未验证 提交 006d84bf 编写于 作者: 崔浩 提交者: GitHub

Merge branch 'PaddlePaddle:dygraph' into dygraph

......@@ -34,10 +34,10 @@ PPOCRLabel is a semi-automatic graphic annotation tool suitable for OCR field, w
pip3 install --upgrade pip
# If you have cuda9 or cuda10 installed on your machine, please run the following command to install
python3 -m pip install paddlepaddle-gpu==2.0.0 -i https://mirror.baidu.com/pypi/simple
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
# If you only have cpu on your machine, please run the following command to install
python3 -m pip install paddlepaddle==2.0.0 -i https://mirror.baidu.com/pypi/simple
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
```
For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation.
......
......@@ -37,11 +37,11 @@ PPOCRLabel是一款适用于OCR领域的半自动化图形标注工具,内置P
pip3 install --upgrade pip
如果您的机器安装的是CUDA9或CUDA10,请运行以下命令安装
python3 -m pip install paddlepaddle-gpu==2.0.0 -i https://mirror.baidu.com/pypi/simple
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
如果您的机器是CPU,请运行以下命令安装
python3 -m pip install paddlepaddle==2.0.0 -i https://mirror.baidu.com/pypi/simple
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
```
更多的版本需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
......
#!/bin/bash
function func_parser_key(){
strs=$1
IFS=":"
array=(${strs})
tmp=${array[0]}
echo ${tmp}
}
function func_parser_value(){
strs=$1
IFS=":"
array=(${strs})
tmp=${array[1]}
echo ${tmp}
}
function func_set_params(){
key=$1
value=$2
if [ ${key}x = "null"x ];then
echo " "
elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
echo " "
else
echo "${key}=${value}"
fi
}
function func_parser_params(){
strs=$1
IFS=":"
array=(${strs})
key=${array[0]}
tmp=${array[1]}
IFS="|"
res=""
for _params in ${tmp[*]}; do
IFS="="
array=(${_params})
mode=${array[0]}
value=${array[1]}
if [[ ${mode} = ${MODE} ]]; then
IFS="|"
#echo $(func_set_params "${mode}" "${value}")
echo $value
break
fi
IFS="|"
done
echo ${res}
}
function status_check(){
last_status=$1 # the exit code
run_command=$2
run_log=$3
if [ $last_status -eq 0 ]; then
echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
else
echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
fi
}
import numpy as np
import os
import subprocess
import json
import argparse
import glob
def init_args():
parser = argparse.ArgumentParser()
# params for testing assert allclose
parser.add_argument("--atol", type=float, default=1e-3)
parser.add_argument("--rtol", type=float, default=1e-3)
parser.add_argument("--gt_file", type=str, default="")
parser.add_argument("--log_file", type=str, default="")
parser.add_argument("--precision", type=str, default="fp32")
return parser
def parse_args():
parser = init_args()
return parser.parse_args()
def run_shell_command(cmd):
p = subprocess.Popen(
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
out, err = p.communicate()
if p.returncode == 0:
return out.decode('utf-8')
else:
return None
def parser_results_from_log_by_name(log_path, names_list):
if not os.path.exists(log_path):
raise ValueError("The log file {} does not exists!".format(log_path))
if names_list is None or len(names_list) < 1:
return []
parser_results = {}
for name in names_list:
cmd = "grep {} {}".format(name, log_path)
outs = run_shell_command(cmd)
outs = outs.split("\n")[0]
result = outs.split("{}".format(name))[-1]
try:
result = json.loads(result)
except:
result = np.array([int(r) for r in result.split()]).reshape(-1, 4)
parser_results[name] = result
return parser_results
def load_gt_from_file(gt_file):
if not os.path.exists(gt_file):
raise ValueError("The log file {} does not exists!".format(gt_file))
with open(gt_file, 'r') as f:
data = f.readlines()
f.close()
parser_gt = {}
for line in data:
image_name, result = line.strip("\n").split("\t")
image_name = image_name.split('/')[-1]
try:
result = json.loads(result)
except:
result = np.array([int(r) for r in result.split()]).reshape(-1, 4)
parser_gt[image_name] = result
return parser_gt
def load_gt_from_txts(gt_file):
gt_list = glob.glob(gt_file)
gt_collection = {}
for gt_f in gt_list:
gt_dict = load_gt_from_file(gt_f)
basename = os.path.basename(gt_f)
if "fp32" in basename:
gt_collection["fp32"] = [gt_dict, gt_f]
elif "fp16" in basename:
gt_collection["fp16"] = [gt_dict, gt_f]
elif "int8" in basename:
gt_collection["int8"] = [gt_dict, gt_f]
else:
continue
return gt_collection
def collect_predict_from_logs(log_path, key_list):
log_list = glob.glob(log_path)
pred_collection = {}
for log_f in log_list:
pred_dict = parser_results_from_log_by_name(log_f, key_list)
key = os.path.basename(log_f)
pred_collection[key] = pred_dict
return pred_collection
def testing_assert_allclose(dict_x, dict_y, atol=1e-7, rtol=1e-7):
for k in dict_x:
np.testing.assert_allclose(
np.array(dict_x[k]), np.array(dict_y[k]), atol=atol, rtol=rtol)
if __name__ == "__main__":
# Usage:
# python3.7 tests/compare_results.py --gt_file=./tests/results/*.txt --log_file=./tests/output/infer_*.log
args = parse_args()
gt_collection = load_gt_from_txts(args.gt_file)
key_list = gt_collection["fp32"][0].keys()
pred_collection = collect_predict_from_logs(args.log_file, key_list)
for filename in pred_collection.keys():
if "fp32" in filename:
gt_dict, gt_filename = gt_collection["fp32"]
elif "fp16" in filename:
gt_dict, gt_filename = gt_collection["fp16"]
elif "int8" in filename:
gt_dict, gt_filename = gt_collection["int8"]
else:
continue
pred_dict = pred_collection[filename]
try:
testing_assert_allclose(
gt_dict, pred_dict, atol=args.atol, rtol=args.rtol)
print(
"Assert allclose passed! The results of {} and {} are consistent!".
format(filename, gt_filename))
except Exception as E:
print(E)
raise ValueError(
"The results of {} and the results of {} are inconsistent!".
format(filename, gt_filename))
Global:
use_gpu: false
epoch_num: 5
log_smooth_window: 20
print_batch_step: 1
save_model_dir: ./output/db_mv3/
save_epoch_step: 1200
# evaluation is run every 2000 iterations
eval_batch_step: [0, 400]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Architecture:
model_type: det
algorithm: DB
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
disable_se: False
Neck:
name: DBFPN
out_channels: 256
Head:
name: DBHead
k: 50
Loss:
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam #Momentum
#momentum: 0.9
beta1: 0.9
beta2: 0.999
lr:
learning_rate: 0.001
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- Resize:
size: [640, 640]
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1
num_workers: 0
use_shared_memory: False
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
image_shape: [736, 1280]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 0
use_shared_memory: False
Global:
use_gpu: false
epoch_num: 5
log_smooth_window: 20
print_batch_step: 1
save_model_dir: ./output/db_mv3/
save_epoch_step: 1200
# evaluation is run every 2000 iterations
eval_batch_step: [0, 400]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Architecture:
model_type: det
algorithm: DB
Transform:
Backbone:
name: ResNet #MobileNetV3
layers: 50
Neck:
name: DBFPN
out_channels: 256
Head:
name: DBHead
k: 50
Loss:
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5 #5
beta: 10 #10
ohem_ratio: 3
Optimizer:
name: Adam #Momentum
#momentum: 0.9
beta1: 0.9
beta2: 0.999
lr:
learning_rate: 0.001
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- Resize:
# size: [640, 640]
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1
num_workers: 0
use_shared_memory: False
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
image_shape: [736, 1280]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 0
use_shared_memory: False
===========================train_params===========================
model_name:ocr_det
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_infer=1|whole_train_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_infer=2|whole_train_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train|pact_train|fpgm_train
norm_train:tools/train.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
pact_train:deploy/slim/quantization/quant.py -c tests/configs/det_mv3_db.yml -o
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c tests/configs/det_mv3_db.yml -o
quant_export:deploy/slim/quantization/export_model.py -c tests/configs/det_mv3_db.yml -o
fpgm_export:deploy/slim/prune/export_prune_model.py -c tests/configs/det_mv3_db.yml -o
distill_export:null
export1:null
export2:null
##
train_model:./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
===========================cpp_infer_params===========================
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_quant:False
inference:./deploy/cpp_infer/build/ppocr det
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
===========================serving_params===========================
model_name:ocr_det
python:python3.7
trans_model:-m paddle_serving_client.convert
--dirname:./inference/ch_ppocr_mobile_v2.0_det_infer/
--model_filename:inference.pdmodel
--params_filename:inference.pdiparams
--serving_server:./deploy/pdserving/ppocr_det_mobile_2.0_serving/
--serving_client:./deploy/pdserving/ppocr_det_mobile_2.0_client/
serving_dir:./deploy/pdserving
web_service:web_service_det.py --config=config.yml --opt op.det.concurrency=1
op.det.local_service_conf.devices:null|0
op.det.local_service_conf.use_mkldnn:True|False
op.det.local_service_conf.thread_num:1|6
op.det.local_service_conf.use_trt:False|True
op.det.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_http_client.py --image_dir=../../doc/imgs
===========================kl_quant_params===========================
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:True
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
null:null
===========================train_params===========================
model_name:ocr_server_det
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_infer=2|whole_train_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_infer=2|whole_train_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train|pact_train|fpgm_export
norm_train:tools/train.py -c tests/configs/det_r50_vd_db.yml -o
quant_export:deploy/slim/quantization/export_model.py -c tests/configs/det_r50_vd_db.yml -o
fpgm_export:deploy/slim/prune/export_prune_model.py -c tests/configs/det_r50_vd_db.yml -o
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c tests/configs/det_r50_vd_db.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c tests/configs/det_r50_vd_db.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
train_model:./inference/ch_ppocr_server_v2.0_det_train/best_accuracy
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
null:null
===========================cpp_infer_params===========================
use_opencv:True
infer_model:./inference/ch_ppocr_server_v2.0_det_infer/
infer_quant:False
inference:./deploy/cpp_infer/build/ppocr det
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
===========================serving_params===========================
model_name:ocr_det_server
python:python3.7
trans_model:-m paddle_serving_client.convert
--dirname:./inference/ch_ppocr_server_v2.0_det_infer/
--model_filename:inference.pdmodel
--params_filename:inference.pdiparams
--serving_server:./deploy/pdserving/ppocr_det_mobile_2.0_serving/
--serving_client:./deploy/pdserving/ppocr_det_mobile_2.0_client/
serving_dir:./deploy/pdserving
web_service:web_service_det.py --config=config.yml --opt op.det.concurrency=1
op.det.local_service_conf.devices:null|0
op.det.local_service_conf.use_mkldnn:True|False
op.det.local_service_conf.thread_num:1|6
op.det.local_service_conf.use_trt:False|True
op.det.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_http_client.py --image_dir=../../doc/imgs
===========================train_params===========================
model_name:ocr_rec
python:python3.7
gpu_list:0|2,3
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_infer=2|whole_train_infer=300
......@@ -9,7 +9,7 @@ Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_infer=128|whole_train_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/ic15_data/train
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train|pact_train
......@@ -41,7 +41,7 @@ inference:tools/infer/predict_rec.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
......@@ -49,3 +49,35 @@ inference:tools/infer/predict_rec.py
--save_log_path:./test/output/
--benchmark:True
null:null
===========================cpp_infer_params===========================
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_rec_infer/
infer_quant:False
inference:./deploy/cpp_infer/build/ppocr rec
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16
--rec_model_dir:
--image_dir:./inference/rec_inference/
null:null
--benchmark:True
===========================serving_params===========================
model_name:ocr_rec
python:python3.7
trans_model:-m paddle_serving_client.convert
--dirname:./inference/ch_ppocr_mobile_v2.0_rec_infer/
--model_filename:inference.pdmodel
--params_filename:inference.pdiparams
--serving_server:./deploy/pdserving/ppocr_rec_mobile_2.0_serving/
--serving_client:./deploy/pdserving/ppocr_rec_mobile_2.0_client/
serving_dir:./deploy/pdserving
web_service:web_service_rec.py --config=config.yml --opt op.rec.concurrency=1
op.rec.local_service_conf.devices:null|0
op.rec.local_service_conf.use_mkldnn:True|False
op.rec.local_service_conf.thread_num:1|6
op.rec.local_service_conf.use_trt:False|True
op.rec.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_http_client.py --image_dir=../../doc/imgs_words_en
===========================train_params===========================
model_name:ocr_server_rec
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_infer=2|whole_train_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_infer=128|whole_train_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train|pact_train
norm_train:tools/train.py -c tests/configs/rec_icdar15_r34_train.yml -o
pact_train:deploy/slim/quantization/quant.py -c tests/configs/rec_icdar15_r34_train.yml -o
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c tests/configs/rec_icdar15_r34_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c tests/configs/rec_icdar15_r34_train.yml -o
quant_export:deploy/slim/quantization/export_model.py -c tests/configs/rec_icdar15_r34_train.yml -o
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:./inference/ch_ppocr_server_v2.0_rec_infer/
infer_export:null
infer_quant:False
inference:tools/infer/predict_rec.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
===========================cpp_infer_params===========================
use_opencv:True
infer_model:./inference/ch_ppocr_server_v2.0_rec_infer/
infer_quant:False
inference:./deploy/cpp_infer/build/ppocr rec
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16
--rec_model_dir:
--image_dir:./inference/rec_inference/
null:null
--benchmark:True
===========================serving_params===========================
model_name:ocr_server_rec
python:python3.7
trans_model:-m paddle_serving_client.convert
--dirname:./inference/ch_ppocr_server_v2.0_rec_infer/
--model_filename:inference.pdmodel
--params_filename:inference.pdiparams
--serving_server:./deploy/pdserving/ppocr_rec_mobile_2.0_serving/
--serving_client:./deploy/pdserving/ppocr_rec_mobile_2.0_client/
serving_dir:./deploy/pdserving
web_service:web_service_rec.py --config=config.yml --opt op.rec.concurrency=1
op.rec.local_service_conf.devices:null|0
op.rec.local_service_conf.use_mkldnn:True|False
op.rec.local_service_conf.thread_num:1|6
op.rec.local_service_conf.use_trt:False|True
op.rec.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_http_client.py --image_dir=../../doc/imgs_words_en
===========================train_params===========================
model_name:ocr_det
model_name:ocr_system_mobile
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
gpu_list:null
Global.use_gpu:null
Global.auto_cast:null
Global.epoch_num:lite_train_infer=2|whole_train_infer=300
Global.epoch_num:null
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_infer=2|whole_train_infer=4
Train.loader.batch_size_per_card:null
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
train_model_name:null
train_infer_img_dir:null
null:null
##
trainer:norm_train|pact_train
norm_train:tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
pact_train:deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o
trainer:
norm_train:null
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c configs/det/det_mv3_db.yml -o
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o
quant_export:deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o
fpgm_export:deploy/slim/prune/export_prune_model.py
norm_export:null
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
......@@ -37,8 +37,8 @@ export2:null
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_export:null
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
inference:tools/infer/predict_system.py
--use_gpu:True
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
......@@ -48,5 +48,20 @@ inference:tools/infer/predict_det.py
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
null:null
--rec_model_dir:./inference/ch_ppocr_mobile_v2.0_rec_infer/
===========================cpp_infer_params===========================
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_quant:False
inference:./deploy/cpp_infer/build/ppocr system
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--rec_model_dir:./inference/ch_ppocr_mobile_v2.0_rec_infer/
--benchmark:True
===========================train_params===========================
model_name:ocr_system_server
python:python3.7
gpu_list:null
Global.use_gpu:null
Global.auto_cast:null
Global.epoch_num:null
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:null
Global.pretrained_model:null
train_model_name:null
train_infer_img_dir:null
null:null
##
trainer:
norm_train:null
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:null
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:./inference/ch_ppocr_server_v2.0_det_infer/
infer_export:null
infer_quant:False
inference:tools/infer/predict_system.py
--use_gpu:True
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
--rec_model_dir:./inference/ch_ppocr_server_v2.0_rec_infer/
===========================cpp_infer_params===========================
use_opencv:True
infer_model:./inference/ch_ppocr_server_v2.0_det_infer/
infer_quant:False
inference:./deploy/cpp_infer/build/ppocr system
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--rec_model_dir:./inference/ch_ppocr_server_v2.0_rec_infer/
--benchmark:True
\ No newline at end of file
Global:
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec/ic15/
save_epoch_step: 3
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir: ./
use_visualdl: False
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path: ppocr/utils/en_dict.txt
character_type: EN
max_text_length: 25
infer_mode: False
use_space_char: False
save_res_path: ./output/rec/predicts_ic15.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
learning_rate: 0.0005
regularizer:
name: 'L2'
factor: 0
Architecture:
model_type: rec
algorithm: CRNN
Transform:
Backbone:
name: ResNet
layers: 34
Neck:
name: SequenceEncoder
encoder_type: rnn
hidden_size: 256
Head:
name: CTCHead
fc_decay: 0
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ic15_data/
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [3, 32, 100]
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 256
drop_last: True
num_workers: 8
use_shared_memory: False
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ic15_data
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [3, 32, 100]
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 256
num_workers: 4
use_shared_memory: False
## 环境配置
本教程适用于PTDN目录下基础功能测试的运行环境搭建。
推荐环境:
- CUDA 10.1
- CUDNN 7.6
- TensorRT 6.1.0.5 / 7.1
推荐docker镜像安装,按照如下命令创建镜像,当前目录映射到镜像中的`/paddle`目录下
```
nvidia-docker run --name paddle -it -v $PWD:/paddle paddlepaddle/paddle:latest-dev-cuda10.1-cudnn7-gcc82 /bin/bash
cd /paddle
# 安装带TRT的paddle
pip3.7 install https://paddle-wheel.bj.bcebos.com/with-trt/2.1.3/linux-gpu-cuda10.1-cudnn7-mkl-gcc8.2-trt6-avx/paddlepaddle_gpu-2.1.3.post101-cp37-cp37m-linux_x86_64.whl
# 安装AutoLog
git clone https://github.com/LDOUBLEV/AutoLog
cd AutoLog
pip3.7 install -r requirements.txt
python3.7 setup.py bdist_wheel
pip3.7 install ./dist/auto_log-1.0.0-py3-none-any.whl
# 下载OCR代码
cd ../
git clone https://github.com/PaddlePaddle/PaddleOCR
```
安装PaddleOCR依赖:
```
cd PaddleOCR
pip3.7 install -r requirements.txt
```
## FAQ :
Q. You are using Paddle compiled with TensorRT, but TensorRT dynamic library is not found. Ignore this if TensorRT is not needed.
A. 问题一般是当前安装paddle版本带TRT,但是本地环境找不到TensorRT的预测库,需要下载TensorRT库,解压后设置环境变量LD_LIBRARY_PATH;
如:
```
export LD_LIBRARY_PATH=/usr/local/python3.7.0/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/paddle/package/TensorRT-6.0.1.5/lib
```
或者问题是下载的TensorRT版本和当前paddle中编译的TRT版本不匹配,需要下载版本相符的TRT。
# C++预测功能测试
C++预测功能测试的主程序为`test_inference_cpp.sh`,可以测试基于C++预测库的模型推理功能。
## 1. 测试结论汇总
基于训练是否使用量化,进行本测试的模型可以分为`正常模型``量化模型`,这两类模型对应的C++预测功能汇总如下:
| 模型类型 |device | batchsize | tensorrt | mkldnn | cpu多线程 |
| ---- | ---- | ---- | :----: | :----: | :----: |
| 正常模型 | GPU | 1/6 | fp32/fp16 | - | - |
| 正常模型 | CPU | 1/6 | - | fp32 | 支持 |
| 量化模型 | GPU | 1/6 | int8 | - | - |
| 量化模型 | CPU | 1/6 | - | int8 | 支持 |
## 2. 测试流程
### 2.1 功能测试
先运行`prepare.sh`准备数据和模型,然后运行`test_inference_cpp.sh`进行测试,最终在```tests/output```目录下生成`cpp_infer_*.log`后缀的日志文件。
```shell
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt "cpp_infer"
# 用法1:
bash tests/test_inference_cpp.sh ./tests/configs/ppocr_det_mobile_params.txt
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
bash tests/test_inference_cpp.sh ./tests/configs/ppocr_det_mobile_params.txt '1'
```
### 2.2 精度测试
使用compare_results.py脚本比较模型预测的结果是否符合预期,主要步骤包括:
- 提取日志中的预测坐标;
- 从本地文件中提取保存好的坐标结果;
- 比较上述两个结果是否符合精度预期,误差大于设置阈值时会报错。
#### 使用方式
运行命令:
```shell
python3.7 tests/compare_results.py --gt_file=./tests/results/cpp_*.txt --log_file=./tests/output/cpp_*.log --atol=1e-3 --rtol=1e-3
```
参数介绍:
- gt_file: 指向事先保存好的预测结果路径,支持*.txt 结尾,会自动索引*.txt格式的文件,文件默认保存在tests/result/ 文件夹下
- log_file: 指向运行tests/test.sh 脚本的infer模式保存的预测日志,预测日志中打印的有预测结果,比如:文本框,预测文本,类别等等,同样支持infer_*.log格式传入
- atol: 设置的绝对误差
- rtol: 设置的相对误差
#### 运行结果
正常运行效果如下图:
<img src="compare_cpp_right.png" width="1000">
出现不一致结果时的运行输出:
<img src="compare_cpp_wrong.png" width="1000">
## 3. 更多教程
本文档为功能测试用,更详细的c++预测使用教程请参考:[服务器端C++预测](https://github.com/PaddlePaddle/PaddleOCR/tree/dygraph/deploy/cpp_infer)
# 基础训练预测功能测试
基础训练预测功能测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
## 1. 测试结论汇总
- 训练相关:
| 算法名称 | 模型名称 | 单机单卡 | 单机多卡 | 多机多卡 | 模型压缩(单机多卡) |
| :---- | :---- | :---- | :---- | :---- | :---- |
| DB | ch_ppocr_mobile_v2.0_det| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:FPGM裁剪、PACT量化 <br> 离线量化(无需训练) |
| DB | ch_ppocr_server_v2.0_det| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:FPGM裁剪、PACT量化 <br> 离线量化(无需训练) |
| CRNN | ch_ppocr_mobile_v2.0_rec| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:PACT量化 <br> 离线量化(无需训练) |
| CRNN | ch_ppocr_server_v2.0_rec| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:PACT量化 <br> 离线量化(无需训练) |
|PP-OCR| ch_ppocr_mobile_v2.0| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | - |
|PP-OCR| ch_ppocr_server_v2.0| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | - |
|PP-OCRv2| ch_PP-OCRv2 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | - |
- 预测相关:基于训练是否使用量化,可以将训练产出的模型可以分为`正常模型``量化模型`,这两类模型对应的预测功能汇总如下,
| 模型类型 |device | batchsize | tensorrt | mkldnn | cpu多线程 |
| ---- | ---- | ---- | :----: | :----: | :----: |
| 正常模型 | GPU | 1/6 | fp32/fp16 | - | - |
| 正常模型 | CPU | 1/6 | - | fp32 | 支持 |
| 量化模型 | GPU | 1/6 | int8 | - | - |
| 量化模型 | CPU | 1/6 | - | int8 | 支持 |
## 2. 测试流程
### 2.1 安装依赖
- 安装PaddlePaddle >= 2.0
- 安装PaddleOCR依赖
```
pip3 install -r ../requirements.txt
```
- 安装autolog(规范化日志输出工具)
```
git clone https://github.com/LDOUBLEV/AutoLog
cd AutoLog
pip3 install -r requirements.txt
python3 setup.py bdist_wheel
pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl
cd ../
```
### 2.2 功能测试
先运行`prepare.sh`准备数据和模型,然后运行`test_train_inference_python.sh`进行测试,最终在```tests/output```目录下生成`python_infer_*.log`格式的日志文件。
`test_train_inference_python.sh`包含5种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
- 模式1:lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
```shell
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'lite_train_infer'
bash tests/test_train_inference_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'lite_train_infer'
```
- 模式2:whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
```shell
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_infer'
bash tests/test_train_inference_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_infer'
```
- 模式3:infer,不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
```shell
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer'
# 用法1:
bash tests/test_train_inference_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer'
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
bash tests/test_train_inference_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer' '1'
```
- 模式4:whole_train_infer,CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度;
```shell
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_train_infer'
bash tests/test_train_inference_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_train_infer'
```
- 模式5:klquant_infer,测试离线量化;
```shell
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'klquant_infer'
bash tests/test_train_inference_python.sh tests/configs/ppocr_det_mobile_params.txt 'klquant_infer'
```
### 2.3 精度测试
使用compare_results.py脚本比较模型预测的结果是否符合预期,主要步骤包括:
- 提取日志中的预测坐标;
- 从本地文件中提取保存好的坐标结果;
- 比较上述两个结果是否符合精度预期,误差大于设置阈值时会报错。
#### 使用方式
运行命令:
```shell
python3.7 tests/compare_results.py --gt_file=./tests/results/python_*.txt --log_file=./tests/output/python_*.log --atol=1e-3 --rtol=1e-3
```
参数介绍:
- gt_file: 指向事先保存好的预测结果路径,支持*.txt 结尾,会自动索引*.txt格式的文件,文件默认保存在tests/result/ 文件夹下
- log_file: 指向运行tests/test.sh 脚本的infer模式保存的预测日志,预测日志中打印的有预测结果,比如:文本框,预测文本,类别等等,同样支持infer_*.log格式传入
- atol: 设置的绝对误差
- rtol: 设置的相对误差
#### 运行结果
正常运行效果如下图:
<img src="compare_right.png" width="1000">
出现不一致结果时的运行输出:
<img src="compare_wrong.png" width="1000">
## 3. 更多教程
本文档为功能测试用,更丰富的训练预测使用教程请参考:
[模型训练](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/training.md)
[基于Python预测引擎推理](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/inference.md)
#!/bin/bash
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer',
# 'cpp_infer', 'serving_infer', 'klquant_infer']
MODE=$2
dataline=$(cat ${FILENAME})
......@@ -34,14 +37,19 @@ MODE=$2
if [ ${MODE} = "lite_train_infer" ];then
# pretrain lite train data
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar
cd ./pretrain_models/ && tar xf det_mv3_db_v2.0_train.tar && cd ../
rm -rf ./train_data/icdar2015
rm -rf ./train_data/ic15_data
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar # todo change to bcebos
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
wget -nc -P ./deploy/slim/prune https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/sen.pickle
cd ./train_data/ && tar xf icdar2015_lite.tar && tar xf ic15_data.tar
ln -s ./icdar2015_lite ./icdar2015
cd ../
cd ./inference && tar xf rec_inference.tar && cd ../
elif [ ${MODE} = "whole_train_infer" ];then
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
rm -rf ./train_data/icdar2015
......@@ -58,19 +66,73 @@ elif [ ${MODE} = "whole_infer" ];then
cd ./train_data/ && tar xf icdar2015_infer.tar && tar xf ic15_data.tar
ln -s ./icdar2015_infer ./icdar2015
cd ../
else
elif [ ${MODE} = "infer" ];then
if [ ${model_name} = "ocr_det" ]; then
eval_model_name="ch_ppocr_mobile_v2.0_det_infer"
eval_model_name="ch_ppocr_mobile_v2.0_det_train"
rm -rf ./train_data/icdar2015
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../
else
elif [ ${model_name} = "ocr_server_det" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
cd ./inference && tar xf ch_ppocr_server_v2.0_det_train.tar && tar xf ch_det_data_50.tar && cd ../
elif [ ${model_name} = "ocr_system_mobile" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../
elif [ ${model_name} = "ocr_system_server" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar
cd ./inference && tar xf ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../
elif [ ${model_name} = "ocr_rec" ]; then
rm -rf ./train_data/ic15_data
eval_model_name="ch_ppocr_mobile_v2.0_rec_infer"
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
cd ./inference && tar xf ${eval_model_name}.tar && tar xf ic15_data.tar && cd ../
cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../
elif [ ${model_name} = "ocr_server_rec" ]; then
rm -rf ./train_data/ic15_data
eval_model_name="ch_ppocr_server_v2.0_rec_infer"
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar
cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../
fi
elif [ ${MODE} = "klquant_infer" ];then
if [ ${model_name} = "ocr_det" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_det_data_50.tar && cd ../
fi
elif [ ${MODE} = "cpp_infer" ];then
if [ ${model_name} = "ocr_det" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_det_data_50.tar && cd ../
elif [ ${model_name} = "ocr_rec" ]; then
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
cd ./inference && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf rec_inference.tar && cd ../
elif [ ${model_name} = "ocr_system" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../
fi
fi
if [ ${MODE} = "serving_infer" ];then
# prepare serving env
python_name=$(func_parser_value "${lines[2]}")
wget https://paddle-serving.bj.bcebos.com/chain/paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl
${python_name} -m pip install install paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl
${python_name} -m pip install paddle_serving_client==0.6.1
${python_name} -m pip install paddle-serving-app==0.6.3
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_ppocr_server_v2.0_det_infer.tar && cd ../
fi
# 推理部署导航
## 1. 简介
飞桨除了基本的模型训练和预测,还提供了支持多端多平台的高性能推理部署工具。本文档提供了PaddleOCR中所有模型的推理部署导航PTDN(Paddle Train Deploy Navigation),方便用户查阅每种模型的推理部署打通情况,并可以进行一键测试。
<div align="center">
<img src="docs/guide.png" width="1000">
</div>
## 2. 汇总信息
打通情况汇总如下,已填写的部分表示可以使用本工具进行一键测试,未填写的表示正在支持中。
**字段说明:**
- 基础训练预测:包括模型训练、Paddle Inference Python预测。
- 更多训练方式:包括多机多卡、混合精度。
- 模型压缩:包括裁剪、离线/在线量化、蒸馏。
- 其他预测部署:包括Paddle Inference C++预测、Paddle Serving部署、Paddle-Lite部署等。
更详细的mkldnn、Tensorrt等预测加速相关功能的支持情况可以查看各测试工具的[更多教程](#more)
| 算法论文 | 模型名称 | 模型类型 | 基础<br>训练预测 | 更多<br>训练方式 | 模型压缩 | 其他预测部署 |
| :--- | :--- | :----: | :--------: | :---- | :---- | :---- |
| DB |ch_ppocr_mobile_v2.0_det | 检测 | 支持 | 多机多卡 <br> 混合精度 | FPGM裁剪 <br> 离线量化| Paddle Inference: C++ <br> Paddle Serving: Python, C++ <br> Paddle-Lite: <br> (1) ARM CPU(C++) |
| DB |ch_ppocr_server_v2.0_det | 检测 | 支持 | 多机多卡 <br> 混合精度 | FPGM裁剪 <br> 离线量化| Paddle Inference: C++ <br> Paddle Serving: Python, C++ <br> Paddle-Lite: <br> (1) ARM CPU(C++) |
| DB |ch_PP-OCRv2_det | 检测 |
| CRNN |ch_ppocr_mobile_v2.0_rec | 识别 | 支持 | 多机多卡 <br> 混合精度 | PACT量化 <br> 离线量化| Paddle Inference: C++ <br> Paddle Serving: Python, C++ <br> Paddle-Lite: <br> (1) ARM CPU(C++) |
| CRNN |ch_ppocr_server_v2.0_rec | 识别 | 支持 | 多机多卡 <br> 混合精度 | PACT量化 <br> 离线量化| Paddle Inference: C++ <br> Paddle Serving: Python, C++ <br> Paddle-Lite: <br> (1) ARM CPU(C++) |
| CRNN |ch_PP-OCRv2_rec | 识别 |
| PP-OCR |ch_ppocr_mobile_v2.0 | 检测+识别 | 支持 | 多机多卡 <br> 混合精度 | - | Paddle Inference: C++ <br> Paddle Serving: Python, C++ <br> Paddle-Lite: <br> (1) ARM CPU(C++) |
| PP-OCR |ch_ppocr_server_v2.0 | 检测+识别 | 支持 | 多机多卡 <br> 混合精度 | - | Paddle Inference: C++ <br> Paddle Serving: Python, C++ <br> Paddle-Lite: <br> (1) ARM CPU(C++) |
|PP-OCRv2|ch_PP-OCRv2 | 检测+识别 |
| DB |det_mv3_db_v2.0 | 检测 |
| DB |det_r50_vd_db_v2.0 | 检测 |
| EAST |det_mv3_east_v2.0 | 检测 |
| EAST |det_r50_vd_east_v2.0 | 检测 |
| PSENet |det_mv3_pse_v2.0 | 检测 |
| PSENet |det_r50_vd_pse_v2.0 | 检测 |
| SAST |det_r50_vd_sast_totaltext_v2.0 | 检测 |
| Rosetta|rec_mv3_none_none_ctc_v2.0 | 识别 |
| Rosetta|rec_r34_vd_none_none_ctc_v2.0 | 识别 |
| CRNN |rec_mv3_none_bilstm_ctc_v2.0 | 识别 |
| CRNN |rec_r34_vd_none_bilstm_ctc_v2.0| 识别 |
| StarNet|rec_mv3_tps_bilstm_ctc_v2.0 | 识别 |
| StarNet|rec_r34_vd_tps_bilstm_ctc_v2.0 | 识别 |
| RARE |rec_mv3_tps_bilstm_att_v2.0 | 识别 |
| RARE |rec_r34_vd_tps_bilstm_att_v2.0 | 识别 |
| SRN |rec_r50fpn_vd_none_srn | 识别 |
| NRTR |rec_mtb_nrtr | 识别 |
| SAR |rec_r31_sar | 识别 |
| PGNet |rec_r34_vd_none_none_ctc_v2.0 | 端到端|
## 3. 一键测试工具使用
### 目录介绍
```shell
PTDN/
├── configs/ # 配置文件目录
├── det_mv3_db.yml # 测试mobile版ppocr检测模型训练的yml文件
├── det_r50_vd_db.yml # 测试server版ppocr检测模型训练的yml文件
├── rec_icdar15_r34_train.yml # 测试server版ppocr识别模型训练的yml文件
├── ppocr_sys_mobile_params.txt # 测试mobile版ppocr检测+识别模型串联的参数配置文件
├── ppocr_det_mobile_params.txt # 测试mobile版ppocr检测模型的参数配置文件
├── ppocr_rec_mobile_params.txt # 测试mobile版ppocr识别模型的参数配置文件
├── ppocr_sys_server_params.txt # 测试server版ppocr检测+识别模型串联的参数配置文件
├── ppocr_det_server_params.txt # 测试server版ppocr检测模型的参数配置文件
├── ppocr_rec_server_params.txt # 测试server版ppocr识别模型的参数配置文件
├── ...
├── results/ # 预先保存的预测结果,用于和实际预测结果进行精读比对
├── python_ppocr_det_mobile_results_fp32.txt # 预存的mobile版ppocr检测模型python预测fp32精度的结果
├── python_ppocr_det_mobile_results_fp16.txt # 预存的mobile版ppocr检测模型python预测fp16精度的结果
├── cpp_ppocr_det_mobile_results_fp32.txt # 预存的mobile版ppocr检测模型c++预测的fp32精度的结果
├── cpp_ppocr_det_mobile_results_fp16.txt # 预存的mobile版ppocr检测模型c++预测的fp16精度的结果
├── ...
