diff --git a/ppstructure/table/README.md b/ppstructure/table/README.md
index 05ea69e838d95913a8d9558ad5e80a8eb29fda17..bcc9f4fffaf6c4e93bd9777e56043f1a950c6a23 100644
--- a/ppstructure/table/README.md
+++ b/ppstructure/table/README.md
@@ -30,12 +30,16 @@ The table recognition flow chart is as follows
## 2. Performance
We evaluated the algorithm on the PubTabNet[1] eval dataset, and the performance is as follows:
-
-|Method|acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|
-| --- | --- | --- |
-| EDD[2] |x| 88.3 |
-| TableRec-RARE(ours) |73.8%| 93.32 |
-| SLANet(ours) | 76.2%| 94.98 |SLANet |
+|Method|Acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|Speed|
+| --- | --- | --- | ---|
+| EDD[2] |x| 88.3 |x|
+| TableRec-RARE(ours) |73.8%| 93.32 |1180ms|
+| SLANet(ours) | 76.2%| 94.98 |590ms|
+
+The performance indicators are explained as follows:
+- Acc: The accuracy of the table structure in each image, a wrong token is considered an error.
+- TEDS: The accuracy of the model's restoration of table information. This indicator evaluates not only the table structure, but also the text content in the table.
+- Speed: The inference speed of a single image when the model runs on the CPU machine and MKL is enabled.
## 3. Result
diff --git a/ppstructure/table/README_ch.md b/ppstructure/table/README_ch.md
index 4f475185eb9a9c9c3a42d8582c4b4e65d716e01d..7ca85bde24107fa464c1fdd121513039bc82417c 100644
--- a/ppstructure/table/README_ch.md
+++ b/ppstructure/table/README_ch.md
@@ -36,11 +36,16 @@
我们在 PubTabNet[1] 评估数据集上对算法进行了评估,性能如下
-|算法|acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|
-| --- | --- | --- |
-| EDD[2] |x| 88.3 |
-| TableRec-RARE(ours) |73.8%| 93.32 |
-| SLANet(ours) | 76.2%| 94.98 |
+|算法|Acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|Speed|
+| --- | --- | --- | ---|
+| EDD[2] |x| 88.3 |x|
+| TableRec-RARE(ours) |73.8%| 93.32 |1180ms|
+| SLANet(ours) | 76.2%| 94.98 |590ms|
+
+性能指标解释如下:
+- Acc: 模型对每张图像里表格结构的识别准确率,错一个token就算错误。
+- TEDS: 模型对表格信息还原的准确度,此指标评价内容不仅包含表格结构,还包含表格内的文字内容。
+- Speed: 模型在CPU机器上,开启MKL的情况下,单张图片的推理速度。
## 3. 效果演示