch_PP-OCRv2_det_dml.yml,采用DML的蒸馏,两个Student模型互蒸馏的方法,在PaddleOCR采用的数据集上大约有1.7%的精度提升。 + +在具体finetune时,需要在网络结构的`pretrained`参数中设置要加载的预训练模型。 + +在精度提升方面,cml的精度>dml的精度>distill蒸馏方法的精度。当数据量不足或者Teacher模型精度与Student精度相差不大的时候,这个结论或许会改变。 + + +另外,由于PaddleOCR提供的蒸馏预训练模型包含了多个模型的参数,如果您希望提取Student模型的参数,可以参考如下代码: +``` +# 下载蒸馏训练模型的参数 +wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar +``` + +```python +import paddle +# 加载预训练模型 +all_params = paddle.load("ch_PP-OCRv2_det_distill_train/best_accuracy.pdparams") +# 查看权重参数的keys +print(all_params.keys()) +# 学生模型的权重提取 +s_params = {key[len("Student."):]: all_params[key] for key in all_params if "Student." in key} +# 查看学生模型权重参数的keys +print(s_params.keys()) +# 保存 +paddle.save(s_params, "ch_PP-OCRv2_det_distill_train/student.pdparams") +``` + +最终`Student`模型的参数将会保存在`ch_PP-OCRv2_det_distill_train/student.pdparams`中,用于模型的fine-tune。 -- GitLab