├── prepare.sh # 完成test_*.sh运行所需要的数据和模型下载
├── test_train_inference_python.sh # 测试python训练预测的主程序
├── test_inference_cpp.sh # 测试c++预测的主程序
├── test_serving.sh # 测试serving部署预测的主程序
├── test_lite.sh # 测试lite部署预测的主程序
├── compare_results.py # 用于对比log中的预测结果与results中的预存结果精度误差是否在限定范围内
└── readme.md # 使用文档
```
### 测试流程
使用本工具,可以测试不同功能的支持情况,以及预测结果是否对齐,测试流程如下:
<div align="center">
<img src="docs/test.png" width="800">
</div>
1. 运行prepare.sh准备测试所需数据和模型;
2. 运行要测试的功能对应的测试脚本`test_*.sh`,产出log,由log可以看到不同配置是否运行成功;
3.`compare_results.py`对比log中的预测结果和预存在results目录下的结果,判断预测精度是否符合预期(在误差范围内)。
其中,有4个测试主程序,功能如下:
- `test_train_inference_python.sh`:测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
- `test_inference_cpp.sh`:测试基于C++的模型推理。
- `test_serving.sh`:测试基于Paddle Serving的服务化部署功能。
- `test_lite.sh`:测试基于Paddle-Lite的端侧预测部署功能。
<a name="more"></a>
#### 更多教程
各功能测试中涉及混合精度、裁剪、量化等训练相关,及mkldnn、Tensorrt等多种预测相关参数配置,请点击下方相应链接了解更多细节和使用教程:
[test_train_inference_python 使用](docs/test_train_inference_python.md)
[test_inference_cpp 使用](docs/test_inference_cpp.md)
[test_serving 使用](docs/test_serving.md)
[test_lite 使用](docs/test_lite.md)
../../inference/ch_det_data_50/all-sum-510/00008790.jpg 208 404 282 404 282 421 208 421 58 396 107 396 107 413 58 413 197 387 296 387 296 403 197 403 161 389 174 389 174 402 161 402 34 378 134 378 134 394 34 394 323 377 329 377 329 382 323 382 199 370 292 370 292 383 199 383 216 309 274 309 274 325 216 325 161 304 173 304 173 315 161 315 370 301 437 301 437 317 370 317 30 301 135 300 135 316 30 317 221 291 270 291 270 308 221 308 58 224 106 224 106 238 58 238 216 222 274 222 274 239 216 239 161 217 174 217 174 229 161 229 33 205 133 205 133 221 33 221 221 204 270 204 270 221 221 221 73 145 385 145 385 162 73 162 52 119 119 119 119 135 52 135 72 50 296 50 296 66 72 66 54 15 118 15 118 32 54 32
../../inference/ch_det_data_50/all-sum-510/00018946.jpg 439 327 476 327 476 341 439 341 85 284 142 284 142 308 85 308 300 278 380 278 380 299 300 299 195 262 287 275 284 299 192 286 196 196 454 218 452 244 194 222 343 182 376 182 376 193 343 193 198 162 341 169 340 195 197 188 176 130 381 145 380 165 175 150 176 100 417 118 415 148 174 130
../../inference/ch_det_data_50/all-sum-510/00034387.jpg 263 459 741 459 741 485 263 485 346 415 421 415 421 444 346 444 544 418 568 418 568 442 544 442 684 415 712 415 712 444 684 444 173 413 228 413 228 444 173 444 872 412 910 412 910 447 872 447 55 415 76 415 76 443 55 443 855 371 927 371 927 401 855 401 347 371 420 371 420 400 347 400 672 370 725 370 725 402 672 402 537 371 571 371 571 401 537 401 136 364 230 367 229 403 135 400 55 370 76 370 76 399 55 399 856 328 927 328 927 358 856 358 350 328 420 328 420 358 350 358 672 326 725 326 725 358 672 358 539 327 571 327 571 359 539 359 170 326 229 323 231 357 171 359 56 328 76 328 76 358 56 358 297 326 316 326 316 334 297 334 854 284 927 284 927 314 854 314 672 284 725 284 725 315 672 315 344 284 431 282 432 315 345 317 537 283 570 283 570 314 537 314 170 281 228 281 228 315 170 315 55 285 75 285 75 314 55 314 856 241 927 241 927 270 856 270 346 240 464 240 464 271 346 271 154 241 228 241 228 271 154 271 672 240 726 240 726 271 672 271 530 240 573 240 573 272 530 272 55 241 76 241 76 270 55 270 854 196 927 198 926 228 853 225 672 197 728 197 728 228 672 228 342 199 439 194 441 224 344 230 175 196 229 196 229 226 175 226 55 199 75 199 75 228 55 228 526 193 578 193 578 228 526 228 347 154 420 154 420 182 347 182 853 153 927 153 927 181 853 181 175 153 228 153 228 184 175 184 668 152 725 152 725 182 668 182 536 153 572 153 572 183 536 183 55 155 76 155 76 183 55 183 347 109 420 109 420 138 347 138 172 109 229 109 229 140 172 140 544 111 565 111 565 138 544 138 51 110 77 110 77 140 51 140 639 105 729 105 729 141 639 141 815 101 929 109 927 141 813 133 812 65 953 65 953 93 812 93 305 64 447 66 447 94 305 92 671 65 725 65 725 95 671 95 173 64 229 66 228 96 172 94 37 64 91 66 90 98 36 96 527 63 581 63 581 95 527 95 333 18 671 18 671 45 333 45
../../inference/ch_det_data_50/all-sum-510/00037951.jpg 432 973 552 977 552 994 432 991 431 931 554 931 554 970 431 970 29 520 101 520 101 546 29 546 29 441 146 441 146 465 29 465 233 333 328 331 328 356 233 358 121 250 439 250 439 287 121 287 180 205 380 205 380 229 180 229 255 104 323 121 307 184 239 166 35 57 147 57 147 82 35 82
../../inference/ch_det_data_50/all-sum-510/00044782.jpg 222 214 247 214 247 230 222 230 162 214 183 214 183 231 162 231 122 190 216 190 216 203 122 203 90 82 252 82 252 100 90 100 70 61 279 61 279 78 70 78 103 14 244 14 244 46 103 46
../../inference/ch_det_data_50/all-sum-510/00067516.jpg 139 806 596 807 596 824 139 823 46 782 699 782 699 800 46 800 577 749 669 749 669 766 577 766 353 748 397 748 397 769 353 769 220 749 261 749 261 767 220 767 475 748 502 748 502 769 475 769 68 746 134 749 133 766 67 763 574 680 670 680 670 700 574 700 474 680 519 680 519 701 474 701 352 680 397 680 397 701 352 701 68 679 134 682 133 700 67 697 219 678 245 681 242 702 216 698 575 614 669 614 669 633 575 633 66 612 135 614 135 633 66 631 474 613 501 613 501 633 474 633 353 613 379 613 379 634 353 634 219 612 245 612 245 633 219 633 576 546 669 546 669 566 576 566 474 545 519 545 519 566 474 566 351 544 381 544 381 567 351 567 219 545 245 545 245 566 219 566 67 541 134 544 133 565 66 562 67 477 134 480 133 501 66 498 584 479 666 479 666 499 584 499 474 478 519 478 519 500 474 500 352 478 397 478 397 500 352 500 218 477 246 477 246 502 218 502 579 424 666 427 665 451 578 448 344 428 410 428 410 449 344 449 66 425 151 427 151 451 66 449 473 427 515 427 515 450 473 450 218 427 259 427 259 450 218 450 282 396 479 397 479 420 282 419 83 316 667 316 667 335 83 335 64 277 666 277 666 292 64 292 456 209 585 209 585 226 456 226 311 208 373 208 373 227 311 227 163 208 227 208 227 227 163 227 504 150 541 150 541 168 504 168 264 47 485 47 485 69 264 69
../../inference/ch_det_data_50/all-sum-510/00088568.jpg 57 443 119 443 119 456 57 456 309 413 744 413 744 430 309 430 309 375 737 375 737 392 309 392 415 337 559 337 559 351 415 351 307 322 674 321 674 338 307 339 275 292 348 294 348 313 275 311 52 285 210 285 210 301 52 301 273 262 421 262 421 279 273 279 55 262 249 262 249 279 55 279 669 247 697 247 697 262 669 262 601 247 629 247 629 262 601 262 531 247 559 247 559 262 531 262 461 247 489 247 489 262 461 262 277 247 310 247 310 261 277 261 55 240 142 240 142 254 55 254 276 230 400 230 400 246 276 246 741 227 749 237 741 246 732 237 665 230 701 230 701 245 665 245 598 230 631 230 631 245 598 245 527 230 563 230 563 245 527 245 458 230 493 230 493 245 458 245 52 213 212 215 212 233 52 231 732 214 747 214 747 227 732 227 662 212 706 212 706 230 662 230 594 213 638 213 638 227 594 227 522 213 570 213 570 227 522 227 453 213 497 213 497 227 453 227 278 213 352 213 352 227 278 227 734 198 748 198 748 210 734 210 667 196 702 196 702 210 667 210 599 196 633 196 633 211 599 211 527 196 564 196 564 210 527 210 459 196 493 196 493 210 459 210 276 194 418 195 418 212 276 211 54 190 241 190 241 207 54 207 664 179 705 179 705 194 664 194 278 178 352 180 352 195 278 193 733 179 747 179 747 194 733 194 596 178 635 178 635 193 596 193 523 177 567 177 567 195 523 195 456 178 495 178 495 193 456 193 55 170 142 170 142 184 55 184 733 164 748 164 748 176 733 176 664 162 705 162 705 176 664 176 597 162 635 162 635 176 597 176 525 162 566 162 566 176 525 176 456 162 494 162 494 176 456 176 277 160 399 160 399 176 277 176 54 146 149 146 149 161 54 161 452 145 497 145 497 160 452 160 729 144 748 144 748 162 729 162 662 143 706 143 706 161 662 161 595 144 636 144 636 159 595 159 521 143 566 141 567 159 522 161 277 143 310 143 310 159 277 159 275 120 430 120 430 140 275 140 50 119 234 120 234 140 50 139 402 90 703 90 703 107 402 107 46 78 282 78 282 98 46 98 324 67 745 68 745 86 324 85 667 47 744 47 744 64 667 64 295 47 435 47 435 63 295 63 64 30 232 27 233 65 65 68
../../inference/ch_det_data_50/all-sum-510/00091741.jpg 46 335 87 335 87 360 46 360 98 209 258 209 258 232 98 232 101 189 258 190 258 206 101 205 87 99 268 97 269 184 88 186 92 45 266 53 263 117 89 109 89 10 258 12 258 38 89 36
../../inference/ch_det_data_50/all-sum-510/00105313.jpg 289 261 407 261 407 277 289 277 152 260 265 260 265 276 152 276 10 257 74 259 74 276 10 274 32 230 134 230 134 245 32 245 34 215 218 215 218 228 34 228 32 199 148 199 148 214 32 214 31 181 217 182 217 199 31 198 34 169 107 169 107 182 34 182 34 153 126 153 126 166 34 166 33 136 144 137 144 150 33 149 34 122 177 122 177 135 34 135 32 104 178 104 178 120 32 120 32 91 102 91 102 104 32 104 33 75 121 75 121 88 33 88 32 60 121 60 121 73 32 73 34 44 121 44 121 57 34 57 31 28 144 28 144 43 31 43 177 20 415 15 416 51 178 56 24 10 152 10 152 26 24 26
../../inference/ch_det_data_50/all-sum-510/00134770.jpg 386 645 457 645 457 658 386 658 406 618 486 616 486 634 406 636 111 533 272 530 272 550 111 553 110 501 445 496 445 516 110 521 110 469 445 465 445 485 110 489 110 438 446 433 446 453 110 458 109 407 445 403 445 423 109 427 151 375 443 372 443 392 151 395 183 336 371 334 371 358 183 360 73 96 517 101 516 220 72 215
../../inference/ch_det_data_50/all-sum-510/00145943.jpg 390 243 751 274 735 454 375 423 88 90 302 90 302 121 88 121 43 40 329 37 329 78 43 81
../../inference/ch_det_data_50/all-sum-510/00147605.jpg 800 613 878 613 878 627 800 627 514 605 786 604 786 629 514 630 116 521 226 521 226 561 116 561 252 522 309 522 309 558 252 558 713 500 902 503 902 539 713 536 254 501 296 501 296 519 254 519 345 479 475 479 475 517 345 517 251 483 296 483 296 501 251 501 350 456 447 456 447 471 350 471 143 442 203 442 203 469 143 469 727 370 880 370 880 422 727 422 526 369 684 369 684 421 526 421 140 367 490 367 490 423 140 423 742 313 872 313 872 338 742 338 798 155 888 155 888 192 798 192 272 140 457 140 457 161 272 161 737 114 895 118 894 158 736 155 107 110 206 110 206 131 107 131 268 92 464 94 464 134 268 131
../../inference/ch_det_data_50/all-sum-510/00150341.jpg 98 640 300 640 300 664 98 664 113 615 289 615 289 633 113 633 82 591 320 590 320 611 82 612 30 563 315 561 315 582 30 584 30 513 169 513 169 531 30 531 32 488 111 488 111 506 32 506 357 458 465 461 464 486 356 483 26 458 271 459 271 483 26 482 338 438 423 442 422 461 337 457 64 437 145 437 145 455 64 455 205 414 293 414 293 436 205 436 318 407 442 411 441 439 317 435 42 404 176 407 176 435 42 432 28 381 137 381 137 405 28 405
../../inference/ch_det_data_50/all-sum-510/00150669.jpg 647 698 683 698 683 718 647 718 515 684 551 684 551 721 515 721 650 687 680 687 680 702 650 702 920 673 938 673 938 686 920 686 518 670 548 670 548 690 518 690 785 670 808 670 808 688 785 688 590 670 608 670 608 688 590 688 732 665 745 679 732 692 718 679 652 668 680 668 680 689 652 689 271 665 423 665 423 690 271 690 45 666 110 666 110 688 45 688 130 664 205 664 205 690 130 690 781 628 812 628 812 663 781 663 643 626 687 626 687 666 643 666 514 627 550 627 550 665 514 665 654 617 673 617 673 629 654 629 521 617 541 617 541 629 521 629 858 617 868 617 868 628 858 628 727 617 736 617 736 628 727 628 920 614 940 614 940 631 920 631 785 614 807 614 807 631 785 631 371 603 421 603 421 620 371 620 83 600 216 603 216 624 83 620 46 602 72 602 72 623 46 623 780 569 817 573 813 610 776 606 922 559 936 559 936 575 922 575 856 559 869 559 869 575 856 575 61 552 411 552 411 569 61 569 61 531 117 533 117 547 61 545 859 527 868 527 868 539 859 539 923 525 936 525 936 542 923 542 787 524 807 524 807 540 787 540 526 526 536 526 536 536 526 536 261 511 396 511 396 528 261 528 120 512 246 512 246 526 120 526 47 512 120 512 120 527 47 527 753 491 829 491 829 508 753 508 636 491 712 491 712 508 636 508 517 491 593 491 593 508 517 508 84 448 125 448 125 463 84 463 221 448 238 448 238 462 221 462 682 444 869 444 869 461 682 461 561 444 667 444 667 461 561 461 489 445 545 445 545 459 489 459 183 437 209 437 209 459 183 459 52 429 73 437 64 464 42 456 222 430 278 430 278 445 222 445 86 430 145 430 145 445 86 445 505 382 617 381 617 398 505 399 701 380 758 380 758 398 701 398 307 371 365 371 365 386 307 386 90 371 168 371 168 386 90 386 686 334 821 334 821 352 686 352 496 333 659 333 659 350 496 350 207 314 245 314 245 333 207 333 497 287 642 287 642 304 497 304 670 286 804 286 804 304 670 304 668 239 817 239 817 257 668 257 495 239 644 239 644 257 495 257 668 193 816 193 816 209 668 209 496 192 644 192 644 208 496 208 668 144 816 144 816 161 668 161 497 144 646 144 646 161 497 161 488 102 546 102 546 121 488 121 845 21 900 21 900 43 845 43 25 18 702 18 702 39 25 39 896 10 997 14 996 46 895 42
../../inference/ch_det_data_50/all-sum-510/00152568.jpg 2 250 285 252 285 281 2 279 195 231 255 231 255 241 195 241 198 158 282 164 277 230 193 224 177 148 251 148 251 161 177 161
../../inference/ch_det_data_50/all-sum-510/00155628.jpg 147 898 506 901 506 925 147 922 519 892 562 894 561 912 518 910 59 884 83 884 83 895 59 895 148 877 505 881 505 902 148 897 523 833 641 837 640 858 522 854 68 832 187 834 187 855 68 853 245 554 468 554 468 570 245 570 307 506 405 508 405 526 307 523 243 481 460 483 460 504 243 502 250 420 460 422 460 454 250 452 193 377 518 379 518 410 193 408 473 194 625 194 625 212 473 212 70 127 643 129 643 163 70 161 478 39 599 35 602 101 481 105 67 23 136 14 140 44 71 54
../../inference/ch_det_data_50/all-sum-510/00173364.jpg 7 176 59 176 59 201 7 201 135 118 196 118 196 135 135 135 38 75 87 75 87 105 38 105 249 19 313 19 313 38 249 38 19 15 105 15 105 40 19 40
../../inference/ch_det_data_50/all-sum-510/00175503.jpg 39 256 503 252 504 362 40 366 49 198 351 175 357 253 55 276
../../inference/ch_det_data_50/all-sum-510/00193218.jpg 282 373 411 373 411 389 282 389 170 373 223 373 223 390 170 390 108 373 162 373 162 390 108 390 276 357 358 357 358 371 276 371 169 357 222 357 222 371 169 371 106 356 175 356 175 373 106 373 408 356 493 356 493 370 408 370 24 185 64 185 64 203 24 203 500 184 558 184 558 201 500 201 379 185 421 183 422 200 380 202 283 184 311 184 311 202 283 202 173 185 197 185 197 201 173 201 498 163 544 163 544 177 498 177 379 162 412 162 412 177 379 177 261 161 303 161 303 178 261 178 174 161 231 161 231 178 174 178 24 161 80 161 80 178 24 178 385 139 489 139 489 155 385 155 26 137 133 137 133 153 26 153 442 115 538 117 538 134 442 132 345 117 406 117 406 131 345 131 259 117 303 117 303 131 259 131 28 112 229 114 229 132 28 130 130 90 395 93 395 110 130 107 560 81 585 81 585 109 560 109
../../inference/ch_det_data_50/all-sum-510/00195033.jpg 221 302 240 302 240 309 221 309 487 262 534 264 533 282 486 280 125 249 194 249 194 285 125 285 336 248 364 248 364 268 336 268 317 221 381 223 381 240 317 238 431 224 450 224 450 236 431 236 360 202 539 202 539 218 360 218 87 199 148 201 148 218 87 216 371 181 450 181 450 195 371 195 327 180 354 180 354 194 327 194 94 178 241 178 241 195 94 195 431 159 559 159 559 175 431 175 128 148 289 149 289 166 128 165 35 145 75 148 74 163 34 160 487 146 501 146 501 153 487 153 100 143 122 143 122 154 100 154 370 127 505 126 505 140 370 141 98 125 194 125 194 139 98 139 320 125 338 125 338 136 320 136 35 121 78 121 78 135 35 135 322 104 338 104 338 116 322 116 371 101 503 101 503 117 371 117 348 103 362 103 362 115 348 115 37 101 81 101 81 114 37 114 97 98 207 99 207 116 97 115 305 89 317 89 317 97 305 97 346 86 364 86 364 97 346 97 319 85 342 85 342 100 319 100 357 82 515 80 515 96 357 98 40 81 90 81 90 94 40 94 92 77 242 78 242 95 92 94 312 65 394 65 394 79 312 79 240 64 290 64 290 78 240 78 183 52 222 52 222 66 183 66 468 47 547 47 547 61 468 61 422 34 438 34 438 55 422 55 464 29 551 29 551 43 464 43 206 19 330 21 330 42 206 40
../../inference/ch_det_data_50/all-sum-510/00208502.jpg 556 535 630 535 630 569 556 569 204 537 284 537 284 552 204 552 142 512 191 512 191 526 142 526 248 511 309 511 309 525 248 525 41 499 118 499 118 520 41 520 465 490 558 490 558 510 465 510 666 489 680 493 677 505 662 501 724 490 739 490 739 503 724 503 40 450 118 448 118 469 40 471 173 448 237 448 237 465 173 465 93 403 121 403 121 424 93 424 38 403 63 403 63 424 38 424 214 392 232 405 220 422 203 409 39 357 58 357 58 375 39 375 92 355 121 355 121 375 92 375 187 339 248 337 249 363 188 365 458 319 551 317 551 338 458 340 457 271 553 271 553 292 457 292 562 271 737 267 737 288 562 292 516 225 548 225 548 245 516 245 620 185 675 185 675 202 620 202 456 130 550 128 550 149 456 151 571 104 789 98 789 121 571 127 121 46 291 46 291 99 121 99 536 36 710 36 710 92 536 92
../../inference/ch_det_data_50/all-sum-510/00224225.jpg 135 426 157 426 157 449 135 449 199 402 480 408 479 461 198 455 200 225 474 225 474 394 200 394 130 264 174 264 174 281 130 281 343 205 458 205 458 232 343 232 197 186 349 194 346 242 194 234 7 41 160 39 161 115 8 117
../../inference/ch_det_data_50/all-sum-510/00227746.jpg 142 230 210 230 210 240 142 240 71 230 130 230 130 240 71 240 215 228 386 228 386 240 215 240 290 208 347 208 347 224 290 224 142 179 165 181 162 209 139 208 172 179 250 179 250 195 172 195 171 152 347 152 347 167 171 167 143 110 279 112 279 135 143 132 202 53 387 53 387 69 202 69 141 47 193 47 193 64 141 64
../../inference/ch_det_data_50/all-sum-510/00229605.jpg 742 528 882 528 882 545 742 545 232 497 590 496 590 524 232 525 5 496 229 496 229 524 5 524 733 494 884 497 884 522 733 519 605 493 718 488 719 517 606 522 2 242 865 227 866 291 3 305 477 26 884 26 884 77 477 77
../../inference/ch_det_data_50/all-sum-510/00233011.jpg 61 225 293 225 293 243 61 243 11 218 43 218 43 252 11 252 60 177 120 177 120 196 60 196 11 169 44 169 44 204 11 204 59 127 149 129 149 148 59 146 11 123 45 123 45 156 11 156 124 86 239 86 239 104 124 104 147 49 218 49 218 67 147 67 257 44 354 47 353 71 256 68 8 47 54 47 54 69 8 69 275 10 346 10 346 32 275 32 26 9 75 9 75 32 26 32
../../inference/ch_det_data_50/all-sum-510/00233625.jpg 370 395 635 397 635 445 370 443 67 210 935 204 936 325 68 331
../../inference/ch_det_data_50/all-sum-510/00233634.jpg 213 637 264 637 264 706 213 706 522 634 572 634 572 697 522 697 641 522 684 522 684 570 641 570 95 514 155 514 155 592 95 592 754 394 762 394 762 403 754 403 677 362 730 360 733 432 679 433 53 360 109 360 109 436 53 436 77 207 157 207 157 282 77 282 642 204 695 204 695 274 642 274 208 88 262 85 266 165 212 168 362 47 428 44 432 117 366 120
../../inference/ch_det_data_50/all-sum-510/00234400.jpg 156 419 739 419 739 439 156 439 157 393 653 393 653 412 157 412 38 390 129 390 129 413 38 413 156 339 307 342 307 365 156 362 36 342 125 342 125 363 36 363 519 293 705 293 705 316 519 316 393 290 485 288 485 316 393 318 156 291 271 291 271 315 156 315 35 291 127 291 127 315 35 315 155 242 360 242 360 269 155 269 34 242 83 242 83 270 34 270 27 150 159 150 159 177 27 177 280 96 507 96 507 113 280 113 313 44 477 47 476 90 312 87 516 50 664 52 664 68 516 67 485 17 708 15 708 45 485 47
../../inference/ch_det_data_50/all-sum-510/00234883.jpg 64 122 318 117 319 193 65 197 71 118 122 118 122 132 71 132 381 62 506 61 506 75 381 76 57 26 368 26 368 116 57 116 385 26 503 23 503 47 385 50
../../inference/ch_det_data_50/all-sum-510/test_add_0.jpg 311 521 391 521 391 534 311 534 277 499 426 499 426 516 277 516 259 445 438 445 438 461 259 461 210 426 487 426 487 443 210 443 244 385 460 385 460 411 244 411 220 327 476 327 476 373 220 373 205 204 494 208 493 279 204 275 264 163 423 165 423 198 264 196 15 17 203 15 203 45 15 47
../../inference/ch_det_data_50/all-sum-510/test_add_1.png
../../inference/ch_det_data_50/all-sum-510/test_add_10.png 155 123 187 123 187 174 155 174 160 105 184 105 184 131 160 131 116 45 155 44 158 176 119 176 63 30 102 31 99 172 60 171
../../inference/ch_det_data_50/all-sum-510/test_add_11.jpg 1388 755 1486 755 1486 794 1388 794 1011 752 1210 752 1210 802 1011 802 681 752 879 752 879 801 681 801 355 750 568 745 570 796 356 801 76 748 266 743 268 796 78 801 600 645 1155 645 1155 706 600 706 600 562 1151 553 1151 614 600 622 596 478 1070 470 1070 529 596 537 595 390 1095 385 1095 444 595 448 600 303 1061 303 1061 362 600 362 353 180 1521 180 1521 265 353 265 59 40 261 40 261 91 59 91 1303 39 1495 39 1495 90 1303 90 971 37 1173 32 1175 83 973 88 668 37 864 32 866 83 670 88 361 32 561 32 561 88 361 88
../../inference/ch_det_data_50/all-sum-510/test_add_12.jpg 9 590 140 592 140 615 9 613 107 520 908 524 908 571 107 566 632 448 905 445 905 481 632 484 110 445 468 447 468 487 110 485 580 303 682 301 683 351 581 353 368 257 568 262 565 361 364 355 61 83 856 85 856 164 61 162
../../inference/ch_det_data_50/all-sum-510/test_add_13.jpg 68 94 117 97 116 115 67 112
../../inference/ch_det_data_50/all-sum-510/test_add_14.jpg 28 94 238 92 238 130 28 132 27 50 241 48 241 88 27 90
../../inference/ch_det_data_50/all-sum-510/test_add_15.jpg 140 251 354 251 354 268 140 268 203 212 407 217 407 234 203 229 104 210 194 212 194 229 104 227 153 155 287 159 287 175 153 172 143 134 307 140 307 157 143 150 106 136 147 136 147 149 106 149 106 101 278 107 277 126 105 119 106 70 247 77 246 97 105 90 106 37 211 40 210 64 105 61
../../inference/ch_det_data_50/all-sum-510/test_add_16.jpg 380 740 750 740 750 780 380 780 360 700 472 700 472 728 360 728 1550 698 1580 698 1580 750 1550 750 1256 694 1444 694 1444 722 1256 722 1242 659 1452 659 1452 690 1242 690 384 643 672 643 672 682 384 682 1226 623 1474 621 1474 655 1226 657 356 599 582 599 582 631 356 631 1198 587 1496 587 1496 619 1198 619 1164 553 1534 553 1534 585 1164 585 378 549 642 549 642 589 378 589 354 500 520 500 520 540 354 540 772 258 1128 258 1128 303 772 303 372 208 508 208 508 303 372 303 774 208 1092 214 1092 260 774 254
../../inference/ch_det_data_50/all-sum-510/test_add_17.jpg 319 255 394 257 394 271 319 269 306 236 407 238 407 257 306 255 306 221 413 226 412 243 305 237 93 134 387 140 386 210 92 204 69 92 401 100 401 127 69 118 66 74 225 77 225 95 66 92 64 58 227 60 227 77 64 75
../../inference/ch_det_data_50/all-sum-510/test_add_18.jpg 153 908 616 914 616 935 153 930 464 786 718 788 718 816 464 813 552 750 666 755 665 792 551 788 117 538 190 538 190 572 117 572 115 472 676 484 675 530 114 518 119 427 670 439 670 471 119 459 119 374 676 379 676 411 119 406 555 261 677 262 677 280 555 279 164 258 336 258 336 275 164 275 342 194 457 196 457 221 342 219 307 172 490 172 490 190 307 190 252 125 540 129 540 171 252 168 345 90 488 92 488 110 345 108 283 40 569 48 567 84 282 76 235 30 268 30 268 64 235 64
../../inference/ch_det_data_50/all-sum-510/test_add_19.jpg 22 293 44 293 44 304 22 304 62 291 106 291 106 305 62 305 61 279 107 279 107 291 61 291 218 278 247 278 247 292 218 292 176 278 210 278 210 291 176 291 141 275 166 275 166 307 141 307 7 266 20 266 20 278 7 278 219 264 245 264 245 279 219 279 60 263 133 263 133 279 60 279 22 264 49 264 49 279 22 279 218 251 250 251 250 266 218 266 63 251 133 251 133 264 63 264 22 250 45 250 45 265 22 265 7 251 20 251 20 263 7 263 8 240 18 240 18 249 8 249 61 236 115 236 115 252 61 252 23 234 49 237 47 253 21 250 210 235 246 235 246 252 210 252 143 236 166 236 166 252 143 252 493 224 533 224 533 241 493 241 334 224 355 224 355 239 334 239 287 224 315 224 315 239 287 239 61 224 114 224 114 238 61 238 7 226 18 226 18 235 7 235 219 223 250 223 250 237 219 237 141 224 167 221 169 235 143 238 23 223 49 223 49 239 23 239 494 212 526 212 526 225 494 225 418 211 439 211 439 226 418 226 335 211 400 211 400 224 335 224 291 211 322 211 322 224 291 224 220 211 251 211 251 224 220 224 144 212 167 212 167 223 144 223 60 211 115 209 115 222 60 224 24 210 50 210 50 224 24 224 336 197 384 197 384 211 336 211 63 198 89 198 89 209 63 209 492 195 542 195 542 213 492 213 443 201 456 194 464 207 451 215 219 195 257 195 257 213 219 213 177 196 207 196 207 210 177 210 144 197 158 197 158 210 144 210 23 196 44 196 44 212 23 212 416 193 440 193 440 213 416 213 63 185 134 185 134 197 63 197 335 184 400 184 400 197 335 197 455 180 466 191 456 201 444 190 289 187 309 180 315 194 295 202 219 183 256 183 256 197 219 197 140 183 160 183 160 198 140 198 493 182 519 182 519 197 493 197 426 178 441 191 426 204 412 190 32 177 46 189 32 202 19 189 176 180 193 180 193 197 176 197 335 170 402 170 402 186 335 186 491 169 521 169 521 186 491 186 426 163 441 176 426 191 412 179 292 170 315 170 315 186 292 186 219 170 252 170 252 185 219 185 177 171 189 171 189 185 177 185 62 170 127 168 127 182 62 184 454 167 464 177 455 186 445 176 142 169 164 169 164 185 142 185 492 158 525 158 525 172 492 172 399 159 436 159 436 169 399 169 334 157 403 157 403 170 334 170 295 157 327 157 327 171 295 171 219 156 253 156 253 170 219 170 143 156 164 156 164 171 143 171 60 157 127 155 127 169 60 171 491 142 543 142 543 158 491 158 449 143 480 143 480 157 449 157 334 142 441 142 441 157 334 157 294 143 328 143 328 157 294 157 219 143 254 143 254 157 219 157 61 143 105 143 105 156 61 156 142 141 164 141 164 157 142 157 17 150 31 136 45 149 30 162 285 133 293 133 293 141 285 141 177 132 193 132 193 145 177 145 335 130 389 130 389 143 335 143 491 129 528 129 528 143 491 143 449 129 479 129 479 143 449 143 417 130 437 130 437 142 417 142 291 129 323 129 323 143 291 143 217 130 256 128 257 143 218 145 61 129 97 129 97 143 61 143 143 128 161 128 161 145 143 145 29 123 45 132 34 149 18 139 492 117 537 117 537 130 492 130 335 117 389 117 389 130 335 130 218 118 256 118 256 128 218 128 450 116 480 116 480 130 450 130 417 116 440 116 440 131 417 131 177 116 210 116 210 130 177 130 143 116 164 116 164 131 143 131 60 115 90 115 90 132 60 132 17 121 32 110 45 124 29 136 490 105 527 105 527 115 490 115 448 105 479 105 479 115 448 115 419 106 436 106 436 114 419 114 292 105 321 105 321 116 292 116 218 105 244 105 244 115 218 115 175 105 205 105 205 115 175 115 143 105 163 105 163 116 143 116 334 104 373 104 373 115 334 115 61 104 88 104 88 115 61 115 483 89 523 89 523 99 483 99 330 87 381 87 381 100 330 100 274 87 336 87 336 100 274 100 213 87 248 87 248 100 213 100 5 85 103 85 103 101 5 101 414 64 464 64 464 78 414 78 287 64 335 64 335 78 287 78 155 62 208 62 208 79 155 79 414 47 525 48 525 64 414 63 287 48 377 48 377 64 287 64 157 48 270 48 270 63 157 63 415 34 483 34 483 48 415 48 287 33 338 33 338 50 287 50 26 34 45 34 45 52 26 52 155 32 207 32 207 49 155 49 55 32 115 31 116 51 56 53 411 2 529 2 529 19 411 19 144 2 346 0 346 17 144 19
../../inference/ch_det_data_50/all-sum-510/test_add_2.jpg 251 404 535 404 535 430 251 430 302 339 483 339 483 385 302 385 302 303 482 303 482 326 302 326 573 217 693 217 693 240 573 240 331 216 455 214 455 240 331 242 108 212 182 214 181 244 107 242 313 98 672 99 672 121 313 120 311 60 585 61 585 87 311 86
../../inference/ch_det_data_50/all-sum-510/test_add_20.jpg 30 345 607 345 607 372 30 372 216 292 512 292 512 323 216 323 472 270 527 270 527 287 472 287 216 266 292 266 292 287 216 287 218 238 486 238 486 265 218 265 220 215 305 215 305 236 220 236 399 190 419 190 419 207 399 207 221 185 343 185 343 209 221 209 220 160 289 160 289 182 220 182 374 120 477 122 477 147 374 145 221 122 367 120 367 145 221 147 217 80 354 82 354 117 217 115 439 33 607 33 607 60 439 60 67 15 400 15 400 46 67 46
../../inference/ch_det_data_50/all-sum-510/test_add_3.jpg 168 326 339 324 339 341 168 343 169 286 309 288 309 314 169 312 169 219 324 219 324 235 169 235 339 219 451 216 451 232 339 235 168 200 373 200 373 216 168 216 168 180 418 180 418 197 168 197 169 147 417 147 417 165 169 165 170 117 419 117 419 141 170 141 325 62 480 62 480 93 325 93 170 62 310 59 311 91 171 94
../../inference/ch_det_data_50/all-sum-510/test_add_4.png
../../inference/ch_det_data_50/all-sum-510/test_add_5.png 47 162 109 162 109 176 47 176 51 119 170 119 170 136 51 136 49 100 166 100 166 119 49 119 51 83 166 83 166 102 51 102 50 66 169 66 169 85 50 85 49 47 149 46 149 68 49 69 5 9 81 9 81 43 5 43
../../inference/ch_det_data_50/all-sum-510/test_add_6.jpg 122 222 220 226 219 253 121 249 160 176 185 180 182 200 157 196
../../inference/ch_det_data_50/all-sum-510/test_add_7.jpg 47 937 175 933 176 964 48 967 224 870 632 873 632 955 224 952 53 743 640 743 640 793 53 793 148 673 546 676 546 723 148 720 71 502 636 502 636 604 71 604 54 264 660 274 657 446 51 436 59 173 534 173 534 241 59 241 502 173 646 173 646 239 502 239
../../inference/ch_det_data_50/all-sum-510/test_add_8.jpg 249 584 455 578 456 608 250 614 106 531 458 524 458 561 107 568 334 492 385 492 385 509 334 509 26 306 356 296 357 321 27 331 21 258 447 250 447 275 21 283 77 208 447 204 447 226 77 230 158 20 322 28 319 82 155 74
../../inference/ch_det_data_50/all-sum-510/test_add_9.png 264 684 486 684 486 697 264 697 194 666 556 666 556 682 194 682 152 595 600 595 600 608 152 608 211 577 542 577 542 590 211 590 131 558 616 558 616 571 131 571 84 540 665 540 665 553 84 553 95 521 654 521 654 536 95 536 361 448 390 448 390 461 361 461 236 375 515 375 515 391 236 391 174 353 575 353 575 369 174 369 342 279 409 281 409 298 342 296 254 203 493 203 493 220 254 220
../../inference/ch_det_data_50/all-sum-510/00008790.jpg 208 404 282 404 282 421 208 421 58 396 107 396 107 413 58 413 197 387 296 387 296 403 197 403 161 389 174 389 174 402 161 402 34 378 134 378 134 394 34 394 323 377 329 377 329 382 323 382 199 370 292 370 292 383 199 383 216 309 274 309 274 325 216 325 161 304 173 304 173 315 161 315 370 301 437 301 437 317 370 317 30 301 135 300 135 316 30 317 221 291 270 291 270 308 221 308 58 224 106 224 106 238 58 238 216 222 274 222 274 239 216 239 161 217 174 217 174 229 161 229 33 205 133 205 133 221 33 221 221 204 270 204 270 221 221 221 73 145 385 145 385 162 73 162 52 119 119 119 119 135 52 135 72 50 296 50 296 66 72 66 54 15 118 15 118 32 54 32
