diff --git a/ppstructure/table/README.md b/ppstructure/table/README.md index 05ea69e838d95913a8d9558ad5e80a8eb29fda17..bcc9f4fffaf6c4e93bd9777e56043f1a950c6a23 100644 --- a/ppstructure/table/README.md +++ b/ppstructure/table/README.md @@ -30,12 +30,16 @@ The table recognition flow chart is as follows ## 2. Performance We evaluated the algorithm on the PubTabNet[1] eval dataset, and the performance is as follows: - -|Method|acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)| -| --- | --- | --- | -| EDD[2] |x| 88.3 | -| TableRec-RARE(ours) |73.8%| 93.32 | -| SLANet(ours) | 76.2%| 94.98 |SLANet | +|Method|Acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|Speed| +| --- | --- | --- | ---| +| EDD[2] |x| 88.3 |x| +| TableRec-RARE(ours) |73.8%| 93.32 |1180ms| +| SLANet(ours) | 76.2%| 94.98 |590ms| + +The performance indicators are explained as follows: +- Acc: The accuracy of the table structure in each image, a wrong token is considered an error. +- TEDS: The accuracy of the model's restoration of table information. This indicator evaluates not only the table structure, but also the text content in the table. +- Speed: The inference speed of a single image when the model runs on the CPU machine and MKL is enabled. ## 3. Result diff --git a/ppstructure/table/README_ch.md b/ppstructure/table/README_ch.md index 4f475185eb9a9c9c3a42d8582c4b4e65d716e01d..7ca85bde24107fa464c1fdd121513039bc82417c 100644 --- a/ppstructure/table/README_ch.md +++ b/ppstructure/table/README_ch.md @@ -36,11 +36,16 @@ 我们在 PubTabNet[1] 评估数据集上对算法进行了评估,性能如下 -|算法|acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)| -| --- | --- | --- | -| EDD[2] |x| 88.3 | -| TableRec-RARE(ours) |73.8%| 93.32 | -| SLANet(ours) | 76.2%| 94.98 | +|算法|Acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|Speed| +| --- | --- | --- | ---| +| EDD[2] |x| 88.3 |x| +| TableRec-RARE(ours) |73.8%| 93.32 |1180ms| +| SLANet(ours) | 76.2%| 94.98 |590ms| + +性能指标解释如下: +- Acc: 模型对每张图像里表格结构的识别准确率,错一个token就算错误。 +- TEDS: 模型对表格信息还原的准确度,此指标评价内容不仅包含表格结构,还包含表格内的文字内容。 +- Speed: 模型在CPU机器上,开启MKL的情况下,单张图片的推理速度。 ## 3. 效果演示