提交 16736db9 编写于 作者: qq_25193841's avatar qq_25193841

Add directory

Add directory
上级 538c241a
<a name="算法介绍"></a> # 两阶段算法
## 算法介绍
- [两阶段算法](#-----)
* [1. 算法介绍](#1)
+ [1.1 文本检测算法](#11)
+ [1.2 文本识别算法](#12)
* [2. 模型训练](#2)
* [3. 模型推理](#3)
<a name="1"></a>
## 1. 算法介绍
本文给出了PaddleOCR已支持的文本检测算法和文本识别算法列表,以及每个算法在**英文公开数据集**上的模型和指标,主要用于算法简介和算法性能对比,更多包括中文在内的其他数据集上的模型请参考[PP-OCR v2.0 系列模型下载](./models_list.md) 本文给出了PaddleOCR已支持的文本检测算法和文本识别算法列表,以及每个算法在**英文公开数据集**上的模型和指标,主要用于算法简介和算法性能对比,更多包括中文在内的其他数据集上的模型请参考[PP-OCR v2.0 系列模型下载](./models_list.md)
- [1.文本检测算法](#文本检测算法) <a name="11"></a>
- [2.文本识别算法](#文本识别算法)
<a name="文本检测算法"></a> ### 1.1 文本检测算法
### 1.文本检测算法
PaddleOCR开源的文本检测算法列表: PaddleOCR开源的文本检测算法列表:
- [x] DB([paper]( https://arxiv.org/abs/1911.08947)) [2](ppocr推荐) - [x] DB([paper]( https://arxiv.org/abs/1911.08947)) [2](ppocr推荐)
...@@ -16,27 +24,25 @@ PaddleOCR开源的文本检测算法列表: ...@@ -16,27 +24,25 @@ PaddleOCR开源的文本检测算法列表:
在ICDAR2015文本检测公开数据集上,算法效果如下: 在ICDAR2015文本检测公开数据集上,算法效果如下:
|模型|骨干网络|precision|recall|Hmean|下载链接| |模型|骨干网络|precision|recall|Hmean|下载链接|
| --- | --- | --- | --- | --- | --- | | --- | --- | --- | --- | --- | --- |
|EAST|ResNet50_vd|85.80%|86.71%|86.25%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)| |EAST|ResNet50_vd|85.80%|86.71%|86.25%|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
|EAST|MobileNetV3|79.42%|80.64%|80.03%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)| |EAST|MobileNetV3|79.42%|80.64%|80.03%|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)| |DB|ResNet50_vd|86.41%|78.72%|82.38%|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)| |DB|MobileNetV3|77.29%|73.08%|75.12%|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)| |SAST|ResNet50_vd|91.39%|83.77%|87.42%|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
在Total-text文本检测公开数据集上,算法效果如下: 在Total-text文本检测公开数据集上,算法效果如下:
|模型|骨干网络|precision|recall|Hmean|下载链接| |模型|骨干网络|precision|recall|Hmean|下载链接|
| --- | --- | --- | --- | --- | --- | | --- | --- | --- | --- | --- | --- |
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)| |SAST|ResNet50_vd|89.63%|78.44%|83.66%|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载: **说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:
* [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi) * [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
* [Google Drive下载地址](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing) * [Google Drive下载地址](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing)
PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训练/评估中的文本检测部分](./detection.md) <a name="12"></a>
### 1.2 文本识别算法
<a name="文本识别算法"></a>
### 2.文本识别算法
PaddleOCR基于动态图开源的文本识别算法列表: PaddleOCR基于动态图开源的文本识别算法列表:
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7](ppocr推荐) - [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7](ppocr推荐)
...@@ -50,16 +56,26 @@ PaddleOCR基于动态图开源的文本识别算法列表: ...@@ -50,16 +56,26 @@ PaddleOCR基于动态图开源的文本识别算法列表:
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接| |模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
|---|---|---|---|---| |---|---|---|---|---|
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)| |Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)| |Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)| |CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)| |CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|StarNet|Resnet34_vd|84.44%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)| |StarNet|Resnet34_vd|84.44%|rec_r34_vd_tps_bilstm_ctc|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|StarNet|MobileNetV3|81.42%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)| |StarNet|MobileNetV3|81.42%|rec_mv3_tps_bilstm_ctc|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
|RARE|MobileNetV3|82.5%|rec_mv3_tps_bilstm_att |[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)| |RARE|MobileNetV3|82.5%|rec_mv3_tps_bilstm_att |[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)|
|RARE|Resnet34_vd|83.6%|rec_r34_vd_tps_bilstm_att |[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)| |RARE|Resnet34_vd|83.6%|rec_r34_vd_tps_bilstm_att |[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)|
|SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) | |SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn | [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) |
|NRTR|NRTR_MTB| 84.3% | rec_mtb_nrtr | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) | |NRTR|NRTR_MTB| 84.3% | rec_mtb_nrtr | [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) |
<a name="2"></a>
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)
## 2. 模型训练
PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训练/评估中的文本检测部分](./detection.md)。文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)
<a name="3"></a>
## 3. 模型推理
上述模型中除PP-OCR系列模型以外,其余模型仅支持基于Python引擎的推理,具体内容可参考[基于Python预测引擎推理](./inference.md)
# Two-stage Algorithm
- [1. Algorithm Introduction](#1-algorithm-introduction)
* [1.1 Text Detection Algorithm](#11-text-detection-algorithm)
* [1.2 Text Recognition Algorithm](#12-text-recognition-algorithm)
- [2. Training](#2-training)
- [3. Inference](#3-inference)
<a name="Algorithm_introduction"></a> <a name="Algorithm_introduction"></a>
## Algorithm introduction
## 1. Algorithm Introduction
This tutorial lists the text detection algorithms and text recognition algorithms supported by PaddleOCR, as well as the models and metrics of each algorithm on **English public datasets**. It is mainly used for algorithm introduction and algorithm performance comparison. For more models on other datasets including Chinese, please refer to [PP-OCR v2.0 models list](./models_list_en.md). This tutorial lists the text detection algorithms and text recognition algorithms supported by PaddleOCR, as well as the models and metrics of each algorithm on **English public datasets**. It is mainly used for algorithm introduction and algorithm performance comparison. For more models on other datasets including Chinese, please refer to [PP-OCR v2.0 models list](./models_list_en.md).
...@@ -8,7 +17,8 @@ This tutorial lists the text detection algorithms and text recognition algorithm ...@@ -8,7 +17,8 @@ This tutorial lists the text detection algorithms and text recognition algorithm
- [2. Text Recognition Algorithm](#TEXTRECOGNITIONALGORITHM) - [2. Text Recognition Algorithm](#TEXTRECOGNITIONALGORITHM)
<a name="TEXTDETECTIONALGORITHM"></a> <a name="TEXTDETECTIONALGORITHM"></a>
### 1. Text Detection Algorithm
### 1.1 Text Detection Algorithm
PaddleOCR open source text detection algorithms list: PaddleOCR open source text detection algorithms list:
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))[2] - [x] EAST([paper](https://arxiv.org/abs/1704.03155))[2]
...@@ -38,7 +48,7 @@ On Total-Text dataset, the text detection result is as follows: ...@@ -38,7 +48,7 @@ On Total-Text dataset, the text detection result is as follows:
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./detection_en.md) For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./detection_en.md)
<a name="TEXTRECOGNITIONALGORITHM"></a> <a name="TEXTRECOGNITIONALGORITHM"></a>
### 2. Text Recognition Algorithm ### 1.2 Text Recognition Algorithm
PaddleOCR open-source text recognition algorithms list: PaddleOCR open-source text recognition algorithms list:
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7] - [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7]
...@@ -63,4 +73,12 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r ...@@ -63,4 +73,12 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar)| |SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar)|
|NRTR|NRTR_MTB| 84.3% | rec_mtb_nrtr | [Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) | |NRTR|NRTR_MTB| 84.3% | rec_mtb_nrtr | [Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) |
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./recognition_en.md) Please refer to the document for training guide and use of PaddleOCR
## 2. Training
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./detection_en.md). For text recognition algorithms, please refer to [Text recognition model training/evaluation/prediction](./recognition_en.md)
## 3. Inference
Except for the PP-OCR series models of the above models, the other models only support inference based on the Python engine. For details, please refer to [Inference based on Python prediction engine](./inference_en.md)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册