../../inference/ch_det_data_50/all-sum-510/00018946.jpg 439 327 476 327 476 341 439 341 85 284 142 284 142 308 85 308 300 278 380 278 380 299 300 299 195 262 287 275 284 299 192 286 196 196 454 218 452 244 194 222 343 182 376 182 376 193 343 193 198 162 341 169 340 195 197 188 176 130 381 145 380 165 175 150 176 100 417 118 415 148 174 130
../../inference/ch_det_data_50/all-sum-510/00034387.jpg 263 459 741 459 741 485 263 485 346 415 421 415 421 444 346 444 544 418 568 418 568 442 544 442 684 415 712 415 712 444 684 444 173 413 228 413 228 444 173 444 872 412 910 412 910 447 872 447 55 415 76 415 76 443 55 443 855 371 927 371 927 401 855 401 347 371 420 371 420 400 347 400 672 370 725 370 725 402 672 402 537 371 571 371 571 401 537 401 136 364 230 367 229 403 135 400 55 370 76 370 76 399 55 399 856 328 927 328 927 358 856 358 350 328 420 328 420 358 350 358 672 326 725 326 725 358 672 358 539 327 571 327 571 359 539 359 170 326 229 323 231 357 171 359 56 328 76 328 76 358 56 358 297 326 316 326 316 334 297 334 854 284 927 284 927 314 854 314 672 284 725 284 725 315 672 315 344 284 431 282 432 315 345 317 537 283 570 283 570 314 537 314 170 281 228 281 228 315 170 315 55 285 75 285 75 314 55 314 856 241 927 241 927 270 856 270 346 240 464 240 464 271 346 271 154 241 228 241 228 271 154 271 672 240 726 240 726 271 672 271 530 240 573 240 573 272 530 272 55 241 76 241 76 270 55 270 854 196 927 198 926 228 853 225 672 197 728 197 728 228 672 228 342 199 439 194 441 224 344 230 175 196 229 196 229 226 175 226 55 199 75 199 75 228 55 228 526 193 578 193 578 228 526 228 347 154 420 154 420 182 347 182 853 153 927 153 927 181 853 181 175 153 228 153 228 184 175 184 668 152 725 152 725 182 668 182 536 153 572 153 572 183 536 183 55 155 76 155 76 183 55 183 347 109 420 109 420 138 347 138 172 109 229 109 229 140 172 140 544 111 565 111 565 138 544 138 51 110 77 110 77 140 51 140 639 105 730 105 730 141 639 141 815 101 929 109 927 141 813 133 812 65 953 65 953 93 812 93 305 64 447 66 447 94 305 92 671 65 725 65 725 95 671 95 173 64 229 66 228 96 172 94 37 64 91 66 90 98 36 96 527 63 581 63 581 95 527 95 333 18 671 18 671 45 333 45
../../inference/ch_det_data_50/all-sum-510/00037951.jpg 432 973 552 977 552 994 432 991 431 931 554 931 554 970 431 970 29 520 101 520 101 546 29 546 29 441 146 441 146 465 29 465 233 333 328 331 328 356 233 358 121 250 439 250 439 287 121 287 180 205 380 205 380 229 180 229 257 103 323 121 305 184 239 165 35 57 147 57 147 82 35 82
../../inference/ch_det_data_50/all-sum-510/00044782.jpg 222 214 247 214 247 230 222 230 162 214 183 214 183 231 162 231 122 190 216 190 216 203 122 203 90 82 252 82 252 100 90 100 70 61 279 61 279 78 70 78 103 14 244 14 244 46 103 46
../../inference/ch_det_data_50/all-sum-510/00067516.jpg 139 806 596 807 596 824 139 823 46 782 699 782 699 800 46 800 577 749 669 749 669 766 577 766 353 748 397 748 397 769 353 769 220 749 261 749 261 767 220 767 475 748 502 748 502 769 475 769 68 746 134 749 133 766 67 763 574 680 670 680 670 700 574 700 474 680 519 680 519 701 474 701 352 680 397 680 397 701 352 701 68 679 134 682 133 700 67 697 219 678 245 681 242 702 216 698 575 614 669 614 669 633 575 633 68 611 134 614 133 633 67 630 474 613 501 613 501 633 474 633 353 613 379 613 379 634 353 634 219 612 245 612 245 633 219 633 576 546 669 546 669 566 576 566 474 545 519 545 519 566 474 566 351 544 381 544 381 567 351 567 219 545 245 545 245 566 219 566 67 541 134 544 133 565 66 562 67 477 134 480 133 501 66 498 584 479 666 479 666 499 584 499 474 478 519 478 519 500 474 500 352 478 397 478 397 500 352 500 218 477 246 477 246 502 218 502 579 424 666 427 665 451 578 448 345 428 411 428 411 449 345 449 66 425 151 427 151 451 66 449 473 427 515 427 515 450 473 450 218 427 259 427 259 450 218 450 282 396 479 397 479 420 282 419 83 316 667 316 667 335 83 335 64 277 666 277 666 292 64 292 456 209 585 209 585 226 456 226 311 208 373 208 373 227 311 227 163 208 227 208 227 227 163 227 504 150 541 150 541 168 504 168 264 47 485 47 485 69 264 69
../../inference/ch_det_data_50/all-sum-510/00088568.jpg 57 443 119 443 119 456 57 456 309 413 744 413 744 430 309 430 309 375 737 375 737 392 309 392 415 337 559 337 559 351 415 351 307 322 674 321 674 338 307 339 275 292 349 294 349 313 275 311 52 285 210 285 210 301 52 301 273 262 420 262 420 279 273 279 55 262 249 262 249 279 55 279 669 247 697 247 697 262 669 262 601 247 629 247 629 262 601 262 531 247 559 247 559 262 531 262 461 247 489 247 489 262 461 262 277 247 310 247 310 261 277 261 55 240 142 240 142 254 55 254 276 230 400 230 400 246 276 246 741 227 749 237 741 246 732 237 665 230 701 230 701 245 665 245 598 230 631 230 631 245 598 245 527 230 563 230 563 245 527 245 458 230 493 230 493 245 458 245 52 213 212 215 212 233 52 231 732 214 747 214 747 227 732 227 662 212 706 212 706 230 662 230 594 213 638 213 638 227 594 227 522 213 570 213 570 227 522 227 453 213 497 213 497 227 453 227 278 213 352 213 352 227 278 227 734 198 748 198 748 210 734 210 667 196 702 196 702 210 667 210 599 196 633 196 633 211 599 211 527 196 564 196 564 210 527 210 459 196 493 196 493 210 459 210 276 194 418 195 418 212 276 211 54 190 241 190 241 207 54 207 664 179 705 179 705 194 664 194 278 178 352 180 352 195 278 193 733 179 747 179 747 194 733 194 596 178 635 178 635 193 596 193 523 177 567 177 567 195 523 195 456 178 495 178 495 193 456 193 55 170 142 170 142 184 55 184 733 164 748 164 748 176 733 176 664 162 705 162 705 176 664 176 597 162 635 162 635 176 597 176 525 162 566 162 566 176 525 176 456 162 494 162 494 176 456 176 277 160 399 160 399 176 277 176 54 146 149 146 149 161 54 161 452 145 497 145 497 160 452 160 729 144 748 144 748 162 729 162 662 143 706 143 706 161 662 161 595 144 636 144 636 159 595 159 521 143 566 141 567 159 522 161 277 143 310 143 310 159 277 159 275 120 430 120 430 140 275 140 50 119 234 120 234 140 50 139 402 90 703 90 703 107 402 107 46 78 282 78 282 98 46 98 324 67 745 68 745 86 324 85 666 47 743 47 743 64 666 64 295 47 435 47 435 63 295 63 64 30 232 27 233 65 65 68
../../inference/ch_det_data_50/all-sum-510/00091741.jpg 46 335 87 335 87 360 46 360 98 209 258 209 258 232 98 232 101 189 258 190 258 206 101 205 87 99 268 97 269 184 88 186 92 45 266 53 263 117 89 109 89 10 258 12 258 38 89 36
../../inference/ch_det_data_50/all-sum-510/00105313.jpg 289 261 407 261 407 277 289 277 152 260 265 260 265 276 152 276 10 257 74 259 74 276 10 274 32 230 134 230 134 245 32 245 34 215 218 215 218 228 34 228 32 199 148 199 148 214 32 214 31 181 217 182 217 199 31 198 34 169 107 169 107 182 34 182 34 153 126 153 126 166 34 166 33 136 144 137 144 150 33 149 34 122 177 122 177 135 34 135 32 104 178 104 178 120 32 120 32 91 102 91 102 104 32 104 33 75 121 75 121 88 33 88 32 60 121 60 121 73 32 73 34 44 121 44 121 57 34 57 31 28 144 28 144 43 31 43 177 20 415 15 416 51 178 56 24 10 152 10 152 26 24 26
../../inference/ch_det_data_50/all-sum-510/00134770.jpg 386 645 457 645 457 658 386 658 406 618 486 617 486 635 406 636 111 533 272 530 272 550 111 553 110 501 445 496 445 516 110 521 110 469 445 465 445 485 110 489 110 438 446 433 446 453 110 458 109 407 445 403 445 423 109 427 151 375 443 372 443 392 151 395 183 336 371 334 371 358 183 360 224 307 272 308 272 318 224 317 73 96 517 101 516 220 72 215
../../inference/ch_det_data_50/all-sum-510/00145943.jpg 390 243 751 274 735 454 375 423 88 90 302 90 302 121 88 121 43 40 329 37 329 78 43 81
../../inference/ch_det_data_50/all-sum-510/00147605.jpg 514 605 786 604 786 629 514 630 116 521 226 521 226 561 116 561 252 522 309 522 309 558 252 558 713 500 902 503 902 539 713 536 254 501 296 501 296 519 254 519 345 479 475 479 475 517 345 517 251 483 296 483 296 501 251 501 350 456 447 456 447 471 350 471 143 442 203 442 203 469 143 469 727 370 880 370 880 422 727 422 526 369 684 369 684 421 526 421 140 367 490 367 490 423 140 423 742 313 872 313 872 338 742 338 798 155 888 155 888 192 798 192 272 140 457 140 457 161 272 161 737 114 895 118 894 158 736 155 107 110 206 110 206 131 107 131 268 92 464 94 464 134 268 131
../../inference/ch_det_data_50/all-sum-510/00150341.jpg 99 643 300 643 300 664 99 664 113 615 289 615 289 633 113 633 82 591 320 590 320 611 82 612 30 563 315 561 315 582 30 584 30 513 169 513 169 531 30 531 32 488 111 488 111 506 32 506 357 458 465 461 464 486 356 483 26 458 271 459 271 483 26 482 338 438 423 442 422 461 337 457 64 437 145 437 145 455 64 455 205 414 293 414 293 436 205 436 318 407 442 411 441 439 317 435 42 404 176 407 176 435 42 432 28 381 137 381 137 405 28 405
../../inference/ch_det_data_50/all-sum-510/00150669.jpg 647 698 683 698 683 718 647 718 515 684 551 684 551 721 515 721 650 687 680 687 680 702 650 702 920 673 938 673 938 686 920 686 518 670 548 670 548 690 518 690 785 670 808 670 808 688 785 688 590 670 608 670 608 688 590 688 732 665 745 679 732 692 718 679 652 668 680 668 680 689 652 689 271 665 423 665 423 690 271 690 130 664 205 664 205 690 130 690 44 664 111 664 111 689 44 689 781 628 812 628 812 663 781 663 643 626 687 626 687 666 643 666 514 627 550 627 550 665 514 665 654 617 673 617 673 629 654 629 858 617 868 617 868 628 858 628 727 617 736 617 736 628 727 628 920 614 940 614 940 631 920 631 785 614 807 614 807 631 785 631 371 603 421 603 421 620 371 620 83 600 216 603 216 624 83 620 46 602 72 602 72 624 46 624 780 569 817 573 813 610 776 606 922 559 936 559 936 575 922 575 856 559 869 559 869 575 856 575 61 552 411 552 411 569 61 569 61 531 117 533 117 547 61 545 859 527 868 527 868 539 859 539 923 525 936 525 936 542 923 542 787 524 807 524 807 540 787 540 526 526 536 526 536 536 526 536 261 511 396 511 396 528 261 528 120 512 246 512 246 526 120 526 47 512 120 512 120 527 47 527 753 491 829 491 829 508 753 508 636 491 712 491 712 508 636 508 517 491 593 491 593 508 517 508 84 448 125 448 125 463 84 463 221 448 238 448 238 462 221 462 682 444 869 444 869 461 682 461 561 444 667 444 667 461 561 461 489 445 545 445 545 459 489 459 183 437 209 437 209 459 183 459 52 429 73 437 64 464 42 456 222 430 278 430 278 445 222 445 86 430 145 430 145 445 86 445 505 382 617 381 617 398 505 399 701 380 758 380 758 398 701 398 307 371 365 371 365 386 307 386 90 371 168 371 168 386 90 386 686 334 821 334 821 352 686 352 496 333 659 333 659 350 496 350 207 314 245 314 245 333 207 333 497 287 642 287 642 304 497 304 670 286 804 286 804 304 670 304 668 239 817 239 817 257 668 257 495 239 644 239 644 257 495 257 668 193 816 193 816 209 668 209 496 193 644 193 644 209 496 209 668 144 816 144 816 161 668 161 497 144 646 144 646 161 497 161 488 102 546 102 546 121 488 121 845 21 900 21 900 43 845 43 25 18 702 18 702 39 25 39 896 10 997 14 996 46 895 42
../../inference/ch_det_data_50/all-sum-510/00152568.jpg 2 250 285 252 285 281 2 279 195 231 255 231 255 241 195 241 198 158 282 164 277 230 193 224 177 148 251 148 251 161 177 161
../../inference/ch_det_data_50/all-sum-510/00155628.jpg 147 898 506 901 506 925 147 922 519 892 562 894 561 912 518 910 59 884 83 884 83 895 59 895 148 877 505 881 505 902 148 897 523 833 641 837 640 858 522 854 68 832 187 834 187 855 68 853 245 554 468 554 468 570 245 570 307 506 405 508 405 526 307 523 243 481 460 483 460 504 243 502 250 420 460 422 460 454 250 452 193 377 518 379 518 410 193 408 473 194 625 194 625 212 473 212 70 127 643 129 643 163 70 161 478 39 599 35 602 101 481 105 67 23 136 14 140 44 71 54
../../inference/ch_det_data_50/all-sum-510/00173364.jpg 7 176 58 176 58 201 7 201 135 118 196 118 196 135 135 135 38 75 87 75 87 105 38 105 249 19 313 19 313 38 249 38 19 15 105 15 105 40 19 40
../../inference/ch_det_data_50/all-sum-510/00175503.jpg 39 256 503 252 504 362 40 366 49 198 351 175 357 253 55 276
../../inference/ch_det_data_50/all-sum-510/00193218.jpg 282 373 411 373 411 389 282 389 170 373 223 373 223 390 170 390 108 373 162 373 162 390 108 390 276 357 358 357 358 371 276 371 169 357 222 357 222 371 169 371 106 356 175 356 175 373 106 373 408 356 493 356 493 370 408 370 24 185 64 185 64 203 24 203 500 184 558 184 558 201 500 201 379 185 421 183 422 200 380 202 283 184 311 184 311 202 283 202 173 185 197 185 197 201 173 201 498 163 544 163 544 177 498 177 379 162 412 162 412 177 379 177 261 161 303 161 303 178 261 178 174 161 231 161 231 178 174 178 24 161 80 161 80 178 24 178 385 139 489 139 489 155 385 155 26 137 133 137 133 153 26 153 442 115 538 117 538 134 442 132 345 117 406 117 406 131 345 131 259 117 303 117 303 131 259 131 28 112 229 114 229 132 28 130 130 90 395 93 395 110 130 107 560 81 585 81 585 109 560 109
../../inference/ch_det_data_50/all-sum-510/00195033.jpg 221 302 240 302 240 309 221 309 487 262 534 264 533 282 486 280 125 249 194 249 194 285 125 285 336 248 364 248 364 268 336 268 317 221 381 223 381 240 317 238 431 224 450 224 450 236 431 236 360 202 539 202 539 218 360 218 87 199 148 201 148 218 87 216 371 181 450 181 450 195 371 195 327 180 354 180 354 194 327 194 94 178 241 178 241 195 94 195 431 159 559 159 559 175 431 175 128 148 289 149 289 166 128 165 35 145 75 148 74 163 34 160 487 146 501 146 501 153 487 153 100 143 122 143 122 154 100 154 370 127 505 126 505 140 370 141 98 125 194 125 194 139 98 139 320 125 338 125 338 136 320 136 35 121 78 121 78 135 35 135 322 104 338 104 338 116 322 116 371 101 503 101 503 117 371 117 348 103 362 103 362 115 348 115 37 101 81 101 81 114 37 114 97 98 207 99 207 116 97 115 305 89 317 89 317 97 305 97 346 86 364 86 364 97 346 97 319 85 342 85 342 100 319 100 357 82 515 80 515 96 357 98 40 81 90 81 90 94 40 94 92 77 242 78 242 95 92 94 312 65 394 65 394 79 312 79 240 64 290 64 290 78 240 78 183 52 222 52 222 66 183 66 468 47 547 47 547 61 468 61 422 34 438 34 438 55 422 55 464 29 551 29 551 43 464 43 206 19 330 21 330 42 206 40
../../inference/ch_det_data_50/all-sum-510/00208502.jpg 556 535 630 535 630 569 556 569 204 537 284 537 284 552 204 552 142 512 191 512 191 526 142 526 248 511 309 511 309 525 248 525 41 499 118 499 118 520 41 520 465 490 558 490 558 510 465 510 666 489 680 493 677 505 662 501 724 490 739 490 739 503 724 503 40 450 118 448 118 469 40 471 173 448 237 448 237 465 173 465 93 403 121 403 121 424 93 424 38 403 63 403 63 424 38 424 214 392 232 405 220 422 203 409 39 357 58 357 58 375 39 375 92 355 121 355 121 375 92 375 187 339 248 337 249 363 188 365 458 319 551 317 551 338 458 340 457 271 553 271 553 292 457 292 562 271 737 267 737 288 562 292 516 225 548 225 548 245 516 245 620 185 675 185 675 202 620 202 456 130 550 128 550 149 456 151 571 104 789 98 789 121 571 127 121 46 291 46 291 99 121 99 536 36 710 36 710 92 536 92
../../inference/ch_det_data_50/all-sum-510/00224225.jpg 135 426 157 426 157 449 135 449 199 402 480 408 479 461 198 455 200 225 474 225 474 394 200 394 130 264 174 264 174 281 130 281 343 205 458 205 458 232 343 232 197 186 349 194 346 242 194 234 7 41 160 39 161 115 8 117
../../inference/ch_det_data_50/all-sum-510/00227746.jpg 142 230 210 230 210 240 142 240 72 230 130 230 130 240 72 240 215 228 386 228 386 240 215 240 290 208 347 208 347 224 290 224 142 179 165 181 162 209 139 208 171 152 347 152 347 167 171 167 143 110 279 112 279 135 143 132 202 53 387 53 387 69 202 69 141 47 193 47 193 64 141 64
../../inference/ch_det_data_50/all-sum-510/00229605.jpg 742 528 882 528 882 545 742 545 232 497 590 496 590 524 232 525 5 496 229 496 229 524 5 524 734 494 884 497 884 522 734 519 605 493 718 488 719 517 606 522 2 242 865 227 866 291 3 305 477 26 884 26 884 77 477 77
../../inference/ch_det_data_50/all-sum-510/00233011.jpg 61 225 293 225 293 243 61 243 11 218 43 218 43 252 11 252 60 177 120 177 120 196 60 196 11 169 44 169 44 204 11 204 59 127 149 129 149 148 59 146 11 123 45 123 45 156 11 156 124 87 239 87 239 105 124 105 147 49 218 49 218 67 147 67 257 44 354 47 353 71 256 68 8 47 54 47 54 69 8 69 275 10 346 10 346 32 275 32 26 9 75 9 75 32 26 32
../../inference/ch_det_data_50/all-sum-510/00233625.jpg 370 395 635 397 635 445 370 443 67 210 935 204 936 325 68 331
../../inference/ch_det_data_50/all-sum-510/00233634.jpg 213 637 264 637 264 706 213 706 522 634 572 634 572 697 522 697 641 522 684 522 684 570 641 570 95 514 155 514 155 592 95 592 754 394 762 394 762 403 754 403 677 362 730 360 733 432 679 433 53 360 109 360 109 436 53 436 77 207 157 207 157 282 77 282 642 204 695 204 695 274 642 274 208 88 262 85 266 165 212 168 362 47 428 44 432 117 366 120
../../inference/ch_det_data_50/all-sum-510/00234400.jpg 156 419 739 419 739 439 156 439 157 393 653 393 653 412 157 412 38 390 129 390 129 413 38 413 156 339 307 342 307 365 156 362 36 342 125 342 125 363 36 363 519 293 705 293 705 316 519 316 393 290 485 288 485 316 393 318 156 291 271 291 271 315 156 315 35 291 127 291 127 315 35 315 155 242 360 242 360 269 155 269 34 242 83 242 83 270 34 270 27 150 159 150 159 177 27 177 280 96 507 96 507 113 280 113 313 44 477 47 476 90 312 87 516 50 664 52 664 68 516 67 485 17 708 15 708 45 485 47
../../inference/ch_det_data_50/all-sum-510/00234883.jpg 64 122 318 117 319 193 65 197 71 118 122 118 122 132 71 132 381 62 506 61 506 75 381 76 54 25 369 23 369 116 54 118 385 26 503 23 503 47 385 50
../../inference/ch_det_data_50/all-sum-510/test_add_0.jpg 311 521 391 521 391 534 311 534 277 499 426 499 426 516 277 516 259 445 438 445 438 461 259 461 210 426 487 426 487 443 210 443 244 385 460 385 460 411 244 411 220 327 476 327 476 373 220 373 205 204 494 208 493 279 204 275 264 163 423 165 423 198 264 196 15 17 203 15 203 45 15 47
../../inference/ch_det_data_50/all-sum-510/test_add_1.png
../../inference/ch_det_data_50/all-sum-510/test_add_10.png 155 123 187 123 187 174 155 174 160 105 184 105 184 131 160 131 116 45 155 44 158 176 119 176 63 30 102 31 99 172 60 171
../../inference/ch_det_data_50/all-sum-510/test_add_11.jpg 1388 755 1486 755 1486 794 1388 794 1011 752 1210 752 1210 802 1011 802 681 752 879 752 879 801 681 801 355 750 568 745 570 796 356 801 76 748 266 743 268 796 78 801 600 645 1155 645 1155 706 600 706 600 562 1151 553 1151 614 600 622 596 478 1070 470 1070 529 596 537 595 390 1095 385 1095 444 595 448 600 303 1061 303 1061 362 600 362 353 180 1521 180 1521 265 353 265 59 40 261 40 261 91 59 91 1303 39 1495 39 1495 90 1303 90 971 37 1173 32 1175 83 973 88 668 37 864 32 866 83 670 88 361 32 561 32 561 88 361 88
../../inference/ch_det_data_50/all-sum-510/test_add_12.jpg 9 590 140 592 140 615 9 613 107 520 908 524 908 571 107 566 632 448 905 445 905 481 632 484 110 445 468 447 468 487 110 485 580 303 682 301 683 351 581 353 368 257 568 262 565 361 364 355 61 83 856 85 856 164 61 162
../../inference/ch_det_data_50/all-sum-510/test_add_13.jpg 68 93 118 96 116 116 66 113
../../inference/ch_det_data_50/all-sum-510/test_add_14.jpg 28 94 238 92 238 130 28 132 27 50 241 48 241 88 27 90
../../inference/ch_det_data_50/all-sum-510/test_add_15.jpg 140 251 354 251 354 268 140 268 203 212 407 217 407 234 203 229 104 210 194 212 194 229 104 227 153 155 287 159 287 175 153 172 143 134 307 140 307 157 143 150 106 136 147 136 147 149 106 149 106 101 278 107 277 126 105 119 106 70 247 77 246 97 105 90 106 37 211 40 210 64 105 61
../../inference/ch_det_data_50/all-sum-510/test_add_16.jpg 380 740 750 740 750 780 380 780 360 700 472 700 472 728 360 728 1550 698 1580 698 1580 750 1550 750 1256 694 1444 694 1444 722 1256 722 1242 659 1452 659 1452 690 1242 690 384 643 672 643 672 682 384 682 1226 623 1474 621 1474 655 1226 657 356 599 582 599 582 631 356 631 1198 587 1496 587 1496 619 1198 619 1164 553 1534 553 1534 585 1164 585 378 549 642 549 642 589 378 589 354 500 520 500 520 540 354 540 772 258 1128 258 1128 303 772 303 372 208 508 208 508 303 372 303 774 208 1092 214 1092 260 774 254
../../inference/ch_det_data_50/all-sum-510/test_add_17.jpg 319 255 394 257 394 271 319 269 306 236 407 238 407 257 306 255 306 221 413 226 412 243 305 237 93 135 387 140 386 209 92 204 69 92 401 100 401 127 69 118 66 74 225 77 225 95 66 92 64 58 227 60 227 77 64 75
../../inference/ch_det_data_50/all-sum-510/test_add_18.jpg 153 908 616 914 616 935 153 930 464 786 718 788 718 816 464 813 552 750 666 755 665 792 551 788 117 538 190 538 190 572 117 572 115 472 676 484 675 530 114 518 119 427 670 439 670 471 119 459 119 374 676 380 676 411 119 405 555 261 677 262 677 280 555 279 164 258 336 258 336 275 164 275 342 194 457 196 457 221 342 219 307 172 490 172 490 190 307 190 252 125 540 129 540 171 252 168 345 90 488 92 488 110 345 108 283 40 569 48 567 84 282 76 235 30 268 30 268 64 235 64
../../inference/ch_det_data_50/all-sum-510/test_add_19.jpg 22 293 44 293 44 304 22 304 62 291 106 291 106 305 62 305 61 279 107 279 107 291 61 291 218 278 247 278 247 292 218 292 176 278 210 278 210 291 176 291 141 275 166 275 166 307 141 307 7 266 20 266 20 278 7 278 219 264 245 264 245 279 219 279 60 263 133 263 133 279 60 279 22 264 49 264 49 279 22 279 218 251 250 251 250 266 218 266 63 251 133 251 133 264 63 264 22 250 45 250 45 265 22 265 7 251 20 251 20 263 7 263 8 240 18 240 18 249 8 249 61 236 115 236 115 252 61 252 23 234 49 237 47 253 21 250 210 235 246 235 246 252 210 252 143 236 166 236 166 252 143 252 493 224 533 224 533 241 493 241 334 224 355 224 355 239 334 239 287 224 315 224 315 239 287 239 61 224 114 224 114 238 61 238 7 226 18 226 18 235 7 235 219 223 250 223 250 237 219 237 141 224 167 221 169 235 143 238 23 223 49 223 49 239 23 239 494 212 526 212 526 225 494 225 418 211 439 211 439 226 418 226 335 211 400 211 400 224 335 224 291 211 322 211 322 224 291 224 220 211 251 211 251 224 220 224 144 212 167 212 167 223 144 223 60 211 115 209 115 222 60 224 24 210 50 210 50 224 24 224 336 197 384 197 384 211 336 211 63 198 89 198 89 209 63 209 492 195 542 195 542 213 492 213 219 195 257 195 257 213 219 213 177 196 207 196 207 210 177 210 144 197 158 197 158 210 144 210 23 196 44 196 44 212 23 212 416 193 440 193 440 213 416 213 63 185 134 185 134 197 63 197 335 184 400 184 400 197 335 197 455 180 466 191 456 201 444 190 289 187 309 180 315 194 295 202 219 183 256 183 256 197 219 197 140 183 160 183 160 198 140 198 493 182 519 182 519 197 493 197 426 178 441 191 426 204 412 190 32 177 46 189 32 202 19 189 176 180 193 180 193 197 176 197 335 170 402 170 402 186 335 186 491 169 521 169 521 186 491 186 426 163 441 176 426 191 412 179 292 170 315 170 315 186 292 186 219 170 252 170 252 185 219 185 177 171 189 171 189 185 177 185 62 170 127 168 127 182 62 184 454 167 464 177 455 186 445 176 142 169 164 169 164 185 142 185 492 158 525 158 525 172 492 172 399 159 436 159 436 169 399 169 334 157 403 157 403 170 334 170 295 157 327 157 327 171 295 171 219 156 253 156 253 170 219 170 143 156 164 156 164 171 143 171 60 157 127 155 127 169 60 171 491 142 543 142 543 158 491 158 449 143 480 143 480 157 449 157 334 142 441 142 441 157 334 157 294 143 328 143 328 157 294 157 219 143 254 143 254 157 219 157 61 143 105 143 105 156 61 156 142 141 164 141 164 157 142 157 17 150 31 136 45 149 30 162 285 133 293 133 293 141 285 141 177 132 193 132 193 145 177 145 335 130 389 130 389 143 335 143 491 129 528 129 528 143 491 143 449 129 479 129 479 143 449 143 291 129 323 129 323 143 291 143 217 130 256 128 257 143 218 145 61 129 97 129 97 143 61 143 416 128 439 128 439 143 416 143 143 128 161 128 161 145 143 145 29 123 45 132 34 149 18 139 492 117 537 117 537 130 492 130 335 117 389 117 389 130 335 130 218 118 256 118 256 128 218 128 450 116 480 116 480 130 450 130 417 116 440 116 440 131 417 131 177 116 210 116 210 130 177 130 143 116 164 116 164 131 143 131 60 115 90 115 90 132 60 132 17 121 32 110 45 124 29 136 490 105 527 105 527 115 490 115 448 105 479 105 479 115 448 115 419 106 436 106 436 114 419 114 292 105 321 105 321 116 292 116 218 105 244 105 244 115 218 115 175 105 205 105 205 115 175 115 143 105 163 105 163 116 143 116 334 104 373 104 373 115 334 115 61 104 88 104 88 115 61 115 483 89 523 89 523 99 483 99 330 87 381 87 381 100 330 100 274 87 336 87 336 100 274 100 213 87 248 87 248 100 213 100 5 85 103 85 103 101 5 101 414 64 464 64 464 78 414 78 287 64 335 64 335 78 287 78 155 62 208 62 208 79 155 79 414 47 525 48 525 64 414 63 287 48 377 48 377 64 287 64 157 48 270 48 270 63 157 63 415 34 483 34 483 48 415 48 287 33 338 33 338 50 287 50 26 34 45 34 45 52 26 52 155 32 207 32 207 49 155 49 55 32 115 31 116 51 56 53 411 2 529 2 529 19 411 19 144 2 346 0 346 17 144 19
../../inference/ch_det_data_50/all-sum-510/test_add_2.jpg 251 404 535 404 535 430 251 430 302 339 483 339 483 385 302 385 302 303 482 303 482 326 302 326 573 217 693 217 693 240 573 240 331 216 455 214 455 240 331 242 108 212 182 214 181 244 107 242 313 98 672 99 672 121 313 120 311 60 585 61 585 87 311 86
../../inference/ch_det_data_50/all-sum-510/test_add_20.jpg 30 345 607 345 607 372 30 372 216 292 512 292 512 323 216 323 472 270 527 270 527 287 472 287 216 266 292 266 292 287 216 287 218 238 486 238 486 265 218 265 220 215 305 215 305 236 220 236 221 185 343 185 343 209 221 209 220 160 289 160 289 182 220 182 374 120 477 122 477 147 374 145 221 122 367 120 367 145 221 147 217 80 354 82 354 117 217 115 439 33 607 33 607 60 439 60 67 15 400 15 400 46 67 46
../../inference/ch_det_data_50/all-sum-510/test_add_3.jpg 168 326 339 324 339 341 168 343 169 286 309 288 309 314 169 312 169 219 324 219 324 235 169 235 339 219 451 216 451 232 339 235 168 200 373 200 373 216 168 216 168 180 418 180 418 197 168 197 169 147 417 147 417 165 169 165 170 117 419 117 419 141 170 141 325 62 480 62 480 93 325 93 170 62 310 59 311 91 171 94
../../inference/ch_det_data_50/all-sum-510/test_add_4.png
../../inference/ch_det_data_50/all-sum-510/test_add_5.png 47 162 109 162 109 176 47 176 51 119 170 119 170 136 51 136 49 100 166 100 166 119 49 119 51 83 166 83 166 102 51 102 50 66 169 66 169 85 50 85 49 47 149 46 149 68 49 69 5 9 81 9 81 43 5 43
../../inference/ch_det_data_50/all-sum-510/test_add_6.jpg 122 222 220 226 219 253 121 249 160 176 185 180 182 200 157 196
../../inference/ch_det_data_50/all-sum-510/test_add_7.jpg 47 937 175 933 176 964 48 967 224 870 632 873 632 955 224 952 53 743 640 743 640 793 53 793 148 673 546 676 546 723 148 720 71 502 636 502 636 604 71 604 54 264 660 274 657 446 51 436 59 173 534 173 534 241 59 241 502 173 646 173 646 239 502 239
../../inference/ch_det_data_50/all-sum-510/test_add_8.jpg 249 584 455 578 456 608 250 614 106 531 458 524 458 561 107 568 334 492 385 492 385 509 334 509 26 306 356 296 357 321 27 331 21 258 447 250 447 275 21 283 77 208 447 204 447 226 77 230 158 20 322 28 319 82 155 74
../../inference/ch_det_data_50/all-sum-510/test_add_9.png 264 684 486 684 486 697 264 697 194 666 556 666 556 682 194 682 152 595 600 595 600 608 152 608 211 577 543 577 543 590 211 590 131 559 617 558 617 572 131 573 84 540 665 540 665 553 84 553 95 521 654 521 654 536 95 536 361 448 390 448 390 461 361 461 236 375 515 375 515 391 236 391 174 353 575 353 575 369 174 369 342 279 409 281 409 298 342 296 254 203 493 203 493 220 254 220
00008790.jpg [[[209, 406], [280, 406], [280, 419], [209, 419]], [[60, 398], [105, 398], [105, 411], [60, 411]], [[198, 389], [291, 389], [291, 402], [198, 402]], [[162, 391], [173, 391], [173, 401], [162, 401]], [[35, 380], [133, 380], [133, 393], [35, 393]], [[199, 371], [292, 371], [292, 384], [199, 384]], [[218, 310], [272, 310], [272, 324], [218, 324]], [[162, 305], [172, 305], [172, 314], [162, 314]], [[371, 302], [436, 302], [436, 316], [371, 316]], [[31, 302], [134, 301], [134, 315], [31, 316]], [[223, 292], [269, 292], [269, 306], [223, 306]], [[60, 225], [104, 225], [104, 236], [60, 236]], [[218, 223], [272, 223], [272, 237], [218, 237]], [[162, 219], [173, 219], [173, 227], [162, 227]], [[33, 207], [131, 207], [131, 220], [33, 220]], [[223, 206], [269, 206], [269, 220], [223, 220]], [[74, 146], [383, 146], [383, 159], [74, 159]], [[54, 120], [117, 120], [117, 134], [54, 134]], [[74, 51], [296, 51], [296, 65], [74, 65]], [[56, 18], [116, 18], [116, 32], [56, 32]]]
00018946.jpg [[[441, 328], [474, 328], [474, 339], [441, 339]], [[86, 284], [141, 286], [140, 307], [85, 305]], [[302, 279], [377, 279], [377, 297], [302, 297]], [[197, 265], [281, 274], [279, 293], [195, 284]], [[198, 197], [452, 219], [450, 242], [196, 220]], [[343, 182], [376, 182], [376, 192], [343, 192]], [[199, 164], [340, 171], [339, 192], [198, 185]], [[177, 101], [415, 118], [413, 145], [175, 128]]]
