提交 03d38486 编写于 作者: A andyjpaddle

fix amp train for re

上级 071d8327
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import numpy as np
import time
import sys
import tools.infer.utility as utility
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
import json
logger = get_logger()
class TextDetector(object):
def __init__(self, args):
self.args = args
self.det_algorithm = args.det_algorithm
self.use_onnx = args.use_onnx
pre_process_list = [{
'DetResizeForTest': {
'limit_side_len': args.det_limit_side_len,
'limit_type': args.det_limit_type,
}
}, {
'NormalizeImage': {
'std': [0.229, 0.224, 0.225],
'mean': [0.485, 0.456, 0.406],
'scale': '1./255.',
'order': 'hwc'
}
}, {
'ToCHWImage': None
}, {
'KeepKeys': {
'keep_keys': ['image', 'shape']
}
}]
postprocess_params = {}
if self.det_algorithm == "DB":
postprocess_params['name'] = 'DBPostProcess'
postprocess_params["thresh"] = args.det_db_thresh
postprocess_params["box_thresh"] = args.det_db_box_thresh
postprocess_params["max_candidates"] = 1000
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
postprocess_params["use_dilation"] = args.use_dilation
postprocess_params["score_mode"] = args.det_db_score_mode
elif self.det_algorithm == "EAST":
postprocess_params['name'] = 'EASTPostProcess'
postprocess_params["score_thresh"] = args.det_east_score_thresh
postprocess_params["cover_thresh"] = args.det_east_cover_thresh
postprocess_params["nms_thresh"] = args.det_east_nms_thresh
elif self.det_algorithm == "SAST":
pre_process_list[0] = {
'DetResizeForTest': {
'resize_long': args.det_limit_side_len
}
}
postprocess_params['name'] = 'SASTPostProcess'
postprocess_params["score_thresh"] = args.det_sast_score_thresh
postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
self.det_sast_polygon = args.det_sast_polygon
if self.det_sast_polygon:
postprocess_params["sample_pts_num"] = 6
postprocess_params["expand_scale"] = 1.2
postprocess_params["shrink_ratio_of_width"] = 0.2
else:
postprocess_params["sample_pts_num"] = 2
postprocess_params["expand_scale"] = 1.0
postprocess_params["shrink_ratio_of_width"] = 0.3
elif self.det_algorithm == "PSE":
postprocess_params['name'] = 'PSEPostProcess'
postprocess_params["thresh"] = args.det_pse_thresh
postprocess_params["box_thresh"] = args.det_pse_box_thresh
postprocess_params["min_area"] = args.det_pse_min_area
postprocess_params["box_type"] = args.det_pse_box_type
postprocess_params["scale"] = args.det_pse_scale
self.det_pse_box_type = args.det_pse_box_type
elif self.det_algorithm == "FCE":
pre_process_list[0] = {
'DetResizeForTest': {
'rescale_img': [1080, 736]
}
}
postprocess_params['name'] = 'FCEPostProcess'
postprocess_params["scales"] = args.scales
postprocess_params["alpha"] = args.alpha
postprocess_params["beta"] = args.beta
postprocess_params["fourier_degree"] = args.fourier_degree
postprocess_params["box_type"] = args.det_fce_box_type
else:
logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
sys.exit(0)
self.preprocess_op = create_operators(pre_process_list)
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
args, 'det', logger)
if self.use_onnx:
img_h, img_w = self.input_tensor.shape[2:]
if img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
pre_process_list[0] = {
'DetResizeForTest': {
'image_shape': [img_h, img_w]
}
}
self.preprocess_op = create_operators(pre_process_list)
if args.benchmark:
import auto_log
pid = os.getpid()
gpu_id = utility.get_infer_gpuid()
self.autolog = auto_log.AutoLogger(
model_name="det",
model_precision=args.precision,
batch_size=1,
data_shape="dynamic",
save_path=None,
inference_config=self.config,
pids=pid,
process_name=None,
gpu_ids=gpu_id if args.use_gpu else None,
time_keys=[
'preprocess_time', 'inference_time', 'postprocess_time'
],
warmup=2,
logger=logger)
def order_points_clockwise(self, pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
diff = np.diff(np.array(tmp), axis=1)
rect[1] = tmp[np.argmin(diff)]
rect[3] = tmp[np.argmax(diff)]
return rect
def clip_det_res(self, points, img_height, img_width):
for pno in range(points.shape[0]):
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
return points
def filter_tag_det_res(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
box = self.order_points_clockwise(box)
box = self.clip_det_res(box, img_height, img_width)
rect_width = int(np.linalg.norm(box[0] - box[1]))
rect_height = int(np.linalg.norm(box[0] - box[3]))
if rect_width <= 3 or rect_height <= 3:
continue
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
box = self.clip_det_res(box, img_height, img_width)
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def __call__(self, img):
ori_im = img.copy()
data = {'image': img}
st = time.time()
if self.args.benchmark:
self.autolog.times.start()
data = transform(data, self.preprocess_op)
img, shape_list = data
if img is None:
return None, 0
img = np.expand_dims(img, axis=0)
shape_list = np.expand_dims(shape_list, axis=0)
img = img.copy()
if self.args.benchmark:
self.autolog.times.stamp()
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = img
outputs = self.predictor.run(self.output_tensors, input_dict)
else:
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.args.benchmark:
self.autolog.times.stamp()
preds = {}
if self.det_algorithm == "EAST":
preds['f_geo'] = outputs[0]