00034387.jpg [[[265, 460], [740, 460], [740, 484], [265, 484]], [[348, 417], [420, 417], [420, 443], [348, 443]], [[545, 418], [568, 418], [568, 442], [545, 442]], [[685, 417], [710, 417], [710, 443], [685, 443]], [[175, 415], [226, 415], [226, 443], [175, 443]], [[874, 414], [908, 414], [908, 446], [874, 446]], [[56, 417], [74, 417], [74, 442], [56, 442]], [[856, 373], [925, 373], [925, 400], [856, 400]], [[348, 372], [418, 372], [418, 397], [348, 397]], [[674, 372], [723, 372], [723, 401], [674, 401]], [[539, 373], [570, 373], [570, 400], [539, 400]], [[151, 365], [228, 369], [226, 402], [149, 398]], [[56, 372], [74, 372], [74, 397], [56, 397]], [[857, 329], [925, 329], [925, 355], [857, 355]], [[351, 330], [419, 330], [419, 356], [351, 356]], [[674, 328], [723, 328], [723, 356], [674, 356]], [[541, 329], [570, 329], [570, 357], [541, 357]], [[171, 327], [227, 324], [229, 355], [173, 358]], [[57, 330], [74, 330], [74, 356], [57, 356]], [[298, 327], [316, 327], [316, 334], [298, 334]], [[855, 286], [925, 286], [925, 312], [855, 312]], [[674, 286], [723, 286], [723, 313], [674, 313]], [[346, 286], [426, 283], [427, 313], [347, 316]], [[540, 285], [569, 285], [569, 312], [540, 312]], [[172, 282], [226, 282], [226, 313], [172, 313]], [[56, 287], [73, 287], [73, 312], [56, 312]], [[857, 242], [925, 242], [925, 268], [857, 268]], [[348, 242], [460, 242], [460, 268], [348, 268]], [[156, 242], [227, 242], [227, 269], [156, 269]], [[674, 241], [724, 241], [724, 269], [674, 269]], [[531, 241], [572, 241], [572, 270], [531, 270]], [[56, 242], [74, 242], [74, 268], [56, 268]], [[855, 197], [925, 200], [924, 226], [854, 224]], [[674, 198], [726, 198], [726, 226], [674, 226]], [[344, 200], [430, 195], [432, 224], [346, 230]], [[176, 197], [227, 197], [227, 225], [176, 225]], [[56, 200], [73, 200], [73, 226], [56, 226]], [[527, 194], [576, 194], [576, 226], [527, 226]], [[349, 155], [419, 155], [419, 181], [349, 181]], [[854, 154], [925, 154], [925, 180], [854, 180]], [[176, 154], [226, 154], [226, 183], [176, 183]], [[670, 153], [723, 153], [723, 181], [670, 181]], [[538, 154], [571, 154], [571, 182], [538, 182]], [[56, 156], [74, 156], [74, 182], [56, 182]], [[349, 111], [419, 111], [419, 137], [349, 137]], [[174, 111], [227, 111], [227, 139], [174, 139]], [[546, 113], [564, 113], [564, 137], [546, 137]], [[52, 112], [75, 112], [75, 139], [52, 139]], [[639, 108], [727, 105], [728, 138], [640, 141]], [[817, 103], [927, 110], [925, 139], [815, 132]], [[814, 68], [951, 68], [951, 92], [814, 92]], [[307, 66], [446, 68], [446, 93], [306, 90]], [[673, 67], [723, 67], [723, 93], [673, 93]], [[175, 65], [228, 68], [226, 95], [174, 92]], [[39, 65], [90, 68], [88, 97], [37, 94]], [[528, 65], [580, 65], [580, 94], [528, 94]], [[334, 20], [670, 20], [670, 43], [334, 43]]]
00037951.jpg [[[434, 976], [551, 978], [550, 993], [434, 991]], [[433, 932], [553, 932], [553, 969], [433, 969]], [[30, 522], [98, 522], [98, 545], [30, 545]], [[31, 443], [145, 443], [145, 464], [31, 464]], [[234, 335], [326, 332], [327, 354], [235, 356]], [[124, 252], [436, 252], [436, 284], [124, 284]], [[182, 206], [378, 206], [378, 227], [182, 227]], [[258, 106], [320, 123], [304, 181], [242, 163]], [[28, 65], [33, 65], [33, 71], [28, 71]], [[37, 58], [147, 58], [147, 80], [37, 80]]]
00044782.jpg [[[104, 218], [115, 218], [115, 227], [104, 227]], [[223, 216], [246, 216], [246, 228], [223, 228]], [[163, 216], [182, 216], [182, 229], [163, 229]], [[124, 191], [164, 191], [164, 202], [124, 202]], [[91, 84], [251, 84], [251, 98], [91, 98]], [[73, 63], [278, 63], [278, 78], [73, 78]], [[104, 15], [243, 15], [243, 44], [104, 44]]]
00067516.jpg [[[141, 808], [594, 809], [594, 822], [141, 821]], [[49, 784], [696, 784], [696, 798], [49, 798]], [[579, 751], [667, 751], [667, 764], [579, 764]], [[355, 750], [395, 750], [395, 767], [355, 767]], [[221, 751], [260, 751], [260, 765], [221, 765]], [[477, 750], [501, 750], [501, 768], [477, 768]], [[69, 748], [133, 751], [132, 765], [68, 761]], [[576, 682], [668, 682], [668, 699], [576, 699]], [[476, 682], [518, 682], [518, 700], [476, 700]], [[354, 682], [395, 682], [395, 700], [354, 700]], [[69, 681], [133, 684], [132, 699], [68, 695]], [[220, 679], [243, 682], [241, 700], [218, 697]], [[577, 615], [667, 615], [667, 632], [577, 632]], [[68, 612], [134, 615], [133, 632], [67, 629]], [[476, 614], [500, 614], [500, 633], [476, 633]], [[354, 613], [378, 613], [378, 634], [354, 634]], [[219, 612], [245, 612], [245, 633], [219, 633]], [[578, 547], [667, 547], [667, 564], [578, 564]], [[476, 546], [518, 546], [518, 565], [476, 565]], [[353, 545], [379, 545], [379, 566], [353, 566]], [[219, 545], [245, 545], [245, 566], [219, 566]], [[68, 542], [133, 546], [132, 563], [67, 560]], [[68, 478], [133, 482], [132, 499], [67, 496]], [[586, 481], [664, 481], [664, 497], [586, 497]], [[476, 480], [518, 480], [518, 498], [476, 498]], [[354, 480], [395, 480], [395, 498], [354, 498]], [[219, 479], [245, 479], [245, 500], [219, 500]], [[580, 425], [665, 429], [664, 449], [580, 446]], [[346, 429], [410, 429], [410, 447], [346, 447]], [[68, 426], [150, 429], [149, 449], [67, 447]], [[474, 427], [515, 427], [515, 449], [474, 449]], [[218, 427], [259, 427], [259, 449], [218, 449]], [[283, 398], [478, 399], [478, 419], [283, 418]], [[86, 318], [664, 318], [664, 332], [86, 332]], [[65, 279], [665, 279], [665, 292], [65, 292]], [[458, 210], [584, 210], [584, 224], [458, 224]], [[313, 209], [372, 209], [372, 226], [313, 226]], [[164, 209], [225, 209], [225, 226], [164, 226]], [[505, 151], [539, 151], [539, 166], [505, 166]], [[266, 48], [483, 48], [483, 68], [266, 68]]]
00088568.jpg [[[341, 446], [371, 446], [371, 453], [341, 453]], [[58, 445], [117, 445], [117, 455], [58, 455]], [[552, 433], [571, 433], [571, 440], [552, 440]], [[583, 431], [740, 431], [740, 442], [583, 442]], [[311, 415], [743, 415], [743, 428], [311, 428]], [[311, 377], [736, 377], [736, 390], [311, 390]], [[425, 340], [551, 340], [551, 350], [425, 350]], [[287, 324], [294, 332], [289, 337], [281, 330]], [[276, 294], [348, 296], [347, 311], [276, 309]], [[54, 288], [210, 288], [210, 301], [54, 301]], [[275, 265], [421, 265], [421, 278], [275, 278]], [[56, 264], [248, 264], [248, 277], [56, 277]], [[671, 248], [695, 248], [695, 261], [671, 261]], [[602, 248], [628, 248], [628, 261], [602, 261]], [[533, 248], [557, 248], [557, 261], [533, 261]], [[463, 248], [487, 248], [487, 261], [463, 261]], [[278, 248], [309, 248], [309, 260], [278, 260]], [[55, 240], [142, 240], [142, 254], [55, 254]], [[277, 231], [398, 231], [398, 244], [277, 244]], [[741, 228], [749, 237], [742, 245], [733, 236]], [[665, 230], [700, 230], [700, 244], [665, 244]], [[598, 230], [631, 230], [631, 244], [598, 244]], [[528, 230], [562, 230], [562, 244], [528, 244]], [[459, 230], [492, 230], [492, 244], [459, 244]], [[54, 215], [211, 217], [211, 231], [54, 229]], [[739, 211], [749, 221], [740, 229], [731, 220]], [[663, 214], [704, 214], [704, 228], [663, 228]], [[595, 215], [637, 215], [637, 226], [595, 226]], [[524, 215], [568, 215], [568, 226], [524, 226]], [[454, 215], [495, 215], [495, 226], [454, 226]], [[279, 215], [351, 215], [351, 226], [279, 226]], [[736, 199], [747, 199], [747, 208], [736, 208]], [[668, 197], [700, 197], [700, 208], [668, 208]], [[599, 196], [633, 196], [633, 210], [599, 210]], [[529, 197], [562, 197], [562, 208], [529, 208]], [[461, 197], [491, 197], [491, 208], [461, 208]], [[277, 195], [417, 196], [417, 211], [277, 209]], [[55, 192], [239, 192], [239, 205], [55, 205]], [[665, 181], [703, 181], [703, 192], [665, 192]], [[279, 180], [351, 181], [350, 192], [279, 191]], [[734, 180], [747, 180], [747, 193], [734, 193]], [[597, 180], [634, 180], [634, 191], [597, 191]], [[525, 179], [566, 179], [566, 193], [525, 193]], [[458, 180], [493, 180], [493, 191], [458, 191]], [[55, 170], [142, 170], [142, 184], [55, 184]], [[735, 165], [747, 165], [747, 175], [735, 175]], [[665, 163], [703, 163], [703, 175], [665, 175]], [[598, 163], [634, 163], [634, 175], [598, 175]], [[527, 163], [565, 163], [565, 175], [527, 175]], [[458, 163], [492, 163], [492, 175], [458, 175]], [[279, 162], [398, 162], [398, 176], [279, 176]], [[54, 146], [148, 146], [148, 159], [54, 159]], [[453, 147], [495, 147], [495, 158], [453, 158]], [[731, 143], [748, 146], [745, 161], [728, 158]], [[663, 145], [704, 145], [704, 159], [663, 159]], [[596, 146], [635, 146], [635, 157], [596, 157]], [[522, 145], [566, 142], [567, 157], [523, 159]], [[277, 144], [310, 144], [310, 158], [277, 158]], [[276, 121], [428, 121], [428, 139], [276, 139]], [[52, 120], [232, 121], [232, 139], [52, 138]], [[404, 91], [701, 91], [701, 106], [404, 106]], [[48, 79], [280, 79], [280, 97], [48, 97]], [[325, 69], [744, 70], [744, 84], [325, 83]], [[668, 48], [743, 48], [743, 63], [668, 63]], [[297, 48], [433, 48], [433, 62], [297, 62]]]
00091741.jpg [[[47, 336], [83, 336], [83, 358], [47, 358]], [[98, 211], [257, 209], [257, 229], [98, 231]], [[103, 190], [257, 191], [257, 205], [103, 204]], [[89, 101], [266, 99], [267, 181], [90, 184]], [[94, 48], [262, 55], [260, 114], [91, 107]], [[91, 12], [257, 14], [257, 37], [90, 35]]]
00105313.jpg [[[291, 262], [406, 262], [406, 275], [291, 275]], [[153, 262], [264, 262], [264, 274], [153, 274]], [[11, 258], [73, 261], [72, 274], [11, 272]], [[33, 231], [132, 231], [132, 244], [33, 244]], [[35, 217], [216, 217], [216, 227], [35, 227]], [[33, 200], [146, 200], [146, 213], [33, 213]], [[32, 183], [215, 184], [215, 197], [32, 196]], [[35, 170], [105, 170], [105, 181], [35, 181]], [[35, 155], [124, 155], [124, 164], [35, 164]], [[34, 137], [142, 138], [142, 149], [34, 148]], [[35, 123], [176, 123], [176, 133], [35, 133]], [[33, 106], [176, 106], [176, 119], [33, 119]], [[34, 92], [102, 92], [102, 102], [34, 102]], [[34, 77], [119, 77], [119, 87], [34, 87]], [[32, 60], [120, 60], [120, 73], [32, 73]], [[35, 46], [119, 46], [119, 55], [35, 55]], [[32, 29], [142, 29], [142, 42], [32, 42]], [[25, 12], [147, 12], [147, 24], [25, 24]]]
00134770.jpg [[[388, 646], [456, 646], [456, 656], [388, 656]], [[407, 620], [484, 619], [485, 633], [408, 634]], [[112, 534], [270, 531], [270, 549], [113, 551]], [[111, 502], [443, 497], [443, 514], [112, 519]], [[111, 471], [443, 467], [443, 484], [112, 488]], [[111, 439], [444, 434], [444, 451], [112, 457]], [[111, 409], [442, 405], [442, 421], [112, 425]], [[153, 376], [441, 373], [441, 390], [153, 394]], [[184, 338], [369, 336], [369, 356], [185, 358]], [[75, 98], [515, 104], [513, 218], [74, 212]]]
00145943.jpg [[[394, 248], [746, 279], [731, 449], [379, 418]], [[90, 92], [300, 92], [300, 119], [90, 119]], [[46, 41], [326, 39], [326, 75], [46, 77]]]
00147605.jpg [[[805, 616], [874, 616], [874, 627], [805, 627]], [[516, 607], [784, 605], [784, 628], [516, 629]], [[118, 522], [224, 522], [224, 560], [118, 560]], [[253, 524], [307, 524], [307, 557], [253, 557]], [[715, 501], [900, 505], [900, 538], [714, 534]], [[255, 502], [295, 502], [295, 517], [255, 517]], [[347, 481], [473, 481], [473, 515], [347, 515]], [[252, 484], [295, 484], [295, 499], [252, 499]], [[350, 456], [447, 456], [447, 470], [350, 470]], [[145, 444], [201, 444], [201, 467], [145, 467]], [[728, 371], [878, 371], [878, 420], [728, 420]], [[528, 369], [681, 369], [681, 418], [528, 418]], [[143, 369], [488, 369], [488, 420], [143, 420]], [[744, 315], [871, 315], [871, 336], [744, 336]], [[799, 157], [886, 154], [887, 188], [800, 191]], [[274, 142], [455, 142], [455, 160], [274, 160]], [[738, 116], [894, 119], [893, 157], [737, 153]], [[108, 112], [204, 112], [204, 130], [108, 130]], [[270, 92], [463, 96], [462, 132], [270, 129]]]
00150341.jpg [[[100, 644], [297, 644], [297, 661], [100, 661]], [[115, 617], [288, 617], [288, 631], [115, 631]], [[84, 593], [319, 592], [319, 609], [84, 610]], [[31, 565], [313, 562], [314, 580], [31, 582]], [[444, 560], [461, 560], [461, 569], [444, 569]], [[390, 557], [446, 557], [446, 572], [390, 572]], [[31, 515], [168, 515], [168, 529], [31, 529]], [[33, 490], [110, 490], [110, 504], [33, 504]], [[358, 459], [464, 463], [463, 485], [357, 481]], [[28, 459], [268, 460], [268, 481], [28, 480]], [[339, 439], [421, 444], [421, 460], [338, 455]], [[65, 439], [143, 439], [143, 453], [65, 453]], [[207, 416], [292, 416], [292, 434], [207, 434]], [[319, 408], [441, 413], [440, 438], [318, 433]], [[44, 405], [175, 409], [174, 434], [43, 430]], [[31, 383], [137, 383], [137, 404], [31, 404]]]
00150669.jpg [[[649, 700], [681, 700], [681, 716], [649, 716]], [[517, 685], [549, 685], [549, 720], [517, 720]], [[651, 688], [678, 688], [678, 701], [651, 701]], [[862, 687], [876, 687], [876, 695], [862, 695]], [[922, 675], [938, 675], [938, 685], [922, 685]], [[785, 671], [807, 671], [807, 687], [785, 687]], [[592, 672], [606, 672], [606, 686], [592, 686]], [[722, 679], [732, 669], [742, 678], [731, 688]], [[651, 680], [667, 665], [681, 679], [666, 695]], [[273, 667], [422, 667], [422, 688], [273, 688]], [[47, 668], [108, 668], [108, 686], [47, 686]], [[136, 666], [203, 666], [203, 688], [136, 688]], [[782, 629], [810, 629], [810, 661], [782, 661]], [[645, 627], [685, 627], [685, 665], [645, 665]], [[516, 628], [548, 628], [548, 664], [516, 664]], [[655, 619], [672, 619], [672, 627], [655, 627]], [[598, 617], [605, 624], [599, 629], [592, 622]], [[523, 619], [540, 619], [540, 627], [523, 627]], [[858, 618], [868, 618], [868, 627], [858, 627]], [[727, 618], [735, 618], [735, 627], [727, 627]], [[919, 620], [932, 611], [942, 624], [929, 633]], [[786, 616], [805, 616], [805, 629], [786, 629]], [[373, 604], [420, 604], [420, 619], [373, 619]], [[85, 603], [215, 605], [214, 621], [84, 619]], [[48, 603], [71, 603], [71, 622], [48, 622]], [[788, 561], [806, 561], [806, 572], [788, 572]], [[923, 560], [935, 560], [935, 574], [923, 574]], [[856, 560], [869, 560], [869, 574], [856, 574]], [[62, 554], [410, 554], [410, 568], [62, 568]], [[63, 532], [116, 535], [115, 545], [62, 543]], [[859, 527], [868, 527], [868, 539], [859, 539]], [[925, 526], [934, 526], [934, 540], [925, 540]], [[794, 520], [807, 529], [798, 542], [785, 533]], [[526, 526], [535, 526], [535, 536], [526, 536]], [[262, 513], [395, 513], [395, 526], [262, 526]], [[122, 514], [245, 514], [245, 524], [122, 524]], [[49, 514], [119, 514], [119, 525], [49, 525]], [[755, 492], [828, 492], [828, 507], [755, 507]], [[638, 492], [710, 492], [710, 507], [638, 507]], [[519, 492], [592, 492], [592, 507], [519, 507]], [[85, 450], [123, 450], [123, 461], [85, 461]], [[220, 450], [236, 447], [238, 459], [223, 462]], [[683, 445], [868, 445], [868, 459], [683, 459]], [[562, 445], [666, 445], [666, 459], [562, 459]], [[491, 446], [544, 446], [544, 458], [491, 458]], [[183, 437], [208, 437], [208, 459], [183, 459]], [[52, 431], [72, 438], [64, 462], [44, 455]], [[224, 432], [276, 432], [276, 443], [224, 443]], [[88, 432], [144, 432], [144, 443], [88, 443]], [[506, 383], [616, 382], [616, 397], [506, 398]], [[702, 381], [758, 381], [758, 399], [702, 399]], [[308, 373], [364, 373], [364, 384], [308, 384]], [[92, 373], [167, 373], [167, 384], [92, 384]], [[688, 335], [820, 335], [820, 350], [688, 350]], [[498, 335], [657, 335], [657, 350], [498, 350]], [[208, 316], [244, 316], [244, 331], [208, 331]], [[499, 289], [641, 289], [641, 302], [499, 302]], [[671, 287], [801, 287], [801, 301], [671, 301]], [[670, 241], [816, 241], [816, 255], [670, 255]], [[497, 241], [643, 241], [643, 255], [497, 255]], [[670, 194], [815, 194], [815, 208], [670, 208]], [[498, 194], [643, 194], [643, 208], [498, 208]], [[670, 145], [815, 145], [815, 160], [670, 160]], [[499, 145], [645, 145], [645, 160], [499, 160]], [[489, 103], [546, 103], [546, 120], [489, 120]], [[56, 89], [95, 89], [95, 97], [56, 97]], [[845, 26], [887, 20], [889, 39], [848, 44]], [[26, 20], [700, 20], [700, 37], [26, 37]], [[898, 11], [996, 16], [995, 45], [896, 40]]]
00152568.jpg [[[3, 252], [284, 254], [284, 280], [3, 278]], [[196, 233], [254, 233], [254, 240], [196, 240]], [[49, 229], [90, 229], [90, 240], [49, 240]], [[200, 159], [281, 165], [276, 229], [195, 222]]]
00155628.jpg [[[149, 901], [503, 903], [503, 922], [149, 920]], [[520, 893], [561, 896], [560, 911], [519, 908]], [[61, 885], [81, 885], [81, 894], [61, 894]], [[150, 878], [503, 882], [503, 900], [149, 896]], [[524, 834], [640, 839], [639, 856], [524, 852]], [[70, 834], [185, 835], [185, 853], [69, 852]], [[246, 555], [466, 555], [466, 569], [246, 569]], [[308, 507], [403, 509], [403, 524], [308, 522]], [[244, 482], [459, 484], [459, 502], [244, 500]], [[252, 422], [459, 424], [458, 452], [251, 450]], [[195, 378], [517, 380], [516, 408], [195, 406]], [[474, 194], [624, 196], [624, 210], [473, 208]], [[73, 129], [641, 131], [641, 160], [73, 158]], [[483, 41], [597, 37], [599, 98], [486, 102]], [[68, 25], [135, 16], [139, 43], [72, 52]]]
00173364.jpg [[[8, 178], [56, 178], [56, 200], [8, 200]], [[137, 120], [194, 120], [194, 133], [137, 133]], [[39, 76], [86, 76], [86, 105], [39, 105]], [[249, 20], [310, 20], [310, 36], [249, 36]], [[21, 16], [104, 16], [104, 39], [21, 39]]]
00175503.jpg [[[43, 260], [500, 255], [501, 358], [44, 363]], [[52, 200], [349, 178], [354, 251], [58, 273]]]
00193218.jpg [[[283, 375], [410, 375], [410, 388], [283, 388]], [[172, 375], [221, 375], [221, 389], [172, 389]], [[110, 375], [161, 375], [161, 389], [110, 389]], [[276, 358], [357, 358], [357, 371], [276, 371]], [[171, 359], [220, 359], [220, 370], [171, 370]], [[409, 357], [492, 357], [492, 370], [409, 370]], [[26, 187], [62, 187], [62, 202], [26, 202]], [[501, 185], [557, 185], [557, 199], [501, 199]], [[381, 187], [420, 185], [421, 199], [382, 201]], [[284, 186], [310, 186], [310, 201], [284, 201]], [[174, 186], [196, 186], [196, 201], [174, 201]], [[499, 165], [540, 165], [540, 176], [499, 176]], [[381, 164], [409, 164], [409, 177], [381, 177]], [[262, 163], [302, 163], [302, 177], [262, 177]], [[176, 163], [230, 163], [230, 177], [176, 177]], [[26, 163], [79, 163], [79, 177], [26, 177]], [[387, 140], [488, 140], [488, 153], [387, 153]], [[28, 139], [131, 139], [131, 152], [28, 152]], [[443, 117], [537, 119], [537, 133], [443, 132]], [[346, 119], [405, 119], [405, 130], [346, 130]], [[261, 119], [303, 119], [303, 130], [261, 130]], [[30, 113], [228, 116], [228, 131], [30, 129]], [[131, 91], [394, 94], [394, 109], [131, 105]], [[562, 82], [583, 82], [583, 107], [562, 107]]]
00195033.jpg [[[488, 263], [533, 265], [532, 280], [487, 278]], [[126, 250], [192, 250], [192, 283], [126, 283]], [[338, 249], [362, 249], [362, 266], [338, 266]], [[319, 222], [380, 225], [380, 238], [319, 236]], [[431, 224], [450, 224], [450, 235], [431, 235]], [[365, 203], [538, 203], [538, 216], [365, 216]], [[89, 200], [146, 203], [146, 217], [89, 214]], [[329, 201], [354, 201], [354, 212], [329, 212]], [[371, 181], [449, 181], [449, 194], [371, 194]], [[329, 181], [352, 181], [352, 192], [329, 192]], [[96, 179], [240, 179], [240, 193], [96, 193]], [[456, 162], [555, 162], [555, 175], [456, 175]], [[129, 150], [287, 151], [287, 165], [129, 164]], [[36, 145], [73, 149], [72, 163], [35, 159]], [[527, 146], [552, 146], [552, 155], [527, 155]], [[102, 145], [120, 145], [120, 153], [102, 153]], [[371, 129], [503, 128], [503, 139], [371, 140]], [[99, 126], [193, 126], [193, 139], [99, 139]], [[322, 127], [337, 127], [337, 135], [322, 135]], [[37, 123], [77, 123], [77, 134], [37, 134]], [[324, 106], [337, 106], [337, 115], [324, 115]], [[309, 107], [315, 107], [315, 112], [309, 112]], [[372, 103], [501, 103], [501, 116], [372, 116]], [[349, 105], [360, 105], [360, 114], [349, 114]], [[38, 103], [80, 103], [80, 113], [38, 113]], [[99, 100], [205, 101], [205, 115], [99, 114]], [[306, 90], [317, 90], [317, 97], [306, 97]], [[347, 88], [362, 88], [362, 96], [347, 96]], [[321, 87], [340, 87], [340, 99], [321, 99]], [[358, 84], [513, 82], [513, 95], [358, 97]], [[41, 83], [89, 83], [89, 93], [41, 93]], [[94, 79], [241, 80], [241, 94], [94, 93]], [[313, 66], [394, 66], [394, 79], [313, 79]], [[242, 66], [288, 66], [288, 77], [242, 77]], [[185, 54], [220, 54], [220, 65], [185, 65]], [[469, 48], [547, 48], [547, 61], [469, 61]], [[423, 36], [436, 36], [436, 54], [423, 54]], [[465, 30], [551, 30], [551, 43], [465, 43]], [[207, 21], [329, 23], [328, 41], [207, 39]]]
00208502.jpg [[[247, 566], [282, 566], [282, 573], [247, 573]], [[558, 534], [629, 539], [627, 570], [556, 565]], [[205, 540], [284, 540], [284, 552], [205, 552]], [[143, 513], [189, 513], [189, 525], [143, 525]], [[249, 512], [307, 512], [307, 524], [249, 524]], [[44, 500], [118, 500], [118, 519], [44, 519]], [[467, 491], [556, 491], [556, 508], [467, 508]], [[667, 490], [678, 494], [675, 503], [664, 499]], [[788, 489], [794, 495], [789, 499], [783, 494]], [[726, 491], [737, 491], [737, 501], [726, 501]], [[42, 452], [117, 450], [117, 469], [42, 470]], [[175, 450], [236, 450], [236, 464], [175, 464]], [[614, 407], [638, 407], [638, 422], [614, 422]], [[95, 405], [119, 405], [119, 422], [95, 422]], [[49, 399], [64, 414], [50, 427], [36, 413]], [[209, 401], [226, 401], [226, 415], [209, 415]], [[40, 357], [58, 357], [58, 374], [40, 374]], [[94, 356], [119, 356], [119, 373], [94, 373]], [[188, 341], [246, 339], [247, 361], [189, 364]], [[459, 321], [549, 319], [549, 337], [460, 339]], [[459, 273], [551, 273], [551, 290], [459, 290]], [[563, 272], [735, 269], [735, 286], [564, 289]], [[517, 225], [547, 225], [547, 245], [517, 245]], [[459, 226], [480, 226], [480, 244], [459, 244]], [[621, 187], [673, 187], [673, 201], [621, 201]], [[457, 132], [548, 130], [548, 147], [458, 149]], [[572, 106], [787, 99], [787, 120], [573, 126]], [[122, 48], [290, 48], [290, 97], [122, 97]], [[539, 39], [708, 39], [708, 89], [539, 89]]]
00224225.jpg [[[134, 429], [153, 426], [157, 445], [138, 448]], [[202, 404], [478, 411], [476, 459], [201, 452]], [[205, 230], [469, 230], [469, 390], [205, 390]], [[131, 265], [172, 265], [172, 279], [131, 279]], [[345, 207], [456, 207], [456, 231], [345, 231]], [[199, 189], [346, 196], [344, 239], [197, 232]], [[10, 44], [157, 41], [158, 112], [11, 115]]]
00227746.jpg [[[190, 232], [258, 232], [258, 238], [190, 238]], [[160, 232], [183, 232], [183, 238], [160, 238]], [[123, 232], [150, 232], [150, 238], [123, 238]], [[290, 208], [345, 206], [346, 222], [291, 224]], [[172, 181], [249, 181], [249, 194], [172, 194]], [[143, 178], [165, 180], [162, 208], [140, 206]], [[142, 164], [157, 162], [160, 177], [145, 180]], [[173, 157], [203, 157], [203, 164], [173, 164]], [[200, 154], [347, 154], [347, 167], [200, 167]], [[144, 111], [277, 114], [277, 134], [144, 131]], [[201, 52], [387, 53], [386, 69], [201, 68]], [[141, 46], [192, 46], [192, 63], [141, 63]], [[40, 26], [61, 26], [61, 42], [40, 42]]]
00229605.jpg [[[743, 529], [881, 529], [881, 544], [743, 544]], [[236, 499], [589, 498], [589, 522], [236, 523]], [[6, 498], [227, 498], [227, 522], [6, 522]], [[735, 496], [883, 499], [883, 520], [734, 517]], [[606, 495], [716, 489], [718, 515], [608, 521]], [[4, 245], [863, 230], [864, 288], [5, 303]], [[478, 28], [883, 28], [883, 76], [478, 76]]]
00233011.jpg [[[63, 227], [291, 227], [291, 242], [63, 242]], [[12, 219], [41, 219], [41, 250], [12, 250]], [[61, 177], [119, 177], [119, 195], [61, 195]], [[11, 173], [40, 169], [44, 200], [14, 203]], [[61, 129], [147, 131], [147, 147], [61, 144]], [[12, 124], [43, 124], [43, 154], [12, 154]], [[125, 89], [238, 89], [238, 103], [125, 103]], [[148, 51], [216, 51], [216, 65], [148, 65]], [[258, 46], [353, 50], [352, 69], [257, 65]], [[9, 49], [52, 49], [52, 68], [9, 68]], [[277, 12], [345, 12], [345, 31], [277, 31]], [[28, 11], [74, 11], [74, 31], [28, 31]]]
00233625.jpg [[[375, 397], [632, 399], [632, 443], [375, 440]], [[71, 214], [932, 207], [933, 321], [71, 328]]]
00233634.jpg [[[215, 639], [261, 639], [261, 703], [215, 703]], [[523, 635], [570, 635], [570, 695], [523, 695]], [[643, 523], [682, 523], [682, 568], [643, 568]], [[97, 516], [152, 516], [152, 589], [97, 589]], [[755, 395], [760, 395], [760, 401], [755, 401]], [[26, 395], [32, 395], [32, 400], [26, 400]], [[678, 364], [728, 362], [731, 430], [681, 432]], [[54, 361], [107, 361], [107, 434], [54, 434]], [[78, 208], [155, 208], [155, 280], [78, 280]], [[643, 205], [693, 205], [693, 272], [643, 272]], [[210, 88], [260, 86], [263, 164], [213, 166]], [[363, 48], [426, 45], [430, 115], [367, 118]]]
00234400.jpg [[[446, 421], [738, 421], [738, 438], [446, 438]], [[157, 421], [454, 421], [454, 438], [157, 438]], [[158, 394], [652, 394], [652, 411], [158, 411]], [[40, 391], [127, 391], [127, 412], [40, 412]], [[158, 342], [304, 345], [304, 363], [158, 360]], [[38, 344], [123, 344], [123, 362], [38, 362]], [[520, 295], [703, 295], [703, 314], [520, 314]], [[394, 292], [483, 290], [484, 314], [394, 317]], [[157, 293], [270, 293], [270, 313], [157, 313]], [[37, 293], [125, 293], [125, 313], [37, 313]], [[156, 243], [358, 243], [358, 267], [156, 267]], [[36, 243], [82, 243], [82, 269], [36, 269]], [[29, 152], [158, 152], [158, 175], [29, 175]], [[282, 98], [507, 98], [507, 111], [282, 111]], [[315, 46], [475, 50], [474, 88], [314, 85]], [[518, 51], [663, 53], [662, 67], [517, 65]], [[487, 19], [706, 17], [706, 43], [487, 45]]]
00234883.jpg [[[344, 145], [355, 145], [355, 153], [344, 153]], [[66, 125], [316, 120], [317, 190], [67, 195]], [[79, 138], [109, 141], [108, 152], [78, 148]], [[72, 120], [120, 120], [120, 130], [72, 130]], [[383, 63], [504, 62], [504, 74], [383, 75]], [[58, 29], [365, 26], [366, 112], [59, 115]], [[387, 28], [501, 26], [501, 45], [387, 47]]]
test_add_0.jpg [[[311, 521], [391, 521], [391, 534], [311, 534]], [[277, 500], [424, 500], [424, 514], [277, 514]], [[261, 446], [437, 446], [437, 459], [261, 459]], [[212, 428], [485, 428], [485, 441], [212, 441]], [[247, 388], [457, 388], [457, 409], [247, 409]], [[222, 328], [474, 328], [474, 372], [222, 372]], [[208, 207], [492, 211], [490, 277], [207, 272]], [[266, 164], [422, 166], [421, 197], [265, 195]], [[18, 20], [201, 18], [201, 43], [18, 45]]]
test_add_1.png []
test_add_10.png [[[157, 124], [186, 124], [186, 172], [157, 172]], [[65, 117], [95, 117], [95, 168], [65, 168]], [[161, 106], [183, 106], [183, 127], [161, 127]], [[69, 100], [94, 100], [94, 128], [69, 128]], [[117, 46], [154, 45], [157, 174], [121, 175]], [[66, 34], [97, 34], [97, 112], [66, 112]]]
test_add_11.jpg [[[1525, 773], [1564, 756], [1575, 780], [1536, 798]], [[1390, 757], [1483, 757], [1483, 791], [1390, 791]], [[1013, 754], [1207, 754], [1207, 800], [1013, 800]], [[685, 755], [875, 755], [875, 796], [685, 796]], [[356, 753], [566, 747], [567, 793], [358, 798]], [[78, 751], [264, 745], [265, 793], [79, 798]], [[602, 647], [1152, 647], [1152, 703], [602, 703]], [[601, 564], [1148, 555], [1149, 611], [602, 620]], [[598, 480], [1066, 472], [1067, 526], [599, 535]], [[598, 393], [1090, 388], [1090, 439], [599, 444]], [[603, 306], [1057, 306], [1057, 357], [603, 357]], [[357, 184], [1517, 184], [1517, 261], [357, 261]], [[60, 43], [257, 37], [259, 83], [61, 89]], [[1305, 41], [1492, 41], [1492, 87], [1305, 87]], [[973, 40], [1171, 34], [1172, 80], [974, 86]], [[670, 40], [862, 34], [864, 80], [671, 86]], [[363, 34], [558, 34], [558, 85], [363, 85]]]
test_add_12.jpg [[[11, 592], [136, 594], [135, 613], [11, 611]], [[109, 521], [907, 526], [907, 569], [109, 565]], [[635, 451], [902, 448], [903, 478], [635, 481]], [[112, 447], [466, 449], [466, 486], [112, 483]], [[582, 306], [680, 304], [681, 348], [583, 351]], [[369, 261], [565, 266], [563, 357], [367, 353]], [[64, 85], [853, 88], [853, 161], [64, 159]]]
test_add_13.jpg [[[68, 94], [117, 97], [116, 114], [67, 111]]]
test_add_14.jpg [[[30, 97], [235, 95], [236, 127], [31, 129]], [[30, 52], [239, 50], [239, 86], [30, 87]]]
test_add_15.jpg [[[141, 253], [353, 253], [353, 266], [141, 266]], [[205, 214], [406, 219], [406, 232], [204, 227]], [[106, 212], [193, 213], [193, 227], [106, 226]], [[154, 156], [286, 161], [286, 174], [154, 170]], [[148, 136], [305, 142], [305, 156], [147, 150]], [[108, 137], [144, 137], [144, 148], [108, 148]], [[108, 102], [275, 109], [275, 125], [107, 117]], [[107, 72], [245, 79], [245, 96], [106, 88]], [[107, 39], [209, 42], [209, 62], [106, 59]]]
test_add_16.jpg [[[398, 842], [408, 842], [408, 852], [398, 852]], [[382, 742], [746, 742], [746, 776], [382, 776]], [[362, 703], [468, 703], [468, 725], [362, 725]], [[1552, 701], [1576, 701], [1576, 746], [1552, 746]], [[1256, 695], [1442, 695], [1442, 721], [1256, 721]], [[1244, 661], [1448, 661], [1448, 687], [1244, 687]], [[386, 645], [668, 645], [668, 679], [386, 679]], [[1228, 625], [1470, 623], [1470, 651], [1228, 653]], [[360, 604], [580, 604], [580, 629], [360, 629]], [[1202, 592], [1494, 592], [1494, 617], [1202, 617]], [[1166, 556], [1530, 556], [1530, 582], [1166, 582]], [[380, 552], [638, 552], [638, 586], [380, 586]], [[356, 502], [516, 502], [516, 536], [356, 536]], [[774, 260], [1124, 260], [1124, 300], [774, 300]], [[374, 210], [504, 210], [504, 300], [374, 300]], [[776, 212], [1088, 217], [1088, 252], [776, 248]]]
test_add_17.jpg [[[321, 255], [393, 258], [392, 271], [320, 269]], [[307, 222], [411, 228], [411, 241], [306, 236]], [[96, 136], [385, 143], [384, 208], [94, 201]], [[72, 95], [399, 103], [398, 124], [71, 117]], [[68, 76], [224, 79], [223, 93], [67, 90]], [[66, 59], [226, 62], [225, 76], [65, 74]]]
test_add_18.jpg [[[466, 788], [715, 790], [715, 813], [466, 811]], [[553, 752], [665, 757], [663, 791], [552, 786]], [[119, 539], [189, 539], [189, 570], [119, 570]], [[116, 473], [674, 486], [673, 528], [115, 516]], [[121, 429], [669, 441], [668, 470], [121, 457]], [[121, 375], [674, 381], [674, 410], [121, 404]], [[556, 262], [675, 264], [675, 278], [556, 277]], [[164, 259], [334, 259], [334, 273], [164, 273]], [[344, 195], [456, 197], [455, 220], [343, 217]], [[309, 175], [490, 175], [490, 190], [309, 190]], [[255, 128], [537, 131], [537, 169], [254, 165]], [[347, 92], [486, 94], [486, 109], [346, 107]], [[285, 41], [567, 49], [566, 82], [284, 74]], [[236, 32], [266, 32], [266, 60], [236, 60]]]
test_add_19.jpg [[[24, 294], [42, 294], [42, 302], [24, 302]], [[64, 293], [105, 293], [105, 303], [64, 303]], [[145, 287], [163, 287], [163, 304], [145, 304]], [[63, 280], [106, 280], [106, 290], [63, 290]], [[9, 281], [26, 281], [26, 288], [9, 288]], [[220, 279], [245, 279], [245, 291], [220, 291]], [[177, 279], [208, 279], [208, 290], [177, 290]], [[23, 279], [51, 279], [51, 290], [23, 290]], [[145, 278], [162, 278], [162, 292], [145, 292]], [[8, 267], [18, 267], [18, 276], [8, 276]], [[221, 265], [243, 265], [243, 277], [221, 277]], [[24, 265], [47, 265], [47, 277], [24, 277]], [[142, 263], [163, 263], [163, 279], [142, 279]], [[218, 252], [249, 252], [249, 265], [218, 265]], [[65, 253], [131, 253], [131, 263], [65, 263]], [[24, 252], [43, 252], [43, 264], [24, 264]], [[8, 253], [18, 253], [18, 262], [8, 262]], [[8, 240], [17, 240], [17, 249], [8, 249]], [[63, 237], [114, 237], [114, 251], [63, 251]], [[25, 236], [47, 239], [45, 251], [23, 249]], [[144, 234], [166, 237], [163, 253], [142, 249]], [[494, 226], [531, 226], [531, 239], [494, 239]], [[335, 226], [354, 226], [354, 237], [335, 237]], [[288, 226], [314, 226], [314, 237], [288, 237]], [[63, 226], [113, 226], [113, 236], [63, 236]], [[7, 227], [17, 227], [17, 234], [7, 234]], [[221, 225], [248, 225], [248, 235], [221, 235]], [[143, 225], [165, 222], [167, 234], [145, 237]], [[24, 224], [48, 224], [48, 238], [24, 238]], [[495, 213], [524, 213], [524, 224], [495, 224]], [[420, 212], [437, 212], [437, 225], [420, 225]], [[336, 212], [398, 212], [398, 223], [336, 223]], [[292, 212], [320, 212], [320, 223], [292, 223]], [[222, 212], [249, 212], [249, 223], [222, 223]], [[145, 212], [166, 212], [166, 223], [145, 223]], [[61, 211], [113, 209], [114, 222], [62, 224]], [[26, 211], [48, 211], [48, 223], [26, 223]], [[337, 199], [383, 199], [383, 209], [337, 209]], [[65, 200], [87, 200], [87, 207], [65, 207]], [[493, 197], [541, 197], [541, 211], [493, 211]], [[445, 202], [455, 196], [462, 206], [452, 212]], [[178, 198], [205, 198], [205, 208], [178, 208]], [[146, 199], [157, 199], [157, 208], [146, 208]], [[32, 194], [43, 204], [33, 214], [22, 203]], [[422, 193], [440, 201], [432, 215], [415, 207]], [[65, 186], [132, 186], [132, 196], [65, 196]], [[337, 185], [399, 185], [399, 196], [337, 196]], [[445, 190], [456, 182], [465, 191], [454, 200]], [[292, 188], [308, 182], [313, 193], [297, 200]], [[220, 183], [255, 183], [255, 197], [220, 197]], [[142, 184], [158, 184], [158, 197], [142, 197]], [[493, 182], [518, 182], [518, 197], [493, 197]], [[425, 180], [437, 191], [427, 202], [414, 190]], [[32, 179], [42, 189], [32, 199], [22, 189]], [[182, 179], [195, 185], [188, 198], [175, 192]], [[335, 172], [400, 169], [400, 183], [336, 185]], [[492, 170], [519, 170], [519, 185], [492, 185]], [[412, 177], [428, 164], [440, 178], [425, 190]], [[293, 171], [315, 171], [315, 185], [293, 185]], [[220, 170], [251, 170], [251, 184], [220, 184]], [[178, 172], [188, 172], [188, 183], [178, 183]], [[64, 172], [125, 170], [125, 181], [64, 182]], [[454, 168], [464, 176], [454, 185], [445, 176]], [[142, 172], [159, 168], [163, 180], [145, 185]], [[30, 165], [43, 174], [34, 186], [20, 177]], [[493, 160], [523, 160], [523, 170], [493, 170]], [[402, 161], [435, 161], [435, 168], [402, 168]], [[335, 159], [401, 159], [401, 169], [335, 169]], [[296, 159], [325, 159], [325, 170], [296, 170]], [[221, 158], [251, 158], [251, 169], [221, 169]], [[174, 161], [183, 156], [190, 167], [181, 172]], [[145, 158], [162, 158], [162, 170], [145, 170]], [[61, 158], [125, 157], [125, 168], [62, 169]], [[20, 161], [33, 154], [40, 167], [28, 174]], [[492, 143], [542, 143], [542, 157], [492, 157]], [[450, 144], [479, 144], [479, 157], [450, 157]], [[335, 143], [439, 143], [439, 156], [335, 156]], [[294, 143], [327, 143], [327, 157], [294, 157]], [[220, 143], [253, 143], [253, 157], [220, 157]], [[178, 145], [187, 145], [187, 156], [178, 156]], [[63, 144], [104, 144], [104, 155], [63, 155]], [[144, 140], [164, 145], [160, 159], [141, 154]], [[31, 137], [44, 149], [31, 162], [17, 149]], [[286, 135], [291, 135], [291, 140], [286, 140]], [[177, 133], [193, 133], [193, 144], [177, 144]], [[336, 132], [388, 132], [388, 141], [336, 141]], [[492, 131], [525, 131], [525, 141], [492, 141]], [[450, 131], [477, 131], [477, 141], [450, 141]], [[292, 131], [321, 131], [321, 141], [292, 141]], [[218, 132], [255, 130], [256, 141], [219, 144]], [[63, 131], [95, 131], [95, 141], [63, 141]], [[417, 130], [437, 130], [437, 141], [417, 141]], [[145, 130], [159, 130], [159, 143], [145, 143]], [[30, 124], [43, 133], [32, 147], [19, 138]], [[493, 118], [535, 118], [535, 129], [493, 129]], [[336, 118], [388, 118], [388, 129], [336, 129]], [[218, 118], [255, 118], [255, 128], [218, 128]], [[451, 117], [478, 117], [478, 129], [451, 129]], [[418, 117], [438, 117], [438, 130], [418, 130]], [[177, 116], [209, 116], [209, 130], [177, 130]], [[145, 117], [162, 117], [162, 130], [145, 130]], [[62, 116], [88, 116], [88, 131], [62, 131]], [[19, 121], [33, 111], [43, 124], [29, 134]], [[491, 107], [523, 107], [523, 113], [491, 113]], [[449, 107], [477, 107], [477, 113], [449, 113]], [[420, 107], [436, 107], [436, 113], [420, 113]], [[295, 107], [319, 107], [319, 114], [295, 114]], [[220, 107], [242, 107], [242, 113], [220, 113]], [[176, 107], [203, 107], [203, 113], [176, 113]], [[145, 107], [161, 107], [161, 114], [145, 114]], [[334, 105], [372, 105], [372, 114], [334, 114]], [[63, 106], [86, 106], [86, 113], [63, 113]], [[483, 89], [522, 89], [522, 99], [483, 99]], [[331, 88], [380, 88], [380, 99], [331, 99]], [[276, 88], [325, 88], [325, 99], [276, 99]], [[214, 88], [246, 88], [246, 99], [214, 99]], [[411, 86], [474, 86], [474, 100], [411, 100]], [[6, 86], [102, 86], [102, 100], [6, 100]], [[415, 66], [461, 66], [461, 77], [415, 77]], [[288, 66], [333, 66], [333, 77], [288, 77]], [[157, 64], [206, 64], [206, 78], [157, 78]], [[416, 48], [523, 49], [523, 63], [415, 62]], [[288, 49], [375, 49], [375, 63], [288, 63]], [[159, 49], [269, 49], [269, 62], [159, 62]], [[24, 53], [36, 46], [45, 59], [33, 67]], [[416, 36], [481, 36], [481, 46], [416, 46]], [[25, 38], [39, 32], [46, 46], [33, 52]], [[157, 34], [205, 34], [205, 47], [157, 47]], [[412, 4], [527, 4], [527, 17], [412, 17]], [[146, 4], [345, 2], [345, 15], [146, 17]]]
test_add_20.jpg [[[31, 346], [605, 346], [605, 370], [31, 370]], [[217, 294], [510, 294], [510, 322], [217, 322]], [[473, 271], [525, 271], [525, 286], [473, 286]], [[220, 267], [287, 267], [287, 286], [220, 286]], [[219, 239], [484, 239], [484, 263], [219, 263]], [[221, 217], [303, 217], [303, 234], [221, 234]], [[402, 192], [417, 192], [417, 205], [402, 205]], [[222, 187], [341, 187], [341, 207], [222, 207]], [[221, 162], [287, 162], [287, 180], [221, 180]], [[375, 122], [475, 124], [475, 146], [375, 143]], [[222, 124], [356, 122], [356, 143], [222, 146]], [[218, 81], [352, 84], [352, 116], [218, 113]], [[440, 35], [605, 35], [605, 60], [440, 60]], [[72, 16], [398, 16], [398, 44], [72, 44]]]
test_add_3.jpg [[[169, 327], [337, 326], [337, 341], [169, 342]], [[170, 288], [307, 290], [307, 312], [170, 310]], [[171, 221], [323, 221], [323, 234], [171, 234]], [[340, 221], [449, 217], [449, 231], [341, 234]], [[169, 201], [372, 201], [372, 214], [169, 214]], [[170, 183], [418, 183], [418, 196], [170, 196]], [[170, 149], [416, 149], [416, 163], [170, 163]], [[171, 119], [418, 119], [418, 140], [171, 140]], [[326, 64], [478, 64], [478, 91], [326, 91]], [[173, 64], [306, 60], [306, 89], [174, 93]]]
test_add_4.png []
test_add_5.png [[[48, 164], [108, 164], [108, 174], [48, 174]], [[52, 121], [169, 121], [169, 134], [52, 134]], [[50, 102], [165, 102], [165, 118], [50, 118]], [[52, 83], [164, 83], [164, 100], [52, 100]], [[51, 68], [166, 68], [166, 84], [51, 84]], [[51, 50], [145, 47], [145, 64], [52, 67]]]
test_add_6.jpg [[[123, 223], [219, 227], [218, 251], [122, 247]], [[172, 172], [186, 186], [172, 200], [158, 186]]]
test_add_7.jpg [[[48, 938], [174, 936], [174, 962], [48, 964]], [[227, 873], [629, 876], [628, 953], [226, 949]], [[56, 745], [638, 745], [638, 790], [56, 790]], [[150, 674], [545, 678], [544, 721], [150, 718]], [[73, 504], [633, 504], [633, 601], [73, 601]], [[59, 270], [655, 279], [652, 441], [56, 432]], [[513, 193], [553, 193], [553, 223], [513, 223]], [[61, 175], [532, 175], [532, 239], [61, 239]], [[533, 178], [642, 178], [642, 236], [533, 236]]]
test_add_8.jpg [[[251, 586], [454, 580], [454, 606], [252, 613]], [[107, 533], [457, 527], [457, 560], [108, 566]], [[336, 494], [384, 494], [384, 507], [336, 507]], [[27, 307], [355, 297], [356, 320], [28, 330]], [[22, 259], [445, 251], [445, 274], [23, 282]], [[78, 209], [445, 205], [445, 225], [78, 229]], [[160, 23], [319, 30], [317, 79], [158, 72]]]
test_add_9.png [[[266, 687], [486, 687], [486, 696], [266, 696]], [[196, 668], [554, 668], [554, 681], [196, 681]], [[154, 596], [597, 596], [597, 606], [154, 606]], [[215, 578], [541, 578], [541, 588], [215, 588]], [[134, 560], [615, 560], [615, 570], [134, 570]], [[85, 543], [665, 543], [665, 553], [85, 553]], [[96, 522], [653, 522], [653, 535], [96, 535]], [[362, 449], [389, 449], [389, 460], [362, 460]], [[238, 376], [513, 376], [513, 389], [238, 389]], [[177, 356], [574, 356], [574, 368], [177, 368]], [[344, 281], [408, 283], [407, 297], [343, 294]], [[257, 205], [493, 205], [493, 219], [257, 219]]]
00008790.jpg [[[209, 406], [280, 406], [280, 419], [209, 419]], [[60, 398], [105, 398], [105, 411], [60, 411]], [[198, 389], [291, 389], [291, 402], [198, 402]], [[162, 391], [173, 391], [173, 401], [162, 401]], [[35, 380], [133, 380], [133, 393], [35, 393]], [[199, 371], [292, 371], [292, 384], [199, 384]], [[218, 310], [272, 310], [272, 324], [218, 324]], [[162, 305], [172, 305], [172, 314], [162, 314]], [[371, 302], [436, 302], [436, 316], [371, 316]], [[31, 302], [134, 301], [134, 315], [31, 316]], [[223, 292], [269, 292], [269, 306], [223, 306]], [[60, 225], [104, 225], [104, 236], [60, 236]], [[218, 223], [272, 223], [272, 237], [218, 237]], [[162, 219], [173, 219], [173, 227], [162, 227]], [[33, 207], [131, 207], [131, 220], [33, 220]], [[223, 206], [269, 206], [269, 220], [223, 220]], [[74, 146], [383, 146], [383, 159], [74, 159]], [[54, 120], [117, 120], [117, 134], [54, 134]], [[74, 51], [296, 51], [296, 65], [74, 65]], [[56, 17], [116, 17], [116, 31], [56, 31]]]
00018946.jpg [[[441, 328], [474, 328], [474, 339], [441, 339]], [[86, 284], [141, 286], [140, 307], [85, 305]], [[302, 279], [377, 279], [377, 297], [302, 297]], [[197, 265], [281, 274], [279, 293], [195, 284]], [[198, 197], [452, 219], [450, 242], [196, 220]], [[343, 182], [376, 182], [376, 192], [343, 192]], [[199, 164], [340, 171], [339, 192], [198, 185]], [[177, 101], [415, 118], [413, 145], [175, 128]]]
00034387.jpg [[[265, 460], [740, 460], [740, 484], [265, 484]], [[348, 417], [420, 417], [420, 443], [348, 443]], [[545, 418], [568, 418], [568, 442], [545, 442]], [[685, 417], [710, 417], [710, 443], [685, 443]], [[175, 415], [226, 415], [226, 443], [175, 443]], [[874, 414], [908, 414], [908, 446], [874, 446]], [[56, 417], [74, 417], [74, 442], [56, 442]], [[856, 373], [925, 373], [925, 400], [856, 400]], [[348, 372], [418, 372], [418, 397], [348, 397]], [[674, 372], [723, 372], [723, 401], [674, 401]], [[539, 373], [570, 373], [570, 400], [539, 400]], [[151, 365], [228, 369], [226, 402], [149, 398]], [[56, 372], [74, 372], [74, 397], [56, 397]], [[857, 329], [925, 329], [925, 355], [857, 355]], [[351, 330], [419, 330], [419, 356], [351, 356]], [[674, 328], [723, 328], [723, 356], [674, 356]], [[541, 329], [570, 329], [570, 357], [541, 357]], [[171, 327], [227, 324], [229, 355], [173, 358]], [[57, 330], [74, 330], [74, 356], [57, 356]], [[298, 327], [316, 327], [316, 334], [298, 334]], [[855, 286], [925, 286], [925, 312], [855, 312]], [[674, 286], [723, 286], [723, 313], [674, 313]], [[346, 286], [426, 283], [427, 313], [347, 316]], [[540, 285], [569, 285], [569, 312], [540, 312]], [[172, 282], [226, 282], [226, 313], [172, 313]], [[56, 287], [73, 287], [73, 312], [56, 312]], [[857, 242], [925, 242], [925, 268], [857, 268]], [[348, 242], [460, 242], [460, 268], [348, 268]], [[156, 242], [227, 242], [227, 269], [156, 269]], [[674, 241], [724, 241], [724, 269], [674, 269]], [[531, 241], [572, 241], [572, 270], [531, 270]], [[56, 242], [74, 242], [74, 268], [56, 268]], [[855, 197], [925, 200], [924, 226], [854, 224]], [[674, 198], [726, 198], [726, 226], [674, 226]], [[344, 200], [434, 195], [436, 223], [346, 228]], [[176, 197], [227, 197], [227, 225], [176, 225]], [[56, 200], [73, 200], [73, 226], [56, 226]], [[527, 194], [576, 194], [576, 226], [527, 226]], [[349, 155], [419, 155], [419, 181], [349, 181]], [[854, 154], [925, 154], [925, 180], [854, 180]], [[176, 154], [226, 154], [226, 183], [176, 183]], [[670, 153], [723, 153], [723, 181], [670, 181]], [[538, 154], [571, 154], [571, 182], [538, 182]], [[56, 156], [74, 156], [74, 182], [56, 182]], [[349, 111], [419, 111], [419, 137], [349, 137]], [[174, 111], [227, 111], [227, 139], [174, 139]], [[546, 113], [564, 113], [564, 137], [546, 137]], [[52, 112], [75, 112], [75, 139], [52, 139]], [[639, 108], [727, 105], [728, 138], [640, 141]], [[817, 103], [927, 110], [925, 139], [815, 132]], [[814, 68], [951, 68], [951, 92], [814, 92]], [[307, 66], [446, 68], [446, 93], [306, 90]], [[673, 67], [723, 67], [723, 93], [673, 93]], [[175, 65], [228, 68], [226, 95], [174, 92]], [[39, 65], [90, 68], [88, 97], [37, 94]], [[528, 65], [580, 65], [580, 94], [528, 94]], [[334, 20], [670, 20], [670, 43], [334, 43]]]
00037951.jpg [[[434, 976], [551, 978], [550, 993], [434, 991]], [[433, 932], [553, 932], [553, 969], [433, 969]], [[30, 522], [98, 522], [98, 545], [30, 545]], [[31, 443], [145, 443], [145, 464], [31, 464]], [[234, 335], [326, 332], [327, 354], [235, 356]], [[124, 252], [436, 252], [436, 284], [124, 284]], [[182, 206], [378, 206], [378, 227], [182, 227]], [[258, 106], [320, 123], [304, 181], [242, 163]], [[28, 65], [33, 65], [33, 71], [28, 71]], [[37, 58], [147, 58], [147, 80], [37, 80]]]
00044782.jpg [[[104, 218], [115, 218], [115, 227], [104, 227]], [[223, 216], [246, 216], [246, 228], [223, 228]], [[163, 216], [182, 216], [182, 229], [163, 229]], [[124, 191], [164, 191], [164, 202], [124, 202]], [[91, 84], [251, 84], [251, 98], [91, 98]], [[73, 63], [278, 63], [278, 78], [73, 78]], [[104, 15], [243, 15], [243, 44], [104, 44]]]
00067516.jpg [[[141, 808], [594, 809], [594, 822], [141, 821]], [[49, 784], [695, 784], [695, 798], [49, 798]], [[579, 751], [667, 751], [667, 764], [579, 764]], [[355, 750], [395, 750], [395, 767], [355, 767]], [[221, 751], [260, 751], [260, 765], [221, 765]], [[477, 750], [501, 750], [501, 768], [477, 768]], [[69, 748], [133, 751], [132, 765], [68, 761]], [[576, 682], [668, 682], [668, 699], [576, 699]], [[476, 682], [518, 682], [518, 700], [476, 700]], [[354, 682], [395, 682], [395, 700], [354, 700]], [[69, 681], [133, 684], [132, 699], [68, 695]], [[220, 679], [243, 682], [241, 700], [218, 697]], [[577, 615], [667, 615], [667, 632], [577, 632]], [[68, 612], [134, 615], [133, 632], [67, 629]], [[476, 614], [500, 614], [500, 633], [476, 633]], [[354, 613], [378, 613], [378, 634], [354, 634]], [[219, 612], [245, 612], [245, 633], [219, 633]], [[578, 547], [667, 547], [667, 564], [578, 564]], [[476, 546], [518, 546], [518, 565], [476, 565]], [[353, 545], [379, 545], [379, 566], [353, 566]], [[219, 545], [245, 545], [245, 566], [219, 566]], [[68, 542], [133, 546], [132, 563], [67, 560]], [[68, 478], [133, 482], [132, 499], [67, 496]], [[586, 481], [664, 481], [664, 497], [586, 497]], [[476, 480], [518, 480], [518, 498], [476, 498]], [[354, 480], [395, 480], [395, 498], [354, 498]], [[219, 479], [245, 479], [245, 500], [219, 500]], [[580, 425], [665, 429], [664, 449], [580, 446]], [[346, 429], [410, 429], [410, 447], [346, 447]], [[68, 426], [150, 429], [149, 449], [67, 447]], [[474, 427], [515, 427], [515, 449], [474, 449]], [[218, 427], [259, 427], [259, 449], [218, 449]], [[283, 398], [478, 399], [478, 419], [283, 418]], [[86, 318], [664, 318], [664, 332], [86, 332]], [[65, 279], [665, 279], [665, 292], [65, 292]], [[458, 210], [584, 210], [584, 224], [458, 224]], [[312, 209], [371, 209], [371, 226], [312, 226]], [[164, 209], [225, 209], [225, 226], [164, 226]], [[505, 151], [539, 151], [539, 166], [505, 166]], [[266, 48], [483, 48], [483, 68], [266, 68]]]
00088568.jpg [[[341, 446], [371, 446], [371, 453], [341, 453]], [[58, 445], [117, 445], [117, 455], [58, 455]], [[552, 433], [571, 433], [571, 440], [552, 440]], [[583, 431], [740, 431], [740, 442], [583, 442]], [[311, 415], [743, 415], [743, 428], [311, 428]], [[310, 376], [735, 376], [735, 389], [310, 389]], [[425, 340], [551, 340], [551, 350], [425, 350]], [[287, 324], [294, 332], [289, 337], [281, 330]], [[276, 294], [348, 296], [347, 311], [276, 309]], [[54, 288], [210, 288], [210, 301], [54, 301]], [[275, 265], [421, 265], [421, 278], [275, 278]], [[56, 264], [248, 264], [248, 277], [56, 277]], [[671, 248], [695, 248], [695, 261], [671, 261]], [[602, 248], [628, 248], [628, 261], [602, 261]], [[533, 248], [557, 248], [557, 261], [533, 261]], [[463, 248], [487, 248], [487, 261], [463, 261]], [[278, 248], [309, 248], [309, 260], [278, 260]], [[55, 240], [142, 240], [142, 254], [55, 254]], [[277, 231], [398, 231], [398, 244], [277, 244]], [[741, 228], [749, 237], [742, 245], [733, 236]], [[665, 230], [700, 230], [700, 244], [665, 244]], [[598, 230], [631, 230], [631, 244], [598, 244]], [[528, 230], [562, 230], [562, 244], [528, 244]], [[459, 230], [492, 230], [492, 244], [459, 244]], [[54, 215], [211, 217], [211, 231], [54, 229]], [[739, 211], [749, 221], [740, 229], [731, 220]], [[663, 214], [704, 214], [704, 228], [663, 228]], [[595, 215], [637, 215], [637, 226], [595, 226]], [[524, 215], [569, 215], [569, 226], [524, 226]], [[454, 215], [495, 215], [495, 226], [454, 226]], [[279, 215], [351, 215], [351, 226], [279, 226]], [[736, 199], [747, 199], [747, 208], [736, 208]], [[668, 197], [700, 197], [700, 208], [668, 208]], [[599, 196], [633, 196], [633, 210], [599, 210]], [[529, 197], [562, 197], [562, 208], [529, 208]], [[461, 197], [491, 197], [491, 208], [461, 208]], [[277, 195], [417, 196], [417, 211], [277, 209]], [[55, 192], [239, 192], [239, 205], [55, 205]], [[665, 181], [703, 181], [703, 192], [665, 192]], [[279, 180], [351, 181], [350, 192], [279, 191]], [[734, 180], [747, 180], [747, 193], [734, 193]], [[597, 180], [634, 180], [634, 191], [597, 191]], [[525, 179], [566, 179], [566, 193], [525, 193]], [[458, 180], [493, 180], [493, 191], [458, 191]], [[55, 170], [142, 170], [142, 184], [55, 184]], [[735, 165], [747, 165], [747, 175], [735, 175]], [[665, 163], [703, 163], [703, 175], [665, 175]], [[598, 163], [634, 163], [634, 175], [598, 175]], [[527, 163], [565, 163], [565, 175], [527, 175]], [[458, 163], [492, 163], [492, 175], [458, 175]], [[279, 162], [398, 162], [398, 176], [279, 176]], [[54, 146], [148, 146], [148, 159], [54, 159]], [[453, 147], [495, 147], [495, 158], [453, 158]], [[731, 143], [748, 146], [745, 161], [728, 158]], [[663, 145], [704, 145], [704, 159], [663, 159]], [[596, 146], [635, 146], [635, 157], [596, 157]], [[522, 145], [566, 142], [567, 157], [523, 159]], [[277, 144], [310, 144], [310, 158], [277, 158]], [[276, 121], [428, 121], [428, 139], [276, 139]], [[52, 120], [232, 121], [232, 139], [52, 138]], [[404, 91], [701, 91], [701, 106], [404, 106]], [[48, 79], [280, 79], [280, 97], [48, 97]], [[325, 69], [744, 70], [744, 84], [325, 83]], [[668, 48], [743, 48], [743, 63], [668, 63]], [[297, 48], [433, 48], [433, 62], [297, 62]]]
00091741.jpg [[[47, 336], [83, 336], [83, 358], [47, 358]], [[99, 211], [257, 211], [257, 230], [99, 230]], [[103, 190], [257, 191], [257, 205], [103, 204]], [[89, 101], [266, 99], [267, 181], [90, 184]], [[94, 48], [262, 55], [260, 114], [91, 107]], [[91, 12], [257, 14], [257, 37], [90, 35]]]
00105313.jpg [[[291, 262], [406, 262], [406, 275], [291, 275]], [[153, 262], [264, 262], [264, 274], [153, 274]], [[11, 258], [73, 261], [72, 274], [11, 272]], [[33, 231], [132, 231], [132, 244], [33, 244]], [[35, 217], [216, 217], [216, 227], [35, 227]], [[32, 200], [145, 200], [145, 213], [32, 213]], [[32, 183], [215, 184], [215, 197], [32, 196]], [[35, 170], [105, 170], [105, 181], [35, 181]], [[35, 155], [124, 155], [124, 164], [35, 164]], [[34, 137], [142, 138], [142, 149], [34, 148]], [[35, 123], [176, 123], [176, 133], [35, 133]], [[33, 106], [176, 106], [176, 119], [33, 119]], [[34, 92], [102, 92], [102, 102], [34, 102]], [[34, 77], [119, 77], [119, 87], [34, 87]], [[32, 60], [120, 60], [120, 73], [32, 73]], [[35, 46], [119, 46], [119, 55], [35, 55]], [[32, 29], [142, 29], [142, 42], [32, 42]], [[25, 12], [147, 12], [147, 24], [25, 24]]]
00134770.jpg [[[388, 645], [456, 645], [456, 655], [388, 655]], [[407, 620], [484, 619], [485, 633], [408, 634]], [[112, 534], [270, 531], [270, 549], [113, 551]], [[111, 502], [443, 497], [443, 514], [112, 519]], [[111, 471], [443, 467], [443, 484], [112, 488]], [[111, 439], [444, 434], [444, 451], [112, 457]], [[111, 409], [442, 405], [442, 421], [112, 425]], [[153, 376], [441, 373], [441, 390], [153, 394]], [[184, 338], [369, 336], [369, 356], [185, 358]], [[75, 98], [515, 104], [513, 218], [74, 212]]]
00145943.jpg [[[394, 248], [746, 279], [731, 449], [379, 418]], [[90, 92], [300, 92], [300, 119], [90, 119]], [[46, 41], [326, 39], [326, 75], [46, 77]]]
00147605.jpg [[[804, 615], [874, 616], [874, 627], [804, 626]], [[516, 607], [784, 605], [784, 628], [516, 629]], [[118, 522], [224, 522], [224, 560], [118, 560]], [[253, 524], [307, 524], [307, 557], [253, 557]], [[715, 501], [900, 505], [900, 538], [714, 534]], [[255, 502], [295, 502], [295, 517], [255, 517]], [[347, 481], [473, 481], [473, 515], [347, 515]], [[252, 484], [295, 484], [295, 499], [252, 499]], [[350, 456], [447, 456], [447, 470], [350, 470]], [[145, 444], [201, 444], [201, 467], [145, 467]], [[728, 371], [878, 371], [878, 420], [728, 420]], [[528, 369], [681, 369], [681, 418], [528, 418]], [[142, 368], [486, 368], [486, 419], [142, 419]], [[744, 315], [871, 315], [871, 336], [744, 336]], [[799, 157], [886, 154], [887, 188], [800, 191]], [[274, 142], [455, 142], [455, 160], [274, 160]], [[738, 116], [894, 119], [893, 157], [737, 153]], [[108, 112], [204, 112], [204, 130], [108, 130]], [[270, 92], [463, 96], [462, 132], [270, 129]]]
00150341.jpg [[[100, 645], [298, 645], [298, 662], [100, 662]], [[115, 617], [288, 617], [288, 631], [115, 631]], [[84, 593], [319, 592], [319, 609], [84, 610]], [[31, 565], [313, 562], [314, 580], [31, 582]], [[444, 560], [461, 560], [461, 569], [444, 569]], [[390, 557], [446, 557], [446, 572], [390, 572]], [[31, 515], [168, 515], [168, 529], [31, 529]], [[33, 490], [110, 490], [110, 504], [33, 504]], [[358, 459], [464, 463], [463, 485], [357, 481]], [[28, 459], [268, 460], [268, 481], [28, 480]], [[339, 439], [421, 444], [421, 460], [338, 455]], [[64, 439], [143, 439], [143, 453], [64, 453]], [[207, 416], [292, 416], [292, 434], [207, 434]], [[319, 408], [441, 413], [440, 438], [318, 433]], [[44, 405], [175, 409], [174, 434], [43, 430]], [[31, 383], [137, 383], [137, 404], [31, 404]]]
00150669.jpg [[[649, 700], [681, 700], [681, 716], [649, 716]], [[517, 685], [549, 685], [549, 720], [517, 720]], [[651, 688], [678, 688], [678, 701], [651, 701]], [[862, 687], [876, 687], [876, 695], [862, 695]], [[922, 675], [938, 675], [938, 685], [922, 685]], [[785, 671], [807, 671], [807, 687], [785, 687]], [[592, 672], [606, 672], [606, 686], [592, 686]], [[722, 679], [732, 669], [742, 678], [731, 688]], [[651, 680], [667, 665], [681, 679], [666, 695]], [[273, 667], [422, 667], [422, 688], [273, 688]], [[136, 666], [203, 666], [203, 688], [136, 688]], [[46, 666], [109, 666], [109, 687], [46, 687]], [[782, 629], [810, 629], [810, 661], [782, 661]], [[645, 627], [685, 627], [685, 665], [645, 665]], [[516, 628], [548, 628], [548, 664], [516, 664]], [[655, 619], [672, 619], [672, 627], [655, 627]], [[598, 617], [605, 624], [599, 629], [592, 622]], [[523, 619], [540, 619], [540, 627], [523, 627]], [[858, 618], [868, 618], [868, 627], [858, 627]], [[727, 618], [735, 618], [735, 627], [727, 627]], [[918, 621], [932, 611], [942, 624], [928, 634]], [[786, 616], [805, 616], [805, 629], [786, 629]], [[373, 604], [420, 604], [420, 619], [373, 619]], [[85, 603], [215, 605], [214, 621], [84, 619]], [[48, 603], [71, 603], [71, 622], [48, 622]], [[788, 561], [806, 561], [806, 572], [788, 572]], [[923, 560], [935, 560], [935, 574], [923, 574]], [[856, 560], [869, 560], [869, 574], [856, 574]], [[62, 553], [409, 553], [409, 567], [62, 567]], [[63, 532], [116, 535], [115, 545], [62, 543]], [[859, 527], [868, 527], [868, 539], [859, 539]], [[925, 526], [934, 526], [934, 540], [925, 540]], [[794, 520], [807, 529], [798, 542], [785, 533]], [[526, 526], [535, 526], [535, 536], [526, 536]], [[262, 513], [395, 513], [395, 526], [262, 526]], [[122, 514], [245, 514], [245, 524], [122, 524]], [[49, 514], [119, 514], [119, 525], [49, 525]], [[755, 492], [828, 492], [828, 507], [755, 507]], [[638, 492], [710, 492], [710, 507], [638, 507]], [[519, 492], [592, 492], [592, 507], [519, 507]], [[85, 450], [123, 450], [123, 461], [85, 461]], [[220, 450], [236, 447], [238, 459], [223, 462]], [[682, 445], [867, 445], [867, 459], [682, 459]], [[562, 445], [666, 445], [666, 459], [562, 459]], [[491, 446], [544, 446], [544, 458], [491, 458]], [[183, 437], [208, 437], [208, 459], [183, 459]], [[52, 431], [72, 438], [64, 462], [44, 455]], [[224, 432], [276, 432], [276, 443], [224, 443]], [[88, 432], [144, 432], [144, 443], [88, 443]], [[506, 383], [616, 382], [616, 397], [506, 398]], [[702, 381], [758, 381], [758, 399], [702, 399]], [[308, 373], [364, 373], [364, 384], [308, 384]], [[91, 372], [166, 372], [166, 383], [91, 383]], [[688, 335], [820, 335], [820, 350], [688, 350]], [[498, 335], [657, 335], [657, 350], [498, 350]], [[208, 316], [244, 316], [244, 331], [208, 331]], [[499, 289], [641, 289], [641, 302], [499, 302]], [[671, 287], [801, 287], [801, 301], [671, 301]], [[670, 241], [816, 241], [816, 255], [670, 255]], [[497, 241], [643, 241], [643, 255], [497, 255]], [[669, 193], [814, 193], [814, 207], [669, 207]], [[498, 193], [643, 193], [643, 207], [498, 207]], [[670, 145], [815, 145], [815, 160], [670, 160]], [[499, 145], [645, 145], [645, 160], [499, 160]], [[489, 103], [546, 103], [546, 120], [489, 120]], [[56, 89], [95, 89], [95, 97], [56, 97]], [[845, 26], [887, 20], [889, 39], [848, 44]], [[26, 20], [700, 20], [700, 37], [26, 37]], [[898, 11], [996, 16], [995, 45], [896, 40]]]
00152568.jpg [[[3, 252], [284, 254], [284, 280], [3, 278]], [[196, 233], [254, 233], [254, 240], [196, 240]], [[49, 229], [90, 229], [90, 240], [49, 240]], [[200, 159], [281, 165], [276, 229], [195, 222]]]
00155628.jpg [[[149, 901], [503, 903], [503, 922], [149, 920]], [[520, 893], [561, 896], [560, 911], [519, 908]], [[61, 885], [81, 885], [81, 894], [61, 894]], [[150, 878], [503, 882], [503, 900], [149, 896]], [[524, 834], [640, 839], [639, 856], [524, 852]], [[70, 834], [185, 835], [185, 853], [69, 852]], [[246, 555], [466, 555], [466, 569], [246, 569]], [[308, 507], [403, 509], [403, 524], [308, 522]], [[244, 482], [459, 484], [459, 502], [244, 500]], [[252, 422], [459, 424], [458, 452], [251, 450]], [[195, 378], [517, 380], [516, 408], [195, 406]], [[474, 194], [624, 196], [624, 210], [473, 208]], [[73, 129], [641, 131], [641, 160], [73, 158]], [[483, 41], [597, 37], [599, 98], [486, 102]], [[68, 25], [135, 16], [139, 43], [72, 52]]]
00173364.jpg [[[8, 178], [57, 178], [57, 200], [8, 200]], [[137, 120], [194, 120], [194, 133], [137, 133]], [[39, 76], [86, 76], [86, 105], [39, 105]], [[250, 20], [311, 20], [311, 36], [250, 36]], [[21, 16], [104, 16], [104, 39], [21, 39]]]
00175503.jpg [[[43, 260], [500, 255], [501, 358], [44, 363]], [[52, 200], [349, 178], [354, 251], [58, 273]]]
00193218.jpg [[[283, 375], [410, 375], [410, 388], [283, 388]], [[172, 375], [221, 375], [221, 389], [172, 389]], [[110, 375], [161, 375], [161, 389], [110, 389]], [[276, 358], [357, 358], [357, 371], [276, 371]], [[171, 359], [220, 359], [220, 370], [171, 370]], [[409, 357], [492, 357], [492, 370], [409, 370]], [[26, 187], [62, 187], [62, 202], [26, 202]], [[501, 185], [557, 185], [557, 199], [501, 199]], [[381, 187], [420, 185], [421, 199], [382, 201]], [[284, 186], [310, 186], [310, 201], [284, 201]], [[174, 186], [196, 186], [196, 201], [174, 201]], [[499, 165], [540, 165], [540, 176], [499, 176]], [[381, 164], [409, 164], [409, 177], [381, 177]], [[262, 163], [302, 163], [302, 177], [262, 177]], [[176, 163], [230, 163], [230, 177], [176, 177]], [[26, 163], [79, 163], [79, 177], [26, 177]], [[387, 140], [488, 140], [488, 153], [387, 153]], [[28, 139], [131, 139], [131, 152], [28, 152]], [[443, 117], [537, 119], [537, 133], [443, 132]], [[346, 119], [405, 119], [405, 130], [346, 130]], [[261, 119], [302, 119], [302, 130], [261, 130]], [[30, 113], [228, 116], [228, 131], [30, 129]], [[131, 91], [394, 94], [394, 109], [131, 105]], [[562, 82], [583, 82], [583, 107], [562, 107]]]