preds['f_score'] = outputs[1]
elif self.det_algorithm == 'SAST':
preds['f_border'] = outputs[0]
preds['f_score'] = outputs[1]
preds['f_tco'] = outputs[2]
preds['f_tvo'] = outputs[3]
elif self.det_algorithm in ['DB', 'PSE']:
preds['maps'] = outputs[0]
elif self.det_algorithm == 'FCE':
for i, output in enumerate(outputs):
preds['level_{}'.format(i)] = output
else:
raise NotImplementedError
#self.predictor.try_shrink_memory()
post_result = self.postprocess_op(preds, shape_list)
dt_boxes = post_result[0]['points']
if (self.det_algorithm == "SAST" and self.det_sast_polygon) or (
self.det_algorithm in ["PSE", "FCE"] and
self.postprocess_op.box_type == 'poly'):
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
else:
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
if self.args.benchmark:
self.autolog.times.end(stamp=True)
et = time.time()
return dt_boxes, et - st
if __name__ == "__main__":
from ppocr.metrics.eval_det_iou import DetectionIoUEvaluator
evaluator = DetectionIoUEvaluator()
args = utility.parse_args()
# image_file_list = get_image_file_list(args.image_dir)
def _check_image_file(path):
img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif'}
return any([path.lower().endswith(e) for e in img_end])
def get_image_file_list_from_txt(img_file):
imgs_lists = []
label_lists = []
if img_file is None or not os.path.exists(img_file):
raise Exception("not found any img file in {}".format(img_file))
img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif'}
root_dir = img_file.split('/')[0]
with open(img_file, 'r') as f:
lines = f.readlines()
for line in lines:
line = line.replace('\n', '').split('\t')
file_path, label = line[0], line[1]
file_path = os.path.join(root_dir, file_path)
if os.path.isfile(file_path) and _check_image_file(file_path):
imgs_lists.append(file_path)
label_lists.append(label)
if len(imgs_lists) == 0:
raise Exception("not found any img file in {}".format(img_file))
return imgs_lists, label_lists
image_file_list, label_list = get_image_file_list_from_txt(args.image_dir)
text_detector = TextDetector(args)
count = 0
total_time = 0
draw_img_save = "./inference_results"
if args.warmup:
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
for i in range(2):
res = text_detector(img)
if not os.path.exists(draw_img_save):
os.makedirs(draw_img_save)
save_results = []
results = []
for idx in range(len(image_file_list)):
image_file = image_file_list[idx]
label = json.loads(label_list[idx])
img, flag = check_and_read_gif(image_file)
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
st = time.time()
dt_boxes, _ = text_detector(img)
elapse = time.time() - st
if count > 0:
total_time += elapse
count += 1
save_pred = os.path.basename(image_file) + "\t" + str(
json.dumps([x.tolist() for x in dt_boxes])) + "\n"
save_results.append(save_pred)
# for eval
gt_info_list = []
det_info_list = []
for dt_box in dt_boxes:
det_info = {
'points': np.array(
dt_box, dtype=np.float32),
'text': ''
}
det_info_list.append(det_info)
for lab in label:
gt_info = {
'points': np.array(
lab['points'], dtype=np.float32),
'text': '',
'ignore': False
}
gt_info_list.append(gt_info)
result = evaluator.evaluate_image(gt_info_list, det_info_list)
results.append(result)
metrics = evaluator.combine_results(results)
print('predict det eval on ', args.image_dir)
print('metrics: ', metrics)
# logger.info(save_pred)
# logger.info("The predict time of {}: {}".format(image_file, elapse))
# src_im = utility.draw_text_det_res(dt_boxes, image_file)
# img_name_pure = os.path.split(image_file)[-1]
# img_path = os.path.join(draw_img_save,
# "det_res_{}".format(img_name_pure))
# cv2.imwrite(img_path, src_im)
# logger.info("The visualized image saved in {}".format(img_path))
# with open(os.path.join(draw_img_save, "det_results.txt"), 'w') as f:
# f.writelines(save_results)
# f.close()
# if args.benchmark:
# text_detector.autolog.report()
此差异已折叠。
...@@ -154,13 +154,14 @@ def check_xpu(use_xpu): ...@@ -154,13 +154,14 @@ def check_xpu(use_xpu):
except Exception as e: except Exception as e:
pass pass
def to_float32(preds): def to_float32(preds):
if isinstance(preds, dict): if isinstance(preds, dict):
for k in preds: for k in preds:
if isinstance(preds[k], dict) or isinstance(preds[k], list): if isinstance(preds[k], dict) or isinstance(preds[k], list):
preds[k] = to_float32(preds[k]) preds[k] = to_float32(preds[k])
else: else:
preds[k] = preds[k].astype(paddle.float32) preds[k] = paddle.to_tensor(preds[k], dtype='float32')
elif isinstance(preds, list): elif isinstance(preds, list):
for k in range(len(preds)): for k in range(len(preds)):
if isinstance(preds[k], dict): if isinstance(preds[k], dict):
...@@ -168,11 +169,12 @@ def to_float32(preds): ...@@ -168,11 +169,12 @@ def to_float32(preds):
elif isinstance(preds[k], list): elif isinstance(preds[k], list):
preds[k] = to_float32(preds[k]) preds[k] = to_float32(preds[k])
else: else:
preds[k] = preds[k].astype(paddle.float32) preds[k] = paddle.to_tensor(preds[k], dtype='float32')
else: else:
preds = preds.astype(paddle.float32) preds[k] = paddle.to_tensor(preds[k], dtype='float32')
return preds return preds
def train(config, def train(config,
train_dataloader, train_dataloader,
valid_dataloader, valid_dataloader,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册