00195033.jpg [[[488, 263], [533, 265], [532, 280], [487, 278]], [[126, 250], [192, 250], [192, 283], [126, 283]], [[338, 249], [362, 249], [362, 266], [338, 266]], [[319, 222], [380, 225], [380, 238], [319, 236]], [[431, 224], [450, 224], [450, 235], [431, 235]], [[365, 203], [538, 203], [538, 216], [365, 216]], [[89, 200], [146, 203], [146, 217], [89, 214]], [[329, 201], [354, 201], [354, 212], [329, 212]], [[371, 181], [449, 181], [449, 194], [371, 194]], [[329, 181], [352, 181], [352, 192], [329, 192]], [[96, 179], [240, 179], [240, 193], [96, 193]], [[456, 161], [555, 161], [555, 174], [456, 174]], [[129, 150], [287, 151], [287, 165], [129, 164]], [[36, 145], [73, 149], [72, 163], [35, 159]], [[527, 146], [552, 146], [552, 155], [527, 155]], [[102, 145], [120, 145], [120, 153], [102, 153]], [[371, 129], [503, 128], [503, 139], [371, 140]], [[99, 126], [193, 126], [193, 139], [99, 139]], [[322, 127], [337, 127], [337, 135], [322, 135]], [[37, 123], [77, 123], [77, 134], [37, 134]], [[324, 106], [337, 106], [337, 115], [324, 115]], [[309, 107], [315, 107], [315, 112], [309, 112]], [[372, 103], [501, 103], [501, 116], [372, 116]], [[349, 105], [360, 105], [360, 114], [349, 114]], [[38, 103], [80, 103], [80, 113], [38, 113]], [[99, 100], [205, 101], [205, 115], [99, 114]], [[306, 90], [317, 90], [317, 97], [306, 97]], [[347, 88], [362, 88], [362, 96], [347, 96]], [[321, 87], [340, 87], [340, 99], [321, 99]], [[358, 84], [513, 82], [513, 95], [358, 97]], [[41, 83], [89, 83], [89, 93], [41, 93]], [[94, 79], [241, 80], [241, 94], [94, 93]], [[313, 66], [394, 66], [394, 79], [313, 79]], [[242, 66], [288, 66], [288, 77], [242, 77]], [[185, 54], [220, 54], [220, 65], [185, 65]], [[469, 48], [547, 48], [547, 61], [469, 61]], [[423, 36], [436, 36], [436, 54], [423, 54]], [[465, 30], [551, 30], [551, 43], [465, 43]], [[207, 21], [329, 23], [328, 41], [207, 39]]]
00208502.jpg [[[247, 566], [282, 566], [282, 573], [247, 573]], [[558, 534], [629, 539], [627, 570], [556, 565]], [[205, 540], [284, 540], [284, 552], [205, 552]], [[143, 513], [189, 513], [189, 525], [143, 525]], [[249, 512], [307, 512], [307, 524], [249, 524]], [[44, 500], [118, 500], [118, 519], [44, 519]], [[467, 491], [556, 491], [556, 508], [467, 508]], [[667, 490], [678, 494], [675, 503], [664, 499]], [[788, 489], [794, 495], [789, 499], [783, 494]], [[726, 491], [737, 491], [737, 501], [726, 501]], [[42, 452], [117, 450], [117, 469], [42, 470]], [[175, 450], [236, 450], [236, 464], [175, 464]], [[614, 407], [638, 407], [638, 422], [614, 422]], [[95, 405], [119, 405], [119, 422], [95, 422]], [[49, 399], [63, 413], [49, 427], [35, 414]], [[209, 401], [226, 401], [226, 415], [209, 415]], [[40, 357], [58, 357], [58, 374], [40, 374]], [[94, 356], [119, 356], [119, 373], [94, 373]], [[188, 341], [246, 339], [247, 361], [189, 364]], [[459, 321], [549, 319], [549, 337], [460, 339]], [[459, 273], [551, 273], [551, 290], [459, 290]], [[563, 272], [735, 269], [735, 286], [564, 289]], [[517, 225], [547, 225], [547, 245], [517, 245]], [[459, 226], [480, 226], [480, 244], [459, 244]], [[621, 187], [673, 187], [673, 201], [621, 201]], [[457, 132], [548, 130], [548, 147], [458, 149]], [[572, 106], [787, 99], [787, 120], [573, 126]], [[122, 48], [290, 48], [290, 97], [122, 97]], [[539, 39], [708, 39], [708, 89], [539, 89]]]
00224225.jpg [[[134, 429], [153, 426], [157, 445], [138, 448]], [[202, 404], [478, 411], [476, 459], [201, 452]], [[205, 230], [469, 230], [469, 390], [205, 390]], [[131, 265], [172, 265], [172, 279], [131, 279]], [[344, 207], [455, 207], [455, 231], [344, 231]], [[199, 189], [346, 196], [344, 239], [197, 232]], [[10, 44], [157, 41], [158, 112], [11, 115]]]
00227746.jpg [[[190, 232], [258, 232], [258, 238], [190, 238]], [[160, 232], [183, 232], [183, 238], [160, 238]], [[123, 232], [150, 232], [150, 238], [123, 238]], [[290, 209], [345, 207], [346, 221], [291, 223]], [[172, 181], [249, 181], [249, 194], [172, 194]], [[143, 178], [165, 180], [162, 208], [140, 206]], [[142, 164], [157, 162], [160, 177], [145, 180]], [[173, 157], [203, 157], [203, 164], [173, 164]], [[200, 154], [347, 154], [347, 167], [200, 167]], [[144, 111], [277, 114], [277, 134], [144, 131]], [[201, 52], [387, 53], [386, 69], [201, 68]], [[139, 47], [191, 45], [192, 62], [140, 64]], [[40, 26], [61, 26], [61, 42], [40, 42]]]
00229605.jpg [[[743, 529], [881, 529], [881, 544], [743, 544]], [[236, 499], [589, 498], [589, 522], [236, 523]], [[6, 498], [227, 498], [227, 522], [6, 522]], [[736, 496], [883, 499], [883, 520], [735, 517]], [[606, 495], [716, 489], [718, 515], [608, 521]], [[4, 245], [863, 230], [864, 288], [5, 303]], [[478, 28], [883, 28], [883, 76], [478, 76]]]
00233011.jpg [[[63, 227], [291, 227], [291, 242], [63, 242]], [[12, 219], [41, 219], [41, 250], [12, 250]], [[61, 177], [119, 177], [119, 195], [61, 195]], [[11, 173], [40, 169], [44, 200], [14, 203]], [[61, 129], [147, 131], [147, 147], [61, 144]], [[12, 124], [43, 124], [43, 154], [12, 154]], [[125, 89], [238, 89], [238, 103], [125, 103]], [[148, 51], [216, 51], [216, 65], [148, 65]], [[258, 46], [353, 50], [352, 69], [257, 65]], [[9, 49], [52, 49], [52, 68], [9, 68]], [[277, 12], [345, 12], [345, 31], [277, 31]], [[28, 11], [73, 11], [73, 31], [28, 31]]]
00233625.jpg [[[375, 397], [632, 399], [632, 443], [375, 440]], [[71, 214], [932, 207], [933, 321], [71, 328]]]
00233634.jpg [[[215, 639], [261, 639], [261, 703], [215, 703]], [[523, 635], [570, 635], [570, 695], [523, 695]], [[643, 523], [682, 523], [682, 568], [643, 568]], [[97, 516], [152, 516], [152, 589], [97, 589]], [[755, 395], [760, 395], [760, 401], [755, 401]], [[26, 395], [32, 395], [32, 400], [26, 400]], [[678, 364], [728, 362], [731, 430], [681, 432]], [[54, 361], [107, 361], [107, 434], [54, 434]], [[78, 208], [155, 208], [155, 280], [78, 280]], [[643, 205], [693, 205], [693, 272], [643, 272]], [[210, 88], [260, 86], [263, 164], [213, 166]], [[363, 48], [426, 45], [430, 115], [367, 118]]]
00234400.jpg [[[446, 421], [738, 421], [738, 438], [446, 438]], [[157, 421], [454, 421], [454, 438], [157, 438]], [[158, 394], [652, 394], [652, 411], [158, 411]], [[40, 391], [127, 391], [127, 412], [40, 412]], [[158, 342], [304, 345], [304, 363], [158, 360]], [[38, 344], [123, 344], [123, 362], [38, 362]], [[520, 295], [703, 295], [703, 314], [520, 314]], [[394, 292], [483, 290], [484, 314], [394, 317]], [[157, 293], [270, 293], [270, 313], [157, 313]], [[37, 293], [125, 293], [125, 313], [37, 313]], [[156, 243], [358, 243], [358, 267], [156, 267]], [[36, 243], [82, 243], [82, 269], [36, 269]], [[28, 151], [157, 151], [157, 174], [28, 174]], [[282, 98], [507, 98], [507, 111], [282, 111]], [[315, 46], [475, 50], [474, 88], [314, 85]], [[518, 51], [663, 53], [662, 67], [517, 65]], [[487, 19], [706, 17], [706, 43], [487, 45]]]
00234883.jpg [[[66, 125], [316, 120], [317, 190], [67, 195]], [[79, 138], [109, 140], [108, 151], [78, 148]], [[72, 120], [120, 120], [120, 130], [72, 130]], [[383, 63], [504, 62], [504, 74], [383, 75]], [[58, 29], [365, 26], [366, 112], [59, 115]], [[387, 28], [501, 26], [501, 45], [387, 47]]]
test_add_0.jpg [[[311, 521], [391, 521], [391, 534], [311, 534]], [[277, 500], [424, 500], [424, 514], [277, 514]], [[261, 446], [437, 446], [437, 459], [261, 459]], [[212, 428], [485, 428], [485, 441], [212, 441]], [[247, 388], [457, 388], [457, 409], [247, 409]], [[222, 328], [474, 328], [474, 372], [222, 372]], [[208, 207], [492, 211], [490, 277], [207, 272]], [[266, 164], [422, 166], [421, 197], [265, 195]], [[18, 20], [201, 18], [201, 43], [18, 45]]]
test_add_1.png []
test_add_10.png [[[157, 124], [186, 124], [186, 172], [157, 172]], [[65, 117], [95, 117], [95, 168], [65, 168]], [[161, 106], [183, 106], [183, 127], [161, 127]], [[69, 100], [94, 100], [94, 128], [69, 128]], [[117, 46], [154, 45], [157, 174], [121, 175]], [[66, 34], [97, 34], [97, 112], [66, 112]]]
test_add_11.jpg [[[1525, 773], [1564, 756], [1575, 780], [1536, 798]], [[1390, 757], [1483, 757], [1483, 791], [1390, 791]], [[1013, 754], [1207, 754], [1207, 800], [1013, 800]], [[685, 755], [875, 755], [875, 796], [685, 796]], [[356, 753], [566, 747], [567, 793], [358, 798]], [[78, 751], [264, 745], [265, 793], [79, 798]], [[602, 647], [1152, 647], [1152, 703], [602, 703]], [[601, 564], [1148, 555], [1149, 611], [602, 620]], [[598, 480], [1066, 472], [1067, 526], [599, 535]], [[598, 393], [1090, 388], [1090, 439], [599, 444]], [[603, 306], [1057, 306], [1057, 357], [603, 357]], [[357, 184], [1515, 184], [1515, 261], [357, 261]], [[60, 43], [257, 37], [259, 83], [61, 89]], [[1305, 41], [1492, 41], [1492, 87], [1305, 87]], [[973, 40], [1171, 34], [1172, 80], [974, 86]], [[670, 40], [862, 34], [864, 80], [671, 86]], [[363, 34], [558, 34], [558, 85], [363, 85]]]
test_add_12.jpg [[[11, 592], [136, 594], [135, 613], [11, 611]], [[109, 521], [907, 526], [907, 569], [109, 565]], [[635, 451], [902, 448], [903, 478], [635, 481]], [[112, 447], [466, 449], [466, 486], [112, 483]], [[582, 306], [680, 304], [681, 348], [583, 351]], [[369, 261], [565, 266], [563, 357], [367, 353]], [[64, 85], [853, 88], [853, 161], [64, 159]]]
test_add_13.jpg [[[68, 94], [117, 97], [116, 114], [67, 111]]]
test_add_14.jpg [[[30, 97], [235, 95], [236, 127], [31, 129]], [[30, 52], [239, 50], [239, 86], [30, 87]]]
test_add_15.jpg [[[141, 253], [353, 253], [353, 266], [141, 266]], [[205, 214], [406, 219], [406, 232], [204, 227]], [[106, 212], [193, 213], [193, 227], [106, 226]], [[154, 156], [286, 161], [286, 174], [154, 170]], [[148, 136], [305, 142], [305, 156], [147, 150]], [[108, 137], [145, 137], [145, 148], [108, 148]], [[108, 102], [275, 109], [275, 125], [107, 117]], [[107, 72], [245, 79], [245, 96], [106, 88]], [[107, 39], [209, 42], [209, 62], [106, 59]]]
test_add_16.jpg [[[398, 842], [408, 842], [408, 852], [398, 852]], [[382, 741], [746, 741], [746, 774], [382, 774]], [[362, 703], [468, 703], [468, 725], [362, 725]], [[1552, 701], [1576, 701], [1576, 746], [1552, 746]], [[1256, 695], [1442, 695], [1442, 721], [1256, 721]], [[1244, 661], [1448, 661], [1448, 687], [1244, 687]], [[386, 645], [668, 645], [668, 679], [386, 679]], [[1226, 625], [1470, 623], [1470, 651], [1226, 653]], [[360, 604], [580, 604], [580, 629], [360, 629]], [[1202, 592], [1494, 592], [1494, 617], [1202, 617]], [[1166, 556], [1530, 556], [1530, 582], [1166, 582]], [[380, 552], [638, 552], [638, 586], [380, 586]], [[356, 502], [516, 502], [516, 536], [356, 536]], [[774, 260], [1124, 260], [1124, 300], [774, 300]], [[374, 210], [504, 210], [504, 300], [374, 300]], [[776, 212], [1088, 217], [1088, 252], [776, 248]]]
test_add_17.jpg [[[321, 255], [393, 258], [392, 271], [320, 269]], [[307, 222], [411, 228], [411, 241], [306, 236]], [[96, 137], [385, 143], [384, 206], [94, 201]], [[72, 95], [399, 103], [398, 124], [71, 117]], [[68, 76], [224, 79], [223, 93], [67, 90]], [[66, 59], [226, 62], [225, 76], [65, 74]]]
test_add_18.jpg [[[466, 788], [715, 790], [715, 813], [466, 811]], [[553, 752], [665, 757], [663, 791], [552, 786]], [[119, 539], [189, 539], [189, 570], [119, 570]], [[116, 473], [674, 486], [673, 528], [115, 516]], [[121, 429], [669, 441], [668, 470], [121, 457]], [[122, 376], [673, 383], [673, 409], [122, 402]], [[556, 262], [675, 264], [675, 278], [556, 277]], [[165, 259], [335, 259], [335, 273], [165, 273]], [[344, 195], [456, 197], [455, 220], [343, 217]], [[309, 175], [490, 175], [490, 190], [309, 190]], [[255, 128], [537, 131], [537, 169], [254, 165]], [[347, 92], [486, 94], [486, 109], [346, 107]], [[285, 41], [567, 49], [566, 82], [284, 74]], [[236, 32], [266, 32], [266, 60], [236, 60]]]
test_add_19.jpg [[[24, 294], [42, 294], [42, 302], [24, 302]], [[64, 293], [105, 293], [105, 303], [64, 303]], [[145, 287], [163, 287], [163, 304], [145, 304]], [[63, 280], [106, 280], [106, 290], [63, 290]], [[9, 281], [26, 281], [26, 288], [9, 288]], [[220, 279], [245, 279], [245, 291], [220, 291]], [[177, 279], [208, 279], [208, 290], [177, 290]], [[23, 279], [51, 279], [51, 290], [23, 290]], [[145, 278], [162, 278], [162, 292], [145, 292]], [[8, 267], [18, 267], [18, 276], [8, 276]], [[221, 265], [243, 265], [243, 277], [221, 277]], [[24, 265], [47, 265], [47, 277], [24, 277]], [[142, 263], [163, 263], [163, 279], [142, 279]], [[218, 252], [249, 252], [249, 265], [218, 265]], [[65, 253], [131, 253], [131, 263], [65, 263]], [[24, 252], [43, 252], [43, 264], [24, 264]], [[8, 253], [18, 253], [18, 262], [8, 262]], [[8, 240], [17, 240], [17, 249], [8, 249]], [[63, 237], [114, 237], [114, 251], [63, 251]], [[25, 236], [47, 239], [45, 251], [23, 249]], [[144, 234], [166, 237], [163, 253], [142, 249]], [[494, 226], [531, 226], [531, 239], [494, 239]], [[335, 226], [354, 226], [354, 237], [335, 237]], [[288, 226], [314, 226], [314, 237], [288, 237]], [[63, 226], [113, 226], [113, 236], [63, 236]], [[7, 227], [17, 227], [17, 234], [7, 234]], [[221, 225], [248, 225], [248, 235], [221, 235]], [[143, 225], [165, 222], [167, 234], [145, 237]], [[24, 224], [48, 224], [48, 238], [24, 238]], [[495, 213], [524, 213], [524, 224], [495, 224]], [[420, 212], [437, 212], [437, 225], [420, 225]], [[336, 212], [398, 212], [398, 223], [336, 223]], [[292, 212], [320, 212], [320, 223], [292, 223]], [[222, 212], [249, 212], [249, 223], [222, 223]], [[145, 212], [166, 212], [166, 223], [145, 223]], [[61, 211], [113, 209], [114, 222], [62, 224]], [[26, 211], [48, 211], [48, 223], [26, 223]], [[337, 199], [383, 199], [383, 209], [337, 209]], [[65, 200], [87, 200], [87, 207], [65, 207]], [[493, 197], [541, 197], [541, 211], [493, 211]], [[445, 202], [455, 196], [462, 206], [452, 212]], [[178, 198], [205, 198], [205, 208], [178, 208]], [[146, 199], [157, 199], [157, 208], [146, 208]], [[32, 194], [43, 204], [33, 214], [22, 203]], [[422, 193], [440, 201], [432, 215], [415, 207]], [[64, 186], [131, 186], [131, 196], [64, 196]], [[337, 185], [399, 185], [399, 196], [337, 196]], [[445, 190], [456, 182], [465, 191], [454, 200]], [[292, 188], [308, 182], [313, 193], [297, 200]], [[220, 183], [255, 183], [255, 197], [220, 197]], [[142, 184], [158, 184], [158, 197], [142, 197]], [[493, 182], [518, 182], [518, 197], [493, 197]], [[425, 180], [437, 191], [427, 202], [414, 190]], [[32, 179], [42, 189], [32, 199], [22, 189]], [[182, 179], [196, 185], [188, 199], [175, 193]], [[335, 172], [400, 169], [400, 183], [336, 185]], [[492, 170], [519, 170], [519, 185], [492, 185]], [[412, 177], [428, 164], [440, 178], [425, 190]], [[293, 171], [315, 171], [315, 185], [293, 185]], [[220, 170], [251, 170], [251, 184], [220, 184]], [[178, 172], [188, 172], [188, 183], [178, 183]], [[64, 172], [125, 170], [125, 181], [64, 182]], [[454, 168], [464, 176], [454, 185], [445, 176]], [[145, 168], [163, 172], [159, 185], [142, 180]], [[30, 165], [43, 174], [34, 186], [20, 177]], [[493, 160], [523, 160], [523, 170], [493, 170]], [[402, 161], [435, 161], [435, 168], [402, 168]], [[335, 159], [401, 159], [401, 169], [335, 169]], [[296, 159], [325, 159], [325, 170], [296, 170]], [[221, 158], [251, 158], [251, 169], [221, 169]], [[174, 161], [183, 156], [190, 167], [181, 172]], [[145, 158], [162, 158], [162, 170], [145, 170]], [[61, 158], [125, 157], [125, 168], [62, 169]], [[20, 161], [33, 154], [40, 167], [28, 174]], [[492, 143], [542, 143], [542, 157], [492, 157]], [[450, 144], [479, 144], [479, 157], [450, 157]], [[335, 143], [439, 143], [439, 156], [335, 156]], [[294, 143], [327, 143], [327, 157], [294, 157]], [[220, 143], [253, 143], [253, 157], [220, 157]], [[178, 145], [187, 145], [187, 156], [178, 156]], [[63, 144], [104, 144], [104, 155], [63, 155]], [[144, 140], [164, 145], [160, 159], [141, 154]], [[31, 137], [44, 149], [31, 162], [17, 149]], [[286, 135], [291, 135], [291, 140], [286, 140]], [[177, 133], [193, 133], [193, 144], [177, 144]], [[336, 132], [388, 132], [388, 141], [336, 141]], [[492, 131], [525, 131], [525, 141], [492, 141]], [[450, 131], [477, 131], [477, 141], [450, 141]], [[292, 131], [321, 131], [321, 141], [292, 141]], [[218, 132], [255, 130], [256, 141], [219, 144]], [[63, 131], [95, 131], [95, 141], [63, 141]], [[417, 130], [437, 130], [437, 141], [417, 141]], [[145, 130], [159, 130], [159, 143], [145, 143]], [[30, 124], [43, 133], [32, 147], [19, 138]], [[493, 118], [535, 118], [535, 129], [493, 129]], [[335, 118], [387, 118], [387, 129], [335, 129]], [[218, 118], [255, 118], [255, 128], [218, 128]], [[451, 117], [478, 117], [478, 129], [451, 129]], [[418, 117], [438, 117], [438, 130], [418, 130]], [[177, 116], [209, 116], [209, 130], [177, 130]], [[145, 117], [162, 117], [162, 130], [145, 130]], [[62, 116], [88, 116], [88, 131], [62, 131]], [[19, 121], [33, 111], [43, 124], [29, 134]], [[491, 107], [523, 107], [523, 113], [491, 113]], [[449, 107], [477, 107], [477, 113], [449, 113]], [[420, 107], [436, 107], [436, 113], [420, 113]], [[295, 107], [319, 107], [319, 114], [295, 114]], [[220, 107], [242, 107], [242, 113], [220, 113]], [[176, 107], [203, 107], [203, 113], [176, 113]], [[145, 107], [161, 107], [161, 114], [145, 114]], [[334, 105], [372, 105], [372, 114], [334, 114]], [[63, 106], [86, 106], [86, 113], [63, 113]], [[483, 89], [522, 89], [522, 99], [483, 99]], [[331, 88], [380, 88], [380, 99], [331, 99]], [[276, 88], [325, 88], [325, 99], [276, 99]], [[214, 88], [246, 88], [246, 99], [214, 99]], [[411, 86], [474, 86], [474, 100], [411, 100]], [[6, 86], [102, 86], [102, 100], [6, 100]], [[415, 66], [461, 66], [461, 77], [415, 77]], [[288, 66], [333, 66], [333, 77], [288, 77]], [[157, 64], [206, 64], [206, 78], [157, 78]], [[33, 61], [43, 66], [37, 77], [27, 72]], [[416, 48], [523, 49], [523, 63], [415, 62]], [[288, 49], [375, 49], [375, 63], [288, 63]], [[159, 49], [269, 49], [269, 62], [159, 62]], [[24, 53], [36, 46], [45, 59], [33, 67]], [[416, 36], [481, 36], [481, 46], [416, 46]], [[25, 38], [39, 32], [46, 45], [32, 52]], [[157, 34], [205, 34], [205, 47], [157, 47]], [[412, 4], [527, 4], [527, 17], [412, 17]], [[146, 4], [345, 2], [345, 15], [146, 17]]]
test_add_20.jpg [[[31, 346], [605, 346], [605, 370], [31, 370]], [[217, 294], [510, 294], [510, 322], [217, 322]], [[473, 271], [525, 271], [525, 286], [473, 286]], [[220, 267], [287, 267], [287, 286], [220, 286]], [[219, 239], [484, 239], [484, 263], [219, 263]], [[221, 217], [303, 217], [303, 234], [221, 234]], [[402, 192], [417, 192], [417, 205], [402, 205]], [[222, 187], [341, 187], [341, 207], [222, 207]], [[221, 162], [287, 162], [287, 180], [221, 180]], [[375, 122], [475, 124], [475, 146], [375, 143]], [[222, 124], [356, 122], [356, 143], [222, 146]], [[218, 81], [352, 84], [352, 116], [218, 113]], [[440, 34], [605, 34], [605, 59], [440, 59]], [[72, 16], [398, 16], [398, 44], [72, 44]]]
test_add_3.jpg [[[169, 327], [337, 326], [337, 341], [169, 342]], [[170, 288], [307, 290], [307, 312], [170, 310]], [[171, 221], [323, 221], [323, 234], [171, 234]], [[340, 221], [449, 217], [449, 231], [341, 234]], [[169, 201], [372, 201], [372, 214], [169, 214]], [[170, 183], [418, 183], [418, 196], [170, 196]], [[170, 149], [416, 149], [416, 163], [170, 163]], [[171, 119], [418, 119], [418, 140], [171, 140]], [[326, 64], [478, 64], [478, 91], [326, 91]], [[173, 64], [306, 60], [306, 89], [174, 93]]]
test_add_4.png []
test_add_5.png [[[48, 164], [108, 164], [108, 174], [48, 174]], [[52, 121], [169, 121], [169, 134], [52, 134]], [[50, 102], [165, 102], [165, 118], [50, 118]], [[52, 83], [164, 83], [164, 100], [52, 100]], [[51, 68], [166, 68], [166, 84], [51, 84]], [[51, 50], [145, 47], [145, 64], [52, 67]]]
test_add_6.jpg [[[123, 223], [219, 227], [218, 251], [122, 247]], [[172, 172], [186, 186], [172, 200], [158, 186]]]
test_add_7.jpg [[[48, 938], [174, 936], [174, 962], [48, 964]], [[227, 873], [629, 876], [628, 953], [226, 949]], [[56, 744], [637, 744], [637, 789], [56, 789]], [[150, 674], [545, 678], [544, 721], [150, 718]], [[73, 504], [633, 504], [633, 601], [73, 601]], [[59, 270], [655, 279], [652, 441], [56, 432]], [[513, 193], [553, 193], [553, 223], [513, 223]], [[61, 175], [532, 175], [532, 239], [61, 239]], [[533, 178], [642, 178], [642, 236], [533, 236]]]
test_add_8.jpg [[[251, 586], [454, 580], [454, 606], [252, 613]], [[107, 533], [457, 527], [457, 560], [108, 566]], [[336, 494], [384, 494], [384, 507], [336, 507]], [[27, 307], [355, 297], [356, 320], [28, 330]], [[22, 259], [445, 251], [445, 274], [23, 282]], [[78, 209], [445, 205], [445, 225], [78, 229]], [[160, 23], [319, 30], [317, 79], [158, 72]]]
test_add_9.png [[[266, 687], [486, 687], [486, 696], [266, 696]], [[196, 668], [554, 668], [554, 681], [196, 681]], [[153, 596], [597, 596], [597, 606], [153, 606]], [[215, 578], [541, 578], [541, 588], [215, 588]], [[85, 542], [664, 542], [664, 552], [85, 552]], [[96, 522], [653, 522], [653, 535], [96, 535]], [[362, 449], [389, 449], [389, 460], [362, 460]], [[238, 376], [513, 376], [513, 389], [238, 389]], [[177, 356], [574, 356], [574, 368], [177, 368]], [[344, 281], [408, 283], [407, 297], [343, 294]], [[256, 205], [492, 205], [492, 219], [256, 219]]]
#!/bin/bash
source tests/common_func.sh
FILENAME=$1
dataline=$(awk 'NR==52, NR==66{print}' $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
# parser cpp inference model
use_opencv=$(func_parser_value "${lines[1]}")
cpp_infer_model_dir_list=$(func_parser_value "${lines[2]}")
cpp_infer_is_quant=$(func_parser_value "${lines[3]}")
# parser cpp inference
inference_cmd=$(func_parser_value "${lines[4]}")
cpp_use_gpu_key=$(func_parser_key "${lines[5]}")
cpp_use_gpu_list=$(func_parser_value "${lines[5]}")
cpp_use_mkldnn_key=$(func_parser_key "${lines[6]}")
cpp_use_mkldnn_list=$(func_parser_value "${lines[6]}")
cpp_cpu_threads_key=$(func_parser_key "${lines[7]}")
cpp_cpu_threads_list=$(func_parser_value "${lines[7]}")
cpp_batch_size_key=$(func_parser_key "${lines[8]}")
cpp_batch_size_list=$(func_parser_value "${lines[8]}")
cpp_use_trt_key=$(func_parser_key "${lines[9]}")
cpp_use_trt_list=$(func_parser_value "${lines[9]}")
cpp_precision_key=$(func_parser_key "${lines[10]}")
cpp_precision_list=$(func_parser_value "${lines[10]}")
cpp_infer_model_key=$(func_parser_key "${lines[11]}")
cpp_image_dir_key=$(func_parser_key "${lines[12]}")
cpp_infer_img_dir=$(func_parser_value "${lines[12]}")
cpp_infer_key1=$(func_parser_key "${lines[13]}")
cpp_infer_value1=$(func_parser_value "${lines[13]}")
cpp_benchmark_key=$(func_parser_key "${lines[14]}")
cpp_benchmark_value=$(func_parser_value "${lines[14]}")
LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_cpp.log"
function func_cpp_inference(){
IFS='|'
_script=$1
_model_dir=$2
_log_path=$3
_img_dir=$4
_flag_quant=$5
# inference
for use_gpu in ${cpp_use_gpu_list[*]}; do
if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
continue
fi
for threads in ${cpp_cpu_threads_list[*]}; do
for batch_size in ${cpp_batch_size_list[*]}; do
precision="fp32"
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
precison="int8"
fi
_save_log_path="${_log_path}/cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log"
set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}")
set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}")
command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${cpp_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
eval $command
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${command}" "${status_log}"
done
done
done
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
for use_trt in ${cpp_use_trt_list[*]}; do
for precision in ${cpp_precision_list[*]}; do
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
continue
fi
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
continue
fi
for batch_size in ${cpp_batch_size_list[*]}; do
_save_log_path="${_log_path}/cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
set_tensorrt=$(func_set_params "${cpp_use_trt_key}" "${use_trt}")
set_precision=$(func_set_params "${cpp_precision_key}" "${precision}")
set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}")
command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
eval $command
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${command}" "${status_log}"
done
done
done
else
echo "Does not support hardware other than CPU and GPU Currently!"
fi
done
}
cd deploy/cpp_infer
if [ ${use_opencv} = "True" ]; then
if [ -d "opencv-3.4.7/opencv3/" ] && [ $(md5sum opencv-3.4.7.tar.gz | awk -F ' ' '{print $1}') = "faa2b5950f8bee3f03118e600c74746a" ];then
echo "################### build opencv skipped ###################"
else
echo "################### build opencv ###################"
rm -rf opencv-3.4.7.tar.gz opencv-3.4.7/
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/opencv-3.4.7.tar.gz
tar -xf opencv-3.4.7.tar.gz
cd opencv-3.4.7/
install_path=$(pwd)/opencv3
rm -rf build
mkdir build
cd build
cmake .. \
-DCMAKE_INSTALL_PREFIX=${install_path} \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS=OFF \
-DWITH_IPP=OFF \
-DBUILD_IPP_IW=OFF \
-DWITH_LAPACK=OFF \
-DWITH_EIGEN=OFF \
-DCMAKE_INSTALL_LIBDIR=lib64 \
-DWITH_ZLIB=ON \
-DBUILD_ZLIB=ON \
-DWITH_JPEG=ON \
-DBUILD_JPEG=ON \
-DWITH_PNG=ON \
-DBUILD_PNG=ON \
-DWITH_TIFF=ON \
-DBUILD_TIFF=ON
make -j
make install
cd ../
echo "################### build opencv finished ###################"
fi
fi
echo "################### build PaddleOCR demo ####################"
if [ ${use_opencv} = "True" ]; then
OPENCV_DIR=$(pwd)/opencv-3.4.7/opencv3/
else
OPENCV_DIR=''
fi
LIB_DIR=$(pwd)/Paddle/build/paddle_inference_install_dir/
CUDA_LIB_DIR=$(dirname `find /usr -name libcudart.so`)
CUDNN_LIB_DIR=$(dirname `find /usr -name libcudnn.so`)
BUILD_DIR=build
rm -rf ${BUILD_DIR}
mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
cmake .. \
-DPADDLE_LIB=${LIB_DIR} \
-DWITH_MKL=ON \
-DWITH_GPU=OFF \
-DWITH_STATIC_LIB=OFF \
-DWITH_TENSORRT=OFF \
-DOPENCV_DIR=${OPENCV_DIR} \
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
-DCUDA_LIB=${CUDA_LIB_DIR} \
-DTENSORRT_DIR=${TENSORRT_DIR} \
make -j
cd ../../../
echo "################### build PaddleOCR demo finished ###################"
# set cuda device
GPUID=$2
if [ ${#GPUID} -le 0 ];then
env=" "
else
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
fi
set CUDA_VISIBLE_DEVICES
eval $env
echo "################### run test ###################"
export Count=0
IFS="|"
infer_quant_flag=(${cpp_infer_is_quant})
for infer_model in ${cpp_infer_model_dir_list[*]}; do
#run inference
is_quant=${infer_quant_flag[Count]}
func_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_infer_img_dir}" ${is_quant}
Count=$(($Count + 1))
done
#!/bin/bash
source tests/common_func.sh
FILENAME=$1
dataline=$(awk 'NR==67, NR==83{print}' $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
# parser serving
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
trans_model_py=$(func_parser_value "${lines[3]}")
infer_model_dir_key=$(func_parser_key "${lines[4]}")
infer_model_dir_value=$(func_parser_value "${lines[4]}")
model_filename_key=$(func_parser_key "${lines[5]}")
model_filename_value=$(func_parser_value "${lines[5]}")
params_filename_key=$(func_parser_key "${lines[6]}")
params_filename_value=$(func_parser_value "${lines[6]}")
serving_server_key=$(func_parser_key "${lines[7]}")
serving_server_value=$(func_parser_value "${lines[7]}")
serving_client_key=$(func_parser_key "${lines[8]}")
serving_client_value=$(func_parser_value "${lines[8]}")
serving_dir_value=$(func_parser_value "${lines[9]}")
web_service_py=$(func_parser_value "${lines[10]}")
web_use_gpu_key=$(func_parser_key "${lines[11]}")
web_use_gpu_list=$(func_parser_value "${lines[11]}")
web_use_mkldnn_key=$(func_parser_key "${lines[12]}")
web_use_mkldnn_list=$(func_parser_value "${lines[12]}")
web_cpu_threads_key=$(func_parser_key "${lines[13]}")
web_cpu_threads_list=$(func_parser_value "${lines[13]}")
web_use_trt_key=$(func_parser_key "${lines[14]}")
web_use_trt_list=$(func_parser_value "${lines[14]}")
web_precision_key=$(func_parser_key "${lines[15]}")
web_precision_list=$(func_parser_value "${lines[15]}")
pipeline_py=$(func_parser_value "${lines[16]}")
LOG_PATH="../../tests/output"
mkdir -p ./tests/output
status_log="${LOG_PATH}/results_serving.log"
function func_serving(){
IFS='|'
_python=$1
_script=$2
_model_dir=$3
# pdserving
set_dirname=$(func_set_params "${infer_model_dir_key}" "${infer_model_dir_value}")
set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}")
set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}")
set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}")
set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}")
trans_model_cmd="${python} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}"
eval $trans_model_cmd
cd ${serving_dir_value}
echo $PWD
unset https_proxy
unset http_proxy
for use_gpu in ${web_use_gpu_list[*]}; do
echo ${ues_gpu}
if [ ${use_gpu} = "null" ]; then
for use_mkldnn in ${web_use_mkldnn_list[*]}; do
if [ ${use_mkldnn} = "False" ]; then
continue
fi
for threads in ${web_cpu_threads_list[*]}; do
_save_log_path="${LOG_PATH}/server_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_1.log"
set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &"
eval $web_service_cmd
sleep 2s
pipeline_cmd="${python} ${pipeline_py} > ${_save_log_path} 2>&1 "
eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}"
PID=$!
kill $PID
sleep 2s
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
done
done
elif [ ${use_gpu} = "0" ]; then
for use_trt in ${web_use_trt_list[*]}; do
for precision in ${web_precision_list[*]}; do
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
continue
fi
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then
continue
fi
_save_log_path="${LOG_PATH}/server_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_1.log"
set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}")
set_precision=$(func_set_params "${web_precision_key}" "${precision}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} & "
eval $web_service_cmd
sleep 2s
pipeline_cmd="${python} ${pipeline_py} > ${_save_log_path} 2>&1"
eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}"
PID=$!
kill $PID
sleep 2s
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
done
done
else
echo "Does not support hardware other than CPU and GPU Currently!"
fi
done
}
# set cuda device
GPUID=$2
if [ ${#GPUID} -le 0 ];then
env=" "
else
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
fi
set CUDA_VISIBLE_DEVICES
eval $env
echo "################### run test ###################"
export Count=0
IFS="|"
func_serving "${web_service_cmd}"
#!/bin/bash
source tests/common_func.sh
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'klquant_infer']
MODE=$2
dataline=$(cat ${FILENAME})
dataline=$(awk 'NR==1, NR==51{print}' $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
function func_parser_key(){
strs=$1
IFS=":"
array=(${strs})
tmp=${array[0]}
echo ${tmp}
}
function func_parser_value(){
strs=$1
IFS=":"
array=(${strs})
tmp=${array[1]}
echo ${tmp}
}
function func_set_params(){
key=$1
value=$2
if [ ${key} = "null" ];then
echo " "
elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
echo " "
else
echo "${key}=${value}"
fi
}
function func_parser_params(){
strs=$1
IFS=":"
array=(${strs})
key=${array[0]}
tmp=${array[1]}
IFS="|"
res=""
for _params in ${tmp[*]}; do
IFS="="
array=(${_params})
mode=${array[0]}
value=${array[1]}
if [[ ${mode} = ${MODE} ]]; then
IFS="|"
#echo $(func_set_params "${mode}" "${value}")
echo $value
break
fi
IFS="|"
done
echo ${res}
}
function status_check(){
last_status=$1 # the exit code
run_command=$2
run_log=$3
if [ $last_status -eq 0 ]; then
echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
else
echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
fi
}
IFS=$'\n'
# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
......@@ -145,9 +87,41 @@ benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")
# parser klquant_infer
if [ ${MODE} = "klquant_infer" ]; then
dataline=$(awk 'NR==82, NR==98{print}' $FILENAME)
lines=(${dataline})
# parser inference model
infer_model_dir_list=$(func_parser_value "${lines[1]}")
infer_export_list=$(func_parser_value "${lines[2]}")
infer_is_quant=$(func_parser_value "${lines[3]}")
# parser inference
inference_py=$(func_parser_value "${lines[4]}")
use_gpu_key=$(func_parser_key "${lines[5]}")
use_gpu_list=$(func_parser_value "${lines[5]}")
use_mkldnn_key=$(func_parser_key "${lines[6]}")
use_mkldnn_list=$(func_parser_value "${lines[6]}")
cpu_threads_key=$(func_parser_key "${lines[7]}")
cpu_threads_list=$(func_parser_value "${lines[7]}")
batch_size_key=$(func_parser_key "${lines[8]}")
batch_size_list=$(func_parser_value "${lines[8]}")
use_trt_key=$(func_parser_key "${lines[9]}")
use_trt_list=$(func_parser_value "${lines[9]}")
precision_key=$(func_parser_key "${lines[10]}")
precision_list=$(func_parser_value "${lines[10]}")
infer_model_key=$(func_parser_key "${lines[11]}")
image_dir_key=$(func_parser_key "${lines[12]}")
infer_img_dir=$(func_parser_value "${lines[12]}")
save_log_key=$(func_parser_key "${lines[13]}")
benchmark_key=$(func_parser_key "${lines[14]}")
benchmark_value=$(func_parser_value "${lines[14]}")
infer_key1=$(func_parser_key "${lines[15]}")
infer_value1=$(func_parser_value "${lines[15]}")
fi
LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"
status_log="${LOG_PATH}/results_python.log"
function func_inference(){
......@@ -167,14 +141,23 @@ function func_inference(){
fi
for threads in ${cpu_threads_list[*]}; do
for batch_size in ${batch_size_list[*]}; do
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
for precision in ${precision_list[*]}; do
if [ ${use_mkldnn} = "False" ] && [ ${precision} = "fp16" ]; then
continue
fi # skip when enable fp16 but disable mkldnn
if [ ${_flag_quant} = "True" ] && [ ${precision} != "int8" ]; then
continue
fi # skip when quant model inference but precision is not int8
set_precision=$(func_set_params "${precision_key}" "${precision}")
_save_log_path="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log"
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_precision} ${set_infer_params1} > ${_save_log_path} 2>&1 "
eval $command
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
......@@ -182,6 +165,7 @@ function func_inference(){
done
done
done
done
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
for use_trt in ${use_trt_list[*]}; do
for precision in ${precision_list[*]}; do
......@@ -195,7 +179,7 @@ function func_inference(){
continue
fi
for batch_size in ${batch_size_list[*]}; do
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
_save_log_path="${_log_path}/python_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
......@@ -218,7 +202,7 @@ function func_inference(){
done
}
if [ ${MODE} = "infer" ]; then
if [ ${MODE} = "infer" ] || [ ${MODE} = "klquant_infer" ]; then
GPUID=$3
if [ ${#GPUID} -le 0 ];then
env=" "
......@@ -237,21 +221,23 @@ if [ ${MODE} = "infer" ]; then
save_infer_dir=$(dirname $infer_model)
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
export_cmd="${python} ${norm_export} ${set_export_weight} ${set_save_infer_key}"
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
echo ${infer_run_exports[Count]}
echo $export_cmd
eval $export_cmd
status_export=$?
if [ ${status_export} = 0 ];then
status_check $status_export "${export_cmd}" "${status_log}"
fi
else
save_infer_dir=${infer_model}
fi
#run inference
is_quant=${infer_quant_flag[Count]}
if [ ${MODE} = "klquant_infer" ]; then
is_quant="True"
fi
func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
Count=$(($Count + 1))
done
else
IFS="|"
export Count=0
......@@ -363,3 +349,4 @@ else
done # done with: for autocast in ${autocast_list[*]}; do
done # done with: for gpu in ${gpu_list[*]}; do
fi # end if [ ${MODE} = "infer" ]; then
English | [简体中文](README_ch.md)
<p align="center">
<img src="./doc/PaddleOCR_log.png" align="middle" width = "600"/>
<p align="center">
------------------------------------------------------------------------------------------
<p align="left">
<a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleOCR/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleOCR?color=ffa"></a>
<a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
<a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
<a href=""><img src="https://img.shields.io/pypi/format/PaddleOCR?color=c77"></a>
<a href="https://github.com/PaddlePaddle/PaddleOCR/graphs/contributors"><img src="https://img.shields.io/github/contributors/PaddlePaddle/PaddleOCR?color=9ea"></a>
<a href="https://pypi.org/project/PaddleOCR/"><img src="https://img.shields.io/pypi/dm/PaddleOCR?color=9cf"></a>
<a href="https://github.com/PaddlePaddle/PaddleOCR/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleOCR?color=ccf"></a>
</p>
## Introduction
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
## Notice
PaddleOCR supports both dynamic graph and static graph programming paradigm
- Dynamic graph: dygraph branch (default), **supported by paddle 2.0.0 ([installation](./doc/doc_en/installation_en.md))**
- Static graph: develop branch
**Recent updates**
- 2021.1.21 update more than 25+ multilingual recognition models [models list](./doc/doc_en/models_list_en.md), including:English, Chinese, German, French, Japanese,Spanish,Portuguese Russia Arabic and so on. Models for more languages will continue to be updated [Develop Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).
- 2020.12.15 update Data synthesis tool, i.e., [Style-Text](./StyleText/README.md),easy to synthesize a large number of images which are similar to the target scene image.
- 2020.11.25 Update a new data annotation tool, i.e., [PPOCRLabel](./PPOCRLabel/README.md), which is helpful to improve the labeling efficiency. Moreover, the labeling results can be used in training of the PP-OCR system directly.
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
- PaddleOCR R&D team would like to share the key points of PP-OCRv2, at 20:15 pm on September 8th, [Live Address](https://live.bilibili.com/21689802).
- 2021.9.7 release PaddleOCR v2.3, [PP-OCRv2](#PP-OCRv2) is proposed. The inference speed of PP-OCRv2 is 220% higher than that of PP-OCR server in CPU device. The F-score of PP-OCRv2 is 7% higher than that of PP-OCR mobile.
- 2021.8.3 released PaddleOCR v2.2, add a new structured documents analysis toolkit, i.e., [PP-Structure](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/ppstructure/README.md), support layout analysis and table recognition (One-key to export chart images to Excel files).
- 2021.4.8 release end-to-end text recognition algorithm [PGNet](https://www.aaai.org/AAAI21Papers/AAAI-2885.WangP.pdf) which is published in AAAI 2021. Find tutorial [here](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/pgnet_en.md);release multi language recognition [models](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md), support more than 80 languages recognition; especically, the performance of [English recognition model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/models_list_en.md#English) is Optimized.
- [more](./doc/doc_en/update_en.md)
## Features
- PPOCR series of high-quality pre-trained models, comparable to commercial effects
- Ultra lightweight ppocr_mobile series models: detection (3.0M) + direction classifier (1.4M) + recognition (5.0M) = 9.4M
- General ppocr_server series models: detection (47.1M) + direction classifier (1.4M) + recognition (94.9M) = 143.4M
- PP-OCR series of high-quality pre-trained models, comparable to commercial effects
- Ultra lightweight PP-OCRv2 series models: detection (3.1M) + direction classifier (1.4M) + recognition 8.5M) = 13.0M
- Ultra lightweight PP-OCR mobile series models: detection (3.0M) + direction classifier (1.4M) + recognition (5.0M) = 9.4M
- General PP-OCR server series models: detection (47.1M) + direction classifier (1.4M) + recognition (94.9M) = 143.4M
- Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
- Support multi-language recognition: Korean, Japanese, German, French
- Rich toolkits related to the OCR areas
......@@ -64,39 +82,45 @@ Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Andr
<a name="Supported-Chinese-model-list"></a>
## PP-OCR 2.0 series model list(Update on Dec 15)
**Note** : Compared with [models 1.1](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/models_list_en.md), which are trained with static graph programming paradigm, models 2.0 are the dynamic graph trained version and achieve close performance.
## PP-OCR Series Model List(Update on September 8th)
| Model introduction | Model name | Recommended scene | Detection model | Direction classifier | Recognition model |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| Chinese and English ultra-lightweight OCR model (9.4M) | ch_ppocr_mobile_v2.0_xx | Mobile & server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
| Chinese and English general OCR model (143.4M) | ch_ppocr_server_v2.0_xx | Server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_traingit.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
| Chinese and English ultra-lightweight PP-OCRv2 model(11.6M) | ch_PP-OCRv2_xx |Mobile&Server|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)| [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/ch/ch_PP-OCRv2_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar)|
| Chinese and English ultra-lightweight PP-OCR model (9.4M) | ch_ppocr_mobile_v2.0_xx | Mobile & server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
| Chinese and English general PP-OCR model (143.4M) | ch_ppocr_server_v2.0_xx | Server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_traingit.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
For more model downloads (including multiple languages), please refer to [PP-OCR v2.0 series model downloads](./doc/doc_en/models_list_en.md).
For more model downloads (including multiple languages), please refer to [PP-OCR series model downloads](./doc/doc_en/models_list_en.md).
For a new language request, please refer to [Guideline for new language_requests](#language_requests).
## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
- [Environment Preparation](./doc/doc_en/environment_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- [Code Structure](./doc/doc_en/tree_en.md)
- Algorithm Introduction
- [Text Detection Algorithm](./doc/doc_en/algorithm_overview_en.md)
- [Text Recognition Algorithm](./doc/doc_en/algorithm_overview_en.md)
- [PP-OCR Pipeline](#PP-OCR-Pipeline)
- Model Training/Evaluation
- [PaddleOCR Overview and Installation](./doc/doc_en/paddleOCR_overview_en.md)
- PP-OCR Industry Landing: from Training to Deployment
- [PP-OCR Model and Configuration](./doc/doc_en/models_and_config_en.md)
- [PP-OCR Model Download](./doc/doc_en/models_list_en.md)
- [Yml Configuration](./doc/doc_en/config_en.md)
- [Python Inference for PP-OCR Model Library](./doc/doc_en/inference_ppocr_en.md)
- [PP-OCR Training](./doc/doc_en/training_en.md)
- [Text Detection](./doc/doc_en/detection_en.md)
- [Text Recognition](./doc/doc_en/recognition_en.md)
- [Direction Classification](./doc/doc_en/angle_class_en.md)
- [Text Direction Classification](./doc/doc_en/angle_class_en.md)
- [Yml Configuration](./doc/doc_en/config_en.md)
- Inference and Deployment
- [Quick Inference Based on PIP](./doc/doc_en/whl_en.md)
- [Python Inference](./doc/doc_en/inference_en.md)
- Inference and Deployment
- [C++ Inference](./deploy/cpp_infer/readme_en.md)
- [Serving](./deploy/pdserving/README.md)
- [Mobile](./deploy/lite/readme_en.md)
- [Benchmark](./doc/doc_en/benchmark_en.md)
- [PP-Structure: Information Extraction](./ppstructure/README.md)
- [Layout Parser](./ppstructure/layout/README.md)
- [Table Recognition](./ppstructure/table/README.md)
- Academic Circles
- [Two-stage Algorithm](./doc/doc_en/algorithm_overview_en.md)
- [PGNet Algorithm](./doc/doc_en/algorithm_overview_en.md)
- [Python Inference](./doc/doc_en/inference_en.md)
- Data Annotation and Synthesis
- [Semi-automatic Annotation Tool: PPOCRLabel](./PPOCRLabel/README.md)
- [Data Synthesis Tool: Style-Text](./StyleText/README.md)
......@@ -114,17 +138,18 @@ For a new language request, please refer to [Guideline for new language_requests
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)
<a name="PP-OCRv2"></a>
## PP-OCRv2 Pipeline
<div align="center">
<img src="./doc/ppocrv2_framework.jpg" width="800">
</div>
<a name="PP-OCR-Pipeline"></a>
[1] PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module (as shown in the green box above). The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941).
## PP-OCR Pipeline
[2] On the basis of PP-OCR, PP-OCRv2 is further optimized in five aspects. The detection model adopts CML(Collaborative Mutual Learning) knowledge distillation strategy and CopyPaste data expansion strategy. The recognition model adopts LCNet lightweight backbone network, U-DML knowledge distillation strategy and enhanced CTC loss function improvement (as shown in the red box above), which further improves the inference speed and prediction effect. For more details, please refer to the technical report of PP-OCRv2 (arXiv link is coming soon).
<div align="center">
<img src="./doc/ppocr_framework.png" width="800">
</div>
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection[2], detection frame correction and CRNN text recognition[7]. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner [8] and PACT quantization [9] is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim).
## Visualization [more](./doc/doc_en/visualization_en.md)
......@@ -149,7 +174,7 @@ PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of thr
<a name="language_requests"></a>
## Guideline for new language requests
## Guideline for New Language Requests
If you want to request a new language support, a PR with 2 following files are needed:
......
[English](README.md) | 简体中文
<p align="center">
<img src="./doc/PaddleOCR_log.png" align="middle" width = "600"/>
<p align="center">
------------------------------------------------------------------------------------------
<p align="left">
<a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleOCR/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleOCR?color=ffa"></a>
<a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
<a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
<a href=""><img src="https://img.shields.io/pypi/format/PaddleOCR?color=c77"></a>
<a href="https://github.com/PaddlePaddle/PaddleOCR/graphs/contributors"><img src="https://img.shields.io/github/contributors/PaddlePaddle/PaddleOCR?color=9ea"></a>
<a href="https://pypi.org/project/PaddleOCR/"><img src="https://img.shields.io/pypi/dm/PaddleOCR?color=9cf"></a>
<a href="https://github.com/PaddlePaddle/PaddleOCR/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleOCR?color=ccf"></a>
</p>
## 简介
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。
## 注意
PaddleOCR同时支持动态图与静态图两种编程范式
- 动态图版本:dygraph分支(默认),需将paddle版本升级至2.0.0([快速安装](./doc/doc_ch/installation.md)
- 静态图版本:develop分支
**近期更新**
- 2021.4.8 release 2.1版本,新增AAAI 2021论文[端到端识别算法PGNet](./doc/doc_ch/pgnet.md)开源,[多语言模型](./doc/doc_ch/multi_languages.md)支持种类增加到80+。
- 2021.2.1 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数162个,每周一都会更新,欢迎大家持续关注。
- 2021.1.21 更新多语言识别模型,目前支持语种超过27种,包括中文简体、中文繁体、英文、法文、德文、韩文、日文、意大利文、西班牙文、葡萄牙文、俄罗斯文、阿拉伯文等,后续计划可以参考[多语言研发计划](https://github.com/PaddlePaddle/PaddleOCR/issues/1048)
- 2020.12.15 更新数据合成工具[Style-Text](./StyleText/README_ch.md),可以批量合成大量与目标场景类似的图像,在多个场景验证,效果明显提升。
- 2020.11.25 更新半自动标注工具[PPOCRLabel](./PPOCRLabel/README_ch.md),辅助开发者高效完成标注任务,输出格式与PP-OCR训练任务完美衔接。
- 2020.9.22 更新PP-OCR技术文章,https://arxiv.org/abs/2009.09941
- [More](./doc/doc_ch/update.md)
- PaddleOCR研发团队对最新发版内容技术深入解读,9月8日晚上20:15,[直播地址](https://live.bilibili.com/21689802)
- 2021.9.7 发布PaddleOCR v2.3,发布[PP-OCRv2](#PP-OCRv2),CPU推理速度相比于PP-OCR server提升220%;效果相比于PP-OCR mobile 提升7%。
- 2021.8.3 发布PaddleOCR v2.2,新增文档结构分析[PP-Structure](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/ppstructure/README_ch.md)工具包,支持版面分析与表格识别(含Excel导出)。
- 2021.6.29 [FAQ](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/FAQ.md)新增5个高频问题,总数248个,每周一都会更新,欢迎大家持续关注。
- 2021.4.8 release 2.1版本,新增AAAI 2021论文[端到端识别算法PGNet](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/pgnet.md)开源,[多语言模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/multi_languages.md)支持种类增加到80+。
- [More](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/update.md)
## 特性
- PPOCR系列高质量预训练模型,准确的识别效果
- 超轻量ppocr_mobile移动端系列:检测(3.0M)+方向分类器(1.4M)+ 识别(5.0M)= 9.4M
- 通用ppocr_server系列:检测(47.1M)+方向分类器(1.4M)+ 识别(94.9M)= 143.4M
- PP-OCR系列高质量预训练模型,准确的识别效果
- 超轻量PP-OCRv2系列:检测(3.1M)+ 方向分类器(1.4M)+ 识别(8.5M)= 13.0M
- 超轻量PP-OCR mobile移动端系列:检测(3.0M)+方向分类器(1.4M)+ 识别(5.0M)= 9.4M
- 通用PPOCR server系列:检测(47.1M)+方向分类器(1.4M)+ 识别(94.9M)= 143.4M
- 支持中英文数字组合识别、竖排文本识别、长文本识别
- 支持多语言识别:韩语、日语、德语、法语
- 丰富易用的OCR相关工具组件
- 半自动数据标注工具PPOCRLabel:支持快速高效的数据标注
- 数据合成工具Style-Text:批量合成大量与目标场景类似的图像
- 文档分析能力PP-Structure:版面分析与表格识别
- 支持用户自定义训练,提供丰富的预测推理部署方案
- 支持PIP快速安装使用
- 可运行于Linux、Windows、MacOS等多种系统
......@@ -39,7 +54,7 @@ PaddleOCR同时支持动态图与静态图两种编程范式
<img src="doc/imgs_results/ch_ppocr_mobile_v2.0/00018069.jpg" width="800">
</div>
上图是通用ppocr_server模型效果展示,更多效果图请见[效果展示页面](./doc/doc_ch/visualization.md)
上图是通用PP-OCR server模型效果展示,更多效果图请见[效果展示页面](./doc/doc_ch/visualization.md)
<a name="欢迎加入PaddleOCR技术交流群"></a>
## 欢迎加入PaddleOCR技术交流群
......@@ -62,71 +77,79 @@ PaddleOCR同时支持动态图与静态图两种编程范式
- 代码体验:从[快速安装](./doc/doc_ch/quickstart.md) 开始
<a name="模型下载"></a>
## PP-OCR 2.0系列模型列表(更新中)
**说明** :2.0版模型和[1.1版模型](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/models_list.md)的主要区别在于动态图训练vs.静态图训练,模型性能上无明显差距。
## PP-OCR系列模型列表(更新中)
| 模型简介 | 模型名称 |推荐场景 | 检测模型 | 方向分类器 | 识别模型 |
| ------------ | --------------- | ----------------|---- | ---------- | -------- |
| 中英文超轻量OCR模型(9.4M) | ch_ppocr_mobile_v2.0_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
| 中英文通用OCR模型(143.4M) |ch_ppocr_server_v2.0_xx|服务器端 |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
| 中英文超轻量PP-OCRv2模型(13.0M) | ch_PP-OCRv2_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)| [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar)|
| 中英文超轻量PP-OCR mobile模型(9.4M) | ch_ppocr_mobile_v2.0_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
| 中英文通用PP-OCR server模型(143.4M) |ch_ppocr_server_v2.0_xx|服务器端 |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
更多模型下载(包括多语言),可以参考[PP-OCR v2.0 系列模型下载](./doc/doc_ch/models_list.md)
更多模型下载(包括多语言),可以参考[PP-OCR 系列模型下载](./doc/doc_ch/models_list.md)
## 文档教程
- [快速安装](./doc/doc_ch/installation.md)
- [中文OCR模型快速使用](./doc/doc_ch/quickstart.md)
- [多语言OCR模型快速使用](./doc/doc_ch/multi_languages.md)
- [代码组织结构](./doc/doc_ch/tree.md)
- 算法介绍
- [文本检测](./doc/doc_ch/algorithm_overview.md)
- [文本识别](./doc/doc_ch/algorithm_overview.md)
- [PP-OCR Pipeline](#PP-OCR)
- [端到端PGNet算法](./doc/doc_ch/pgnet.md)
- 模型训练/评估
- [运行环境准备](./doc/doc_ch/environment.md)
- [快速开始(中英文/多语言/文档分析)](./doc/doc_ch/quickstart.md)
- [PaddleOCR全景图与项目克隆](./doc/doc_ch/paddleOCR_overview.md)
- PP-OCR产业落地:从训练到部署
- [PP-OCR模型与配置文件](./doc/doc_ch/models_and_config.md)
- [PP-OCR模型下载](./doc/doc_ch/models_list.md)
- [配置文件内容与生成](./doc/doc_ch/config.md)
- [PP-OCR模型库快速推理](./doc/doc_ch/inference_ppocr.md)
- [PP-OCR模型训练](./doc/doc_ch/training.md)
- [文本检测](./doc/doc_ch/detection.md)
- [文本识别](./doc/doc_ch/recognition.md)
- [方向分类器](./doc/doc_ch/angle_class.md)
- [yml参数配置文件介绍](./doc/doc_ch/config.md)
- 预测部署
- [基于pip安装whl包快速推理](./doc/doc_ch/whl.md)
- [基于Python脚本预测引擎推理](./doc/doc_ch/inference.md)
- [文本方向分类器](./doc/doc_ch/angle_class.md)
- [配置文件内容与生成](./doc/doc_ch/config.md)
- PP-OCR模型推理部署
- [基于C++预测引擎推理](./deploy/cpp_infer/readme.md)
- [服务化部署](./deploy/pdserving/README_CN.md)
- [端侧部署](./deploy/lite/readme.md)
- [Benchmark](./doc/doc_ch/benchmark.md)
- 数据集
- [通用中英文OCR数据集](./doc/doc_ch/datasets.md)
- [手写中文OCR数据集](./doc/doc_ch/handwritten_datasets.md)
- [垂类多语言OCR数据集](./doc/doc_ch/vertical_and_multilingual_datasets.md)
- [PP-Structure信息提取](./ppstructure/README_ch.md)
- [版面分析](./ppstructure/layout/README_ch.md)
- [表格识别](./ppstructure/table/README_ch.md)
- 数据标注与合成
- [半自动标注工具PPOCRLabel](./PPOCRLabel/README_ch.md)
- [数据合成工具Style-Text](./StyleText/README_ch.md)
- [其它数据标注工具](./doc/doc_ch/data_annotation.md)
- [其它数据合成工具](./doc/doc_ch/data_synthesis.md)
- OCR学术圈
- [两阶段模型介绍与下载](./doc/doc_ch/algorithm_overview.md)
- [端到端PGNet算法](./doc/doc_ch/pgnet.md)
- [基于Python脚本预测引擎推理](./doc/doc_ch/inference.md)
- 数据集
- [通用中英文OCR数据集](./doc/doc_ch/datasets.md)
- [手写中文OCR数据集](./doc/doc_ch/handwritten_datasets.md)
- [垂类多语言OCR数据集](./doc/doc_ch/vertical_and_multilingual_datasets.md)
- [效果展示](#效果展示)
- FAQ
- [【精选】OCR精选10个问题](./doc/doc_ch/FAQ.md)
- [【理论篇】OCR通用32个问题](./doc/doc_ch/FAQ.md)
- [【实战篇】PaddleOCR实战110个问题](./doc/doc_ch/FAQ.md)
- [【理论篇】OCR通用50个问题](./doc/doc_ch/FAQ.md)
- [【实战篇】PaddleOCR实战183个问题](./doc/doc_ch/FAQ.md)
- [技术交流群](#欢迎加入PaddleOCR技术交流群)
- [参考文献](./doc/doc_ch/reference.md)
- [许可证书](#许可证书)
- [贡献代码](#贡献代码)
- [代码组织结构](./doc/doc_ch/tree.md)
<a name="PP-OCR"></a>
## PP-OCR Pipeline
<a name="PP-OCRv2"></a>
## PP-OCRv2 Pipeline
<div align="center">
<img src="./doc/ppocr_framework.png" width="800">
<img src="./doc/ppocrv2_framework.jpg" width="800">
</div>
PP-OCR是一个实用的超轻量OCR系统。主要由DB文本检测[2]、检测框矫正和CRNN文本识别三部分组成[7]。该系统从骨干网络选择和调整、预测头部的设计、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型自动裁剪量化8个方面,采用19个有效策略,对各个模块的模型进行效果调优和瘦身,最终得到整体大小为3.5M的超轻量中英文OCR和2.8M的英文数字OCR。更多细节请参考PP-OCR技术方案 https://arxiv.org/abs/2009.09941 。其中FPGM裁剪器[8]和PACT量化[9]的实现可以参考[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)
[1] PP-OCR是一个实用的超轻量OCR系统。主要由DB文本检测、检测框矫正和CRNN文本识别三部分组成。该系统从骨干网络选择和调整、预测头部的设计、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型自动裁剪量化8个方面,采用19个有效策略,对各个模块的模型进行效果调优和瘦身(如绿框所示),最终得到整体大小为3.5M的超轻量中英文OCR和2.8M的英文数字OCR。更多细节请参考PP-OCR技术方案 https://arxiv.org/abs/2009.09941
[2] PP-OCRv2在PP-OCR的基础上,进一步在5个方面重点优化,检测模型采用CML协同互学习知识蒸馏策略和CopyPaste数据增广策略;识别模型采用LCNet轻量级骨干网络、UDML 改进知识蒸馏策略和Enhanced CTC loss损失函数改进(如上图红框所示),进一步在推理速度和预测效果上取得明显提升。更多细节请参考PP-OCR技术方案(arxiv链接生成中)。
<a name="效果展示"></a>
## 效果展示 [more](./doc/doc_ch/visualization.md)
- 中文模型
<div align="center">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00015504.jpg" width="800">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
</div>
......
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import json
import os
import re
import traceback
def parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--filename", type=str, help="The name of log which need to analysis.")
parser.add_argument(
"--log_with_profiler", type=str, help="The path of train log with profiler")
parser.add_argument(
"--profiler_path", type=str, help="The path of profiler timeline log.")
parser.add_argument(
"--keyword", type=str, help="Keyword to specify analysis data")
parser.add_argument(
"--separator", type=str, default=None, help="Separator of different field in log")
parser.add_argument(
'--position', type=int, default=None, help='The position of data field')
parser.add_argument(
'--range', type=str, default="", help='The range of data field to intercept')
parser.add_argument(
'--base_batch_size', type=int, help='base_batch size on gpu')
parser.add_argument(
'--skip_steps', type=int, default=0, help='The number of steps to be skipped')
parser.add_argument(
'--model_mode', type=int, default=-1, help='Analysis mode, default value is -1')
parser.add_argument(
'--ips_unit', type=str, default=None, help='IPS unit')
parser.add_argument(
'--model_name', type=str, default=0, help='training model_name, transformer_base')
parser.add_argument(
'--mission_name', type=str, default=0, help='training mission name')
parser.add_argument(
'--direction_id', type=int, default=0, help='training direction_id')
parser.add_argument(
'--run_mode', type=str, default="sp", help='multi process or single process')
parser.add_argument(
'--index', type=int, default=1, help='{1: speed, 2:mem, 3:profiler, 6:max_batch_size}')
parser.add_argument(
'--gpu_num', type=int, default=1, help='nums of training gpus')
args = parser.parse_args()
args.separator = None if args.separator == "None" else args.separator
return args
def _is_number(num):
pattern = re.compile(r'^[-+]?[-0-9]\d*\.\d*|[-+]?\.?[0-9]\d*$')
result = pattern.match(num)
if result:
return True
else:
return False
class TimeAnalyzer(object):
def __init__(self, filename, keyword=None, separator=None, position=None, range="-1"):
if filename is None:
raise Exception("Please specify the filename!")
if keyword is None:
raise Exception("Please specify the keyword!")
self.filename = filename
self.keyword = keyword
self.separator = separator
self.position = position
self.range = range
self.records = None
self._distil()
def _distil(self):
self.records = []
with open(self.filename, "r") as f_object:
lines = f_object.readlines()
for line in lines:
if self.keyword not in line:
continue
try:
result = None
# Distil the string from a line.
line = line.strip()
line_words = line.split(self.separator) if self.separator else line.split()
if args.position:
result = line_words[self.position]
else:
# Distil the string following the keyword.
for i in range(len(line_words) - 1):
if line_words[i] == self.keyword:
result = line_words[i + 1]
break
# Distil the result from the picked string.
if not self.range:
result = result[0:]
elif _is_number(self.range):
result = result[0: int(self.range)]
else:
result = result[int(self.range.split(":")[0]): int(self.range.split(":")[1])]
self.records.append(float(result))
except Exception as exc:
print("line is: {}; separator={}; position={}".format(line, self.separator, self.position))
print("Extract {} records: separator={}; position={}".format(len(self.records), self.separator, self.position))
def _get_fps(self, mode, batch_size, gpu_num, avg_of_records, run_mode, unit=None):
if mode == -1 and run_mode == 'sp':
assert unit, "Please set the unit when mode is -1."
fps = gpu_num * avg_of_records
elif mode == -1 and run_mode == 'mp':
assert unit, "Please set the unit when mode is -1."
fps = gpu_num * avg_of_records #temporarily, not used now
print("------------this is mp")
elif mode == 0:
# s/step -> samples/s
fps = (batch_size * gpu_num) / avg_of_records
unit = "samples/s"
elif mode == 1:
# steps/s -> steps/s
fps = avg_of_records
unit = "steps/s"
elif mode == 2:
# s/step -> steps/s
fps = 1 / avg_of_records
unit = "steps/s"
elif mode == 3:
# steps/s -> samples/s
fps = batch_size * gpu_num * avg_of_records
unit = "samples/s"
elif mode == 4:
# s/epoch -> s/epoch
fps = avg_of_records
unit = "s/epoch"
else:
ValueError("Unsupported analysis mode.")
return fps, unit
def analysis(self, batch_size, gpu_num=1, skip_steps=0, mode=-1, run_mode='sp', unit=None):
if batch_size <= 0:
print("base_batch_size should larger than 0.")
return 0, ''
if len(self.records) <= skip_steps: # to address the condition which item of log equals to skip_steps
print("no records")
return 0, ''
sum_of_records = 0
sum_of_records_skipped = 0
skip_min = self.records[skip_steps]
skip_max = self.records[skip_steps]
count = len(self.records)
for i in range(count):
sum_of_records += self.records[i]
if i >= skip_steps:
sum_of_records_skipped += self.records[i]
if self.records[i] < skip_min:
skip_min = self.records[i]
if self.records[i] > skip_max:
skip_max = self.records[i]
avg_of_records = sum_of_records / float(count)
avg_of_records_skipped = sum_of_records_skipped / float(count - skip_steps)
fps, fps_unit = self._get_fps(mode, batch_size, gpu_num, avg_of_records, run_mode, unit)
fps_skipped, _ = self._get_fps(mode, batch_size, gpu_num, avg_of_records_skipped, run_mode, unit)
if mode == -1:
print("average ips of %d steps, skip 0 step:" % count)
print("\tAvg: %.3f %s" % (avg_of_records, fps_unit))
print("\tFPS: %.3f %s" % (fps, fps_unit))
if skip_steps > 0:
print("average ips of %d steps, skip %d steps:" % (count, skip_steps))
print("\tAvg: %.3f %s" % (avg_of_records_skipped, fps_unit))
print("\tMin: %.3f %s" % (skip_min, fps_unit))
print("\tMax: %.3f %s" % (skip_max, fps_unit))
print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))
elif mode == 1 or mode == 3:
print("average latency of %d steps, skip 0 step:" % count)
print("\tAvg: %.3f steps/s" % avg_of_records)
print("\tFPS: %.3f %s" % (fps, fps_unit))
if skip_steps > 0:
print("average latency of %d steps, skip %d steps:" % (count, skip_steps))
print("\tAvg: %.3f steps/s" % avg_of_records_skipped)
print("\tMin: %.3f steps/s" % skip_min)
print("\tMax: %.3f steps/s" % skip_max)
print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))
elif mode == 0 or mode == 2:
print("average latency of %d steps, skip 0 step:" % count)
print("\tAvg: %.3f s/step" % avg_of_records)
print("\tFPS: %.3f %s" % (fps, fps_unit))
if skip_steps > 0:
print("average latency of %d steps, skip %d steps:" % (count, skip_steps))
print("\tAvg: %.3f s/step" % avg_of_records_skipped)
print("\tMin: %.3f s/step" % skip_min)
print("\tMax: %.3f s/step" % skip_max)
print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))
return round(fps_skipped, 3), fps_unit
if __name__ == "__main__":
args = parse_args()
run_info = dict()
run_info["log_file"] = args.filename
run_info["model_name"] = args.model_name
run_info["mission_name"] = args.mission_name
run_info["direction_id"] = args.direction_id
run_info["run_mode"] = args.run_mode
run_info["index"] = args.index
run_info["gpu_num"] = args.gpu_num
run_info["FINAL_RESULT"] = 0
run_info["JOB_FAIL_FLAG"] = 0
try:
if args.index == 1:
if args.gpu_num == 1:
run_info["log_with_profiler"] = args.log_with_profiler
run_info["profiler_path"] = args.profiler_path
analyzer = TimeAnalyzer(args.filename, args.keyword, args.separator, args.position, args.range)
run_info["FINAL_RESULT"], run_info["UNIT"] = analyzer.analysis(
batch_size=args.base_batch_size,
gpu_num=args.gpu_num,
skip_steps=args.skip_steps,
mode=args.model_mode,
run_mode=args.run_mode,
unit=args.ips_unit)
try:
if int(os.getenv('job_fail_flag')) == 1 or int(run_info["FINAL_RESULT"]) == 0:
run_info["JOB_FAIL_FLAG"] = 1
except:
pass
elif args.index == 3:
run_info["FINAL_RESULT"] = {}
records_fo_total = TimeAnalyzer(args.filename, 'Framework overhead', None, 3, '').records
records_fo_ratio = TimeAnalyzer(args.filename, 'Framework overhead', None, 5).records
records_ct_total = TimeAnalyzer(args.filename, 'Computation time', None, 3, '').records
records_gm_total = TimeAnalyzer(args.filename, 'GpuMemcpy Calls', None, 4, '').records
records_gm_ratio = TimeAnalyzer(args.filename, 'GpuMemcpy Calls', None, 6).records
records_gmas_total = TimeAnalyzer(args.filename, 'GpuMemcpyAsync Calls', None, 4, '').records
records_gms_total = TimeAnalyzer(args.filename, 'GpuMemcpySync Calls', None, 4, '').records
run_info["FINAL_RESULT"]["Framework_Total"] = records_fo_total[0] if records_fo_total else 0
run_info["FINAL_RESULT"]["Framework_Ratio"] = records_fo_ratio[0] if records_fo_ratio else 0
run_info["FINAL_RESULT"]["ComputationTime_Total"] = records_ct_total[0] if records_ct_total else 0
run_info["FINAL_RESULT"]["GpuMemcpy_Total"] = records_gm_total[0] if records_gm_total else 0
run_info["FINAL_RESULT"]["GpuMemcpy_Ratio"] = records_gm_ratio[0] if records_gm_ratio else 0
run_info["FINAL_RESULT"]["GpuMemcpyAsync_Total"] = records_gmas_total[0] if records_gmas_total else 0
run_info["FINAL_RESULT"]["GpuMemcpySync_Total"] = records_gms_total[0] if records_gms_total else 0
else:
print("Not support!")
except Exception:
traceback.print_exc()
print("{}".format(json.dumps(run_info))) # it's required, for the log file path insert to the database
# PaddleOCR DB/EAST 算法训练benchmark测试
PaddleOCR/benchmark目录下的文件用于获取并分析训练日志。
训练采用icdar2015数据集,包括1000张训练图像和500张测试图像。模型配置采用resnet18_vd作为backbone,分别训练batch_size=8和batch_size=16的情况。
## 运行训练benchmark
benchmark/run_det.sh 中包含了三个过程:
- 安装依赖
- 下载数据
- 执行训练
- 日志分析获取IPS
在执行训练部分,会执行单机单卡(默认0号卡)单机多卡训练,并分别执行batch_size=8和batch_size=16的情况。所以执行完后,每种模型会得到4个日志文件。
run_det.sh 执行方式如下:
```
# cd PaddleOCR/
bash benchmark/run_det.sh
```
以DB为例,将得到四个日志文件,如下:
```
det_res18_db_v2.0_sp_bs16_fp32_1
det_res18_db_v2.0_sp_bs8_fp32_1
det_res18_db_v2.0_mp_bs16_fp32_1
det_res18_db_v2.0_mp_bs8_fp32_1
```
#!/usr/bin/env bash
set -xe
# 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode}
# 参数说明
function _set_params(){
run_mode=${1:-"sp"} # 单卡sp|多卡mp
batch_size=${2:-"64"}
fp_item=${3:-"fp32"} # fp32|fp16
max_iter=${4:-"500"} # 可选,如果需要修改代码提前中断
model_name=${5:-"model_name"}
run_log_path=${TRAIN_LOG_DIR:-$(pwd)} # TRAIN_LOG_DIR 后续QA设置该参数
# 以下不用修改
device=${CUDA_VISIBLE_DEVICES//,/ }
arr=(${device})
num_gpu_devices=${#arr[*]}
log_file=${run_log_path}/${model_name}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}
}
function _train(){
echo "Train on ${num_gpu_devices} GPUs"
echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"
train_cmd="-c configs/det/${model_name}.yml -o Train.loader.batch_size_per_card=${batch_size} Global.epoch_num=${max_iter} "
case ${run_mode} in
sp)
train_cmd="python3.7 tools/train.py "${train_cmd}""
;;
mp)
train_cmd="python3.7 -m paddle.distributed.launch --log_dir=./mylog --gpus=$CUDA_VISIBLE_DEVICES tools/train.py ${train_cmd}"
;;
*) echo "choose run_mode(sp or mp)"; exit 1;
esac
# 以下不用修改
timeout 15m ${train_cmd} > ${log_file} 2>&1
if [ $? -ne 0 ];then
echo -e "${model_name}, FAIL"
export job_fail_flag=1
else
echo -e "${model_name}, SUCCESS"
export job_fail_flag=0
fi
kill -9 `ps -ef|grep 'python3.7'|awk '{print $2}'`
if [ $run_mode = "mp" -a -d mylog ]; then
rm ${log_file}
cp mylog/workerlog.0 ${log_file}
fi
# run log analysis
analysis_cmd="python3.7 benchmark/analysis.py --filename ${log_file} --mission_name ${model_name} --run_mode ${mode} --direction_id 0 --keyword 'ips:' --base_batch_size ${batch_szie} --skip_steps 1 --gpu_num ${num_gpu_devices} --index 1 --model_mode=-1 --ips_unit=samples/sec"
eval $analysis_cmd
}
_set_params $@
_train
# 提供可稳定复现性能的脚本,默认在标准docker环境内py37执行: paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7 paddle=2.1.2 py=37
# 执行目录: ./PaddleOCR
# 1 安装该模型需要的依赖 (如需开启优化策略请注明)
python3.7 -m pip install -r requirements.txt
# 2 拷贝该模型需要数据、预训练模型
wget -c -p ./tain_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar && cd train_data && tar xf icdar2015.tar && cd ../
wget -c -p ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
# 3 批量运行(如不方便批量,1,2需放到单个模型中)
model_mode_list=(det_res18_db_v2.0 det_r50_vd_east)
fp_item_list=(fp32)
bs_list=(8 16)
for model_mode in ${model_mode_list[@]}; do
for fp_item in ${fp_item_list[@]}; do
for bs_item in ${bs_list[@]}; do
echo "index is speed, 1gpus, begin, ${model_name}"
run_mode=sp
CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark_det.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode} # (5min)
sleep 60
echo "index is speed, 8gpus, run_mode is multi_process, begin, ${model_name}"
run_mode=mp
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark_det.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode}
sleep 60
done
done
done
......@@ -8,7 +8,7 @@ Global:
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [3000, 2000]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
pretrained_model: ./pretrain_models/ch_PP-OCRv2_det_distill_train/best_accuracy
checkpoints:
save_inference_dir:
use_visualdl: False
......@@ -19,30 +19,26 @@ Architecture:
name: DistillationModel
algorithm: Distillation
Models:
Student:
pretrained: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
freeze_params: false
Teacher:
freeze_params: true
return_all_feats: false
model_type: det
algorithm: DB
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
disable_se: True
name: ResNet
layers: 18
Neck:
name: DBFPN
out_channels: 96
out_channels: 256
Head:
name: DBHead
k: 50
Student2:
pretrained: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
Student:
freeze_params: false
return_all_feats: false
model_type: det
algorithm: DB
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
......@@ -54,19 +50,20 @@ Architecture:
Head:
name: DBHead
k: 50
Teacher:
pretrained: ./pretrain_models/ch_ppocr_server_v2.0_det_train/best_accuracy
freeze_params: true
Student2:
freeze_params: false
return_all_feats: false
model_type: det
algorithm: DB
Transform:
Backbone:
name: ResNet
layers: 18
name: MobileNetV3
scale: 0.5
model_name: large
disable_se: True
Neck:
name: DBFPN
out_channels: 256
out_channels: 96
Head:
name: DBHead
k: 50
......@@ -144,6 +141,7 @@ Train:
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- CopyPaste:
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
......
......@@ -68,8 +68,7 @@ Loss:
ohem_ratio: 3
- DistillationDBLoss:
weight: 1.0
model_name_list: ["Student", "Teacher"]
# key: maps
model_name_list: ["Student"]
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
......@@ -116,6 +115,7 @@ Train:
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- CopyPaste:
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
......
......@@ -118,6 +118,7 @@ Train:
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- CopyPaste:
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
......
Global:
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/ch_db_mv3/
save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 400]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/student.pdparams
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Architecture:
model_type: det
algorithm: DB
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
disable_se: True
Neck:
name: DBFPN
out_channels: 96
Head:
name: DBHead
k: 50
Loss:
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 2
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
- { 'type': Resize, 'args': { 'size': [0.5, 3] } }
- EastRandomCropData:
size: [960, 960]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
# image_shape: [736, 1280]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2
Global:
use_gpu: true
epoch_num: 600
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/det_mv3_pse/
save_epoch_step: 600
# evaluation is run every 63 iterations
eval_batch_step: [ 0,63 ]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints: #./output/det_r50_vd_pse_batch8_ColorJitter/best_accuracy
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_pse/predicts_pse.txt
Architecture:
model_type: det
algorithm: PSE
Transform: null
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
Neck:
name: FPN
out_channels: 96
Head:
name: PSEHead
hidden_dim: 96
out_channels: 7
Loss:
name: PSELoss
alpha: 0.7
ohem_ratio: 3
kernel_sample_mask: pred
reduction: none
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Step
learning_rate: 0.001
step_size: 200
gamma: 0.1
regularizer:
name: 'L2'
factor: 0.0005
PostProcess:
name: PSEPostProcess
thresh: 0
box_thresh: 0.85
min_area: 16
box_type: box # 'box' or 'poly'
scale: 1
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- ColorJitter:
brightness: 0.12549019607843137
saturation: 0.5
- IaaAugment:
augmenter_args:
- { 'type': Resize, 'args': { 'size': [ 0.5, 3 ] } }
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [ -10, 10 ] } }
- MakePseGt:
kernel_num: 7
min_shrink_ratio: 0.4
size: 640
- RandomCropImgMask:
size: [ 640,640 ]
main_key: gt_text
crop_keys: [ 'image', 'gt_text', 'gt_kernels', 'mask' ]
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'gt_text', 'gt_kernels', 'mask' ] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 16
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
limit_side_len: 736
limit_type: min
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'shape', 'polys', 'ignore_tags' ]
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 8
\ No newline at end of file
......@@ -98,7 +98,7 @@ Train:
shuffle: True
drop_last: False
batch_size_per_card: 16
num_workers: 8
num_workers: 4
Eval:
dataset:
......
......@@ -8,7 +8,7 @@ Global:
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_pretrained/
pretrained_model: ./pretrain_models/ResNet50_vd_pretrained
checkpoints:
save_inference_dir:
use_visualdl: False
......
Global:
use_gpu: true
epoch_num: 600
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/det_r50_vd_pse/
save_epoch_step: 600
# evaluation is run every 125 iterations
eval_batch_step: [ 0,125 ]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained
checkpoints: #./output/det_r50_vd_pse_batch8_ColorJitter/best_accuracy
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_pse/predicts_pse.txt
Architecture:
model_type: det
algorithm: PSE
Transform:
Backbone:
name: ResNet
layers: 50
Neck:
name: FPN
out_channels: 256
Head:
name: PSEHead
hidden_dim: 256
out_channels: 7
Loss:
name: PSELoss
alpha: 0.7
ohem_ratio: 3
kernel_sample_mask: pred
reduction: none
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Step
learning_rate: 0.0001
step_size: 200
gamma: 0.1
regularizer:
name: 'L2'
factor: 0.0005
PostProcess:
name: PSEPostProcess
thresh: 0
box_thresh: 0.85
min_area: 16
box_type: box # 'box' or 'poly'
scale: 1
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- ColorJitter:
brightness: 0.12549019607843137
saturation: 0.5
- IaaAugment:
augmenter_args:
- { 'type': Resize, 'args': { 'size': [ 0.5, 3 ] } }
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [ -10, 10 ] } }
- MakePseGt:
kernel_num: 7
min_shrink_ratio: 0.4
size: 640
- RandomCropImgMask:
size: [ 640,640 ]
main_key: gt_text
crop_keys: [ 'image', 'gt_text', 'gt_kernels', 'mask' ]
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'gt_text', 'gt_kernels', 'mask' ] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
limit_side_len: 736
limit_type: min
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'shape', 'polys', 'ignore_tags' ]
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 8
\ No newline at end of file
Global:
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/ch_db_res18/
save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [3000, 2000]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet18_vd_pretrained
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Architecture:
model_type: det
algorithm: DB
Transform:
Backbone:
name: ResNet
layers: 18
disable_se: True
Neck:
name: DBFPN
out_channels: 256
Head:
name: DBHead
k: 50
Loss:
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 2
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
- { 'type': Resize, 'args': { 'size': [0.5, 3] } }
- EastRandomCropData:
size: [960, 960]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
# image_shape: [736, 1280]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2
......@@ -94,7 +94,7 @@ Eval:
label_file_list: [./train_data/total_text/test/test.txt]
transforms:
- DecodeImage: # load image
img_mode: RGB
img_mode: BGR
channel_first: False
- E2ELabelEncodeTest:
- E2EResizeForTest:
......
Global:
debug: false
use_gpu: true
epoch_num: 800
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec_mobile_pp-OCRv2
save_epoch_step: 3
eval_batch_step: [0, 2000]
cal_metric_during_train: true
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: false
infer_img: doc/imgs_words/ch/word_1.jpg
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
max_text_length: 25
infer_mode: false
use_space_char: true
distributed: true
save_res_path: ./output/rec/predicts_mobile_pp-OCRv2.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Piecewise
decay_epochs : [700, 800]
values : [0.001, 0.0001]
warmup_epoch: 5
regularizer:
name: L2
factor: 2.0e-05
Architecture:
model_type: rec
algorithm: CRNN
Transform:
Backbone:
name: MobileNetV1Enhance
scale: 0.5
Neck:
name: SequenceEncoder
encoder_type: rnn
hidden_size: 64
Head:
name: CTCHead
mid_channels: 96
fc_decay: 0.00002
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/
label_file_list:
- ./train_data/train_list.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- RecAug:
- CTCLabelEncode:
- RecResizeImg:
image_shape: [3, 32, 320]
- KeepKeys:
keep_keys:
- image
- label
- length
loader:
shuffle: true
batch_size_per_card: 128
drop_last: true
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data
label_file_list:
- ./train_data/val_list.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- CTCLabelEncode:
- RecResizeImg:
image_shape: [3, 32, 320]
- KeepKeys:
keep_keys:
- image
- label
- length
loader:
shuffle: false
drop_last: false
batch_size_per_card: 128
num_workers: 8
......@@ -4,7 +4,7 @@ Global:
epoch_num: 800
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec_chinese_lite_distillation_v2.1
save_model_dir: ./output/rec_pp-OCRv2_distillation
save_epoch_step: 3
eval_batch_step: [0, 2000]
cal_metric_during_train: true
......@@ -14,12 +14,11 @@ Global:
use_visualdl: false
infer_img: doc/imgs_words/ch/word_1.jpg
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
character_type: ch
max_text_length: 25
infer_mode: false
use_space_char: true
distributed: true
save_res_path: ./output/rec/predicts_chinese_lite_distillation_v2.1.txt
save_res_path: ./output/rec/predicts_pp-OCRv2_distillation.txt
Optimizer:
......@@ -88,6 +87,7 @@ Loss:
- DistillationDMLLoss:
weight: 1.0
act: "softmax"
use_log: true
model_name_pairs:
- ["Student", "Teacher"]
key: head_out
......
Global:
debug: false
use_gpu: true
epoch_num: 800
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec_mobile_pp-OCRv2_enhanced_ctc_loss
save_epoch_step: 3
eval_batch_step: [0, 2000]
cal_metric_during_train: true
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: false
infer_img: doc/imgs_words/ch/word_1.jpg
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
max_text_length: 25
infer_mode: false
use_space_char: true
distributed: true
save_res_path: ./output/rec/predicts_mobile_pp-OCRv2_enhanced_ctc_loss.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Piecewise
decay_epochs : [700, 800]
values : [0.001, 0.0001]
warmup_epoch: 5
regularizer:
name: L2
factor: 2.0e-05
Architecture:
model_type: rec
algorithm: CRNN
Transform:
Backbone:
name: MobileNetV1Enhance
scale: 0.5
Neck:
name: SequenceEncoder
encoder_type: rnn
hidden_size: 64
Head:
name: CTCHead
mid_channels: 96
fc_decay: 0.00002
return_feats: true
Loss:
name: CombinedLoss
loss_config_list:
- CTCLoss:
use_focal_loss: false
weight: 1.0
- CenterLoss:
weight: 0.05
num_classes: 6625
feat_dim: 96
init_center: false
center_file_path: "./train_center.pkl"
# you can also try to add ace loss on your own dataset
# - ACELoss:
# weight: 0.1
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/
label_file_list:
- ./train_data/train_list.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- RecAug:
- CTCLabelEncode:
- RecResizeImg:
image_shape: [3, 32, 320]
- KeepKeys:
keep_keys:
- image
- label
- length
- label_ace
loader:
shuffle: true
batch_size_per_card: 128
drop_last: true
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data
label_file_list:
- ./train_data/val_list.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- CTCLabelEncode:
- RecResizeImg:
image_shape: [3, 32, 320]
- KeepKeys:
keep_keys:
- image
- label
- length
loader:
shuffle: false
drop_last: false
batch_size_per_card: 128
num_workers: 8
......@@ -15,7 +15,6 @@ Global:
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
character_type: ch
max_text_length: 25
infer_mode: False
use_space_char: True
......
......@@ -15,7 +15,6 @@ Global:
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
character_type: ch
max_text_length: 25
infer_mode: False
use_space_char: True
......
......@@ -15,7 +15,6 @@ Global:
use_visualdl: false
infer_img: null
character_dict_path: ppocr/utils/dict/arabic_dict.txt
character_type: arabic
max_text_length: 25
infer_mode: false
use_space_char: true
......
......@@ -15,7 +15,6 @@ Global:
use_visualdl: false
infer_img: null
character_dict_path: ppocr/utils/dict/cyrillic_dict.txt
character_type: cyrillic
max_text_length: 25
infer_mode: false
use_space_char: true
......
......@@ -15,7 +15,6 @@ Global:
use_visualdl: false
infer_img: null
character_dict_path: ppocr/utils/dict/devanagari_dict.txt
character_type: devanagari
max_text_length: 25
infer_mode: false
use_space_char: true
......
......@@ -16,7 +16,6 @@ Global:
infer_img:
# for data or label process
character_dict_path: ppocr/utils/en_dict.txt
character_type: EN
max_text_length: 25
infer_mode: False
use_space_char: True
......
......@@ -16,7 +16,6 @@ Global:
infer_img:
# for data or label process
character_dict_path: ppocr/utils/dict/french_dict.txt
character_type: french
max_text_length: 25
infer_mode: False
use_space_char: False
......
......@@ -16,7 +16,6 @@ Global:
infer_img:
# for data or label process
character_dict_path: ppocr/utils/dict/german_dict.txt
character_type: german
max_text_length: 25
infer_mode: False
use_space_char: False
......
......@@ -16,7 +16,6 @@ Global:
infer_img:
# for data or label process
character_dict_path: ppocr/utils/dict/japan_dict.txt
character_type: japan
max_text_length: 25
infer_mode: False
use_space_char: False
......
......@@ -16,7 +16,6 @@ Global:
infer_img:
# for data or label process
character_dict_path: ppocr/utils/dict/korean_dict.txt
character_type: korean
max_text_length: 25
infer_mode: False
use_space_char: False
......
......@@ -15,7 +15,6 @@ Global:
use_visualdl: false
infer_img: null
character_dict_path: ppocr/utils/dict/latin_dict.txt
character_type: latin
max_text_length: 25
infer_mode: false
use_space_char: true
......
......@@ -14,8 +14,7 @@ Global:
use_visualdl: False
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path: ppocr/utils/ic15_dict.txt
character_type: ch
character_dict_path: ppocr/utils/en_dict.txt
max_text_length: 25
infer_mode: False
use_space_char: False
......
Global:
use_gpu: True
epoch_num: 21
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec/nrtr/
save_epoch_step: 1
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path: ppocr/utils/EN_symbol_dict.txt
max_text_length: 25
infer_mode: False
use_space_char: False
save_res_path: ./output/rec/predicts_nrtr.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.99
clip_norm: 5.0
lr:
name: Cosine
learning_rate: 0.0005
warmup_epoch: 2
regularizer:
name: 'L2'
factor: 0.
Architecture:
model_type: rec
algorithm: NRTR
in_channels: 1
Transform:
Backbone:
name: MTB
cnn_num: 2
Head:
name: Transformer
d_model: 512
num_encoder_layers: 6
beam_size: -1 # When Beam size is greater than 0, it means to use beam search when evaluation.
Loss:
name: NRTRLoss
smoothing: True
PostProcess:
name: NRTRLabelDecode
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- NRTRLabelEncode: # Class handling label
- NRTRRecResizeImg:
image_shape: [100, 32]
resize_type: PIL # PIL or OpenCV
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 512
drop_last: True
num_workers: 8
Eval:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/evaluation/
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- NRTRLabelEncode: # Class handling label
- NRTRRecResizeImg:
image_shape: [100, 32]
resize_type: PIL # PIL or OpenCV
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 256
num_workers: 1
use_shared_memory: False
......@@ -15,7 +15,6 @@ Global:
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path:
character_type: en
max_text_length: 25
infer_mode: False
use_space_char: False
......
......@@ -15,7 +15,6 @@ Global:
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path:
character_type: en
max_text_length: 25
infer_mode: False
use_space_char: False
......
......@@ -15,7 +15,6 @@ Global:
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path:
character_type: en
max_text_length: 25
infer_mode: False
use_space_char: False
......
......@@ -15,7 +15,6 @@ Global:
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path:
character_type: en
max_text_length: 25
infer_mode: False
use_space_char: False
......
Global:
use_gpu: true
epoch_num: 5
log_smooth_window: 20
print_batch_step: 20
save_model_dir: ./sar_rec
save_epoch_step: 1
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
# for data or label process
character_dict_path: ppocr/utils/dict90.txt
max_text_length: 30
infer_mode: False
use_space_char: False
rm_symbol: True
save_res_path: ./output/rec/predicts_sar.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Piecewise
decay_epochs: [3, 4]
values: [0.001, 0.0001, 0.00001]
regularizer:
name: 'L2'
factor: 0
Architecture:
model_type: rec
algorithm: SAR
Transform:
Backbone:
name: ResNet31
Head:
name: SARHead
Loss:
name: SARLoss
PostProcess:
name: SARLabelDecode
Metric:
name: RecMetric
Train:
dataset:
name: SimpleDataSet
label_file_list: ['./train_data/train_list.txt']
data_dir: ./train_data/
ratio_list: 1.0
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SARLabelEncode: # Class handling label
- SARRecResizeImg:
image_shape: [3, 48, 48, 160] # h:48 w:[48,160]
width_downsample_ratio: 0.25
- KeepKeys:
keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 64
drop_last: True
num_workers: 8
use_shared_memory: False
Eval:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/evaluation/
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SARLabelEncode: # Class handling label
- SARRecResizeImg:
image_shape: [3, 48, 48, 160]
width_downsample_ratio: 0.25
- KeepKeys:
keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 64
num_workers: 4
use_shared_memory: False
......@@ -15,7 +15,6 @@ Global:
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path:
character_type: en
max_text_length: 25
infer_mode: False
use_space_char: False
......
......@@ -15,7 +15,6 @@ Global:
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path:
character_type: en
max_text_length: 25
infer_mode: False
use_space_char: False
......
......@@ -15,7 +15,6 @@ Global:
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path:
character_type: en
max_text_length: 25
infer_mode: False
use_space_char: False
......
......@@ -15,7 +15,6 @@ Global:
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path:
character_type: en
max_text_length: 25
infer_mode: False
use_space_char: False
......
......@@ -15,7 +15,6 @@ Global:
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path:
character_type: en
max_text_length: 25
num_heads: 8
infer_mode: False
......
Global:
use_gpu: True
epoch_num: 400
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec/seed
save_epoch_step: 3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path: ppocr/utils/EN_symbol_dict.txt
max_text_length: 100
infer_mode: False
use_space_char: False
save_res_path: ./output/rec/predicts_seed.txt
Optimizer:
name: Adadelta
weight_deacy: 0.0
momentum: 0.9
lr:
name: Piecewise
decay_epochs: [4,5,8]
values: [1.0, 0.1, 0.01]
regularizer:
name: 'L2'
factor: 2.0e-05
Architecture:
model_type: rec
algorithm: SEED
Transform:
name: STN_ON
tps_inputsize: [32, 64]
tps_outputsize: [32, 100]
num_control_points: 20
tps_margins: [0.05,0.05]
stn_activation: none
Backbone:
name: ResNet_ASTER
Head:
name: AsterHead # AttentionHead
sDim: 512
attDim: 512
max_len_labels: 100
Loss:
name: AsterLoss
PostProcess:
name: SEEDLabelDecode
Metric:
name: RecMetric
main_indicator: acc
is_filter: True
Train:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- Fasttext:
path: "./cc.en.300.bin"
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SEEDLabelEncode: # Class handling label
- RecResizeImg:
character_type: en
image_shape: [3, 64, 256]
padding: False
- KeepKeys:
keep_keys: ['image', 'label', 'length', 'fast_label'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 256
drop_last: True
num_workers: 6
Eval:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/evaluation/
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SEEDLabelEncode: # Class handling label
- RecResizeImg:
character_type: en
image_shape: [3, 64, 256]
padding: False
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: True
batch_size_per_card: 256
num_workers: 4
project(ppocr CXX C)
cmake_minimum_required(VERSION 3.14)
option(WITH_MKL "Compile demo with MKL/OpenBlas support, default use MKL." ON)
option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." OFF)
......@@ -206,9 +207,12 @@ endif()
set(DEPS ${DEPS} ${OpenCV_LIBS})
include(FetchContent)
include(external-cmake/auto-log.cmake)
include_directories(${FETCHCONTENT_BASE_DIR}/extern_autolog-src)
AUX_SOURCE_DIRECTORY(./src SRCS)
add_executable(${DEMO_NAME} ${SRCS})
target_link_libraries(${DEMO_NAME} ${DEPS})
if (WIN32 AND WITH_MKL)
......
因为 它太大了无法显示 image diff 。你可以改为 查看blob
......@@ -5,20 +5,20 @@ PaddleOCR在Windows 平台下基于`Visual Studio 2019 Community` 进行了测
## 前置条件
* Visual Studio 2019
* CUDA 9.0 / CUDA 10.0,cudnn 7+ (仅在使用GPU版本的预测库时需要)
* CUDA 10.2,cudnn 7+ (仅在使用GPU版本的预测库时需要)
* CMake 3.0+
请确保系统已经安装好上述基本软件,我们使用的是`VS2019`的社区版。
**下面所有示例以工作目录为 `D:\projects`演示**
### Step1: 下载PaddlePaddle C++ 预测库 fluid_inference
### Step1: 下载PaddlePaddle C++ 预测库 paddle_inference
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#windows)
解压后`D:\projects\fluid_inference`目录包含内容为:
解压后`D:\projects\paddle_inference`目录包含内容为:
```
fluid_inference
paddle_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
......@@ -46,13 +46,13 @@ fluid_inference
![step2.2](https://paddleseg.bj.bcebos.com/inference/vs2019_step3.png)
3. 点击:`项目`->`cpp_inference_demo的CMake设置`
3. 点击:`项目`->`CMake设置`
![step3](https://paddleseg.bj.bcebos.com/inference/vs2019_step4.png)
4. 点击`浏览`分别设置编译选项指定`CUDA``CUDNN_LIB``OpenCV``Paddle预测库`的路径
4. 分别设置编译选项指定`CUDA``CUDNN_LIB``OpenCV``Paddle预测库`的路径
三个编译参数的含义说明如下(带`*`表示仅在使用**GPU版本**预测库时指定, 其中CUDA库版本尽量对齐**使用9.0、10.0版本,不使用9.2、10.1等版本CUDA库**):
三个编译参数的含义说明如下(带`*`表示仅在使用**GPU版本**预测库时指定, 其中CUDA库版本尽量对齐):
| 参数名 | 含义 |
| ---- | ---- |
......@@ -67,6 +67,11 @@ fluid_inference
![step4](https://paddleseg.bj.bcebos.com/inference/vs2019_step5.png)
下面给出with GPU的配置示例:
![step5](./vs2019_build_withgpu_config.png)
**注意:**
CMAKE_BACKWARDS的版本要根据平台安装cmake的版本进行设置。
**设置完成后**, 点击上图中`保存并生成CMake缓存以加载变量`
5. 点击`生成`->`全部生成`
......@@ -74,24 +79,34 @@ fluid_inference
![step6](https://paddleseg.bj.bcebos.com/inference/vs2019_step6.png)
### Step4: 预测及可视化
### Step4: 预测
上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release`目录下,打开`cmd`,并切换到该目录
上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release\Release`目录下,打开`cmd`,并切换到`D:\projects\PaddleOCR\deploy\cpp_infer\`
```
cd D:\projects\PaddleOCR\deploy\cpp_infer\out\build\x64-Release
cd D:\projects\PaddleOCR\deploy\cpp_infer
```
可执行文件`ocr_system.exe`即为样例的预测程序,其主要使用方法如下
可执行文件`ppocr.exe`即为样例的预测程序,其主要使用方法如下,更多使用方法可以参考[说明文档](../readme.md)`运行demo`部分。
```shell
#预测图片 `D:\projects\PaddleOCR\doc\imgs\10.jpg`
.\ocr_system.exe D:\projects\PaddleOCR\deploy\cpp_infer\tools\config.txt D:\projects\PaddleOCR\doc\imgs\10.jpg
#识别中文图片 `D:\projects\PaddleOCR\doc\imgs_words\ch\`
.\out\build\x64-Release\Release\ppocr.exe rec --rec_model_dir=D:\projects\PaddleOCR\ch_ppocr_mobile_v2.0_rec_infer --image_dir=D:\projects\PaddleOCR\doc\imgs_words\ch\
#识别英文图片 'D:\projects\PaddleOCR\doc\imgs_words\en\'
.\out\build\x64-Release\Release\ppocr.exe rec --rec_model_dir=D:\projects\PaddleOCR\inference\rec_mv3crnn --image_dir=D:\projects\PaddleOCR\doc\imgs_words\en\ --char_list_file=D:\projects\PaddleOCR\ppocr\utils\dict\en_dict.txt
```
第一个参数为配置文件路径,第二个参数为需要预测的图片路径。
第一个参数为配置文件路径,第二个参数为需要预测的图片路径,第三个参数为配置文本识别的字典。
### 注意
### FQA
* 在Windows下的终端中执行文件exe时,可能会发生乱码的现象,此时需要在终端中输入`CHCP 65001`,将终端的编码方式由GBK编码(默认)改为UTF-8编码,更加具体的解释可以参考这篇博客:[https://blog.csdn.net/qq_35038153/article/details/78430359](https://blog.csdn.net/qq_35038153/article/details/78430359)。
* 编译时,如果报错`错误:C1083 无法打开包括文件:"dirent.h":No such file or directory`,可以参考该[文档](https://blog.csdn.net/Dora_blank/article/details/117740837#41_C1083_direnthNo_such_file_or_directory_54),新建`dirent.h`文件,并添加到`VC++`的包含目录中。
* 编译时,如果报错`错误:C1083 无法打开包括文件:"dirent.h":No such file or directory`,可以参考该[文档](https://blog.csdn.net/Dora_blank/article/details/117740837#41_C1083_direnthNo_such_file_or_directory_54),新建`dirent.h`文件,并添加到`utility.cpp`的头文件引用中。同时修改`utility.cpp`70行:`lstat`改成`stat`。
* 编译时,如果报错`Autolog未定义`,新建`autolog.h`文件,内容为:[autolog.h](https://github.com/LDOUBLEV/AutoLog/blob/main/auto_log/autolog.h),并添加到`main.cpp`的头文件引用中,再次编译。
* 运行时,如果弹窗报错找不到`paddle_inference.dll`或者`openblas.dll`,在`D:\projects\paddle_inference`预测库内找到这两个文件,复制到`D:\projects\PaddleOCR\deploy\cpp_infer\out\build\x64-Release\Release`目录下。不用重新编译,再次运行即可。
* 运行时,弹窗报错提示`应用程序无法正常启动(0xc0000142)`,并且`cmd`窗口内提示`You are using Paddle compiled with TensorRT, but TensorRT dynamic library is not found.`,把tensort目录下的lib里面的所有dll文件复制到release目录下,再次运行即可。
find_package(Git REQUIRED)
include(FetchContent)
set(FETCHCONTENT_BASE_DIR "${CMAKE_CURRENT_BINARY_DIR}/third-party")
FetchContent_Declare(
extern_Autolog
PREFIX autolog
GIT_REPOSITORY https://github.com/LDOUBLEV/AutoLog.git
GIT_TAG main
)
FetchContent_MakeAvailable(extern_Autolog)
......@@ -4,15 +4,32 @@
C++在性能计算上优于python,因此,在大多数CPU、GPU部署场景,多采用C++的部署方式,本节将介绍如何在Linux\Windows (CPU\GPU)环境下配置C++环境并完成
PaddleOCR模型部署。
* [1. 准备环境](#1)
+ [1.0 运行准备](#10)
+ [1.1 编译opencv库](#11)
+ [1.2 下载或者编译Paddle预测库](#12)
- [1.2.1 直接下载安装](#121)
- [1.2.2 预测库源码编译](#122)
* [2 开始运行](#2)
+ [2.1 将模型导出为inference model](#21)
+ [2.2 编译PaddleOCR C++预测demo](#22)
+ [2.3运行demo](#23)
<a name="1"></a>
## 1. 准备环境
### 运行准备
<a name="10"></a>
### 1.0 运行准备
- Linux环境,推荐使用docker。
- Windows环境,目前支持基于`Visual Studio 2019 Community`进行编译。
* 该文档主要介绍基于Linux环境的PaddleOCR C++预测流程,如果需要在Windows下基于预测库进行C++预测,具体编译方法请参考[Windows下编译教程](./docs/windows_vs2019_build.md)
<a name="11"></a>
### 1.1 编译opencv库
* 首先需要从opencv官网上下载在Linux环境下源码编译的包,以opencv3.4.7为例,下载命令如下。
......@@ -71,6 +88,8 @@ opencv3/
|-- share
```
<a name="12"></a>
### 1.2 下载或者编译Paddle预测库
* 有2种方式获取Paddle预测库,下面进行详细介绍。
......@@ -132,9 +151,12 @@ build/paddle_inference_install_dir/
其中`paddle`就是C++预测所需的Paddle库,`version.txt`中包含当前预测库的版本信息。
<a name="2"></a>
## 2 开始运行
<a name="21"></a>
### 2.1 将模型导出为inference model
* 可以参考[模型预测章节](../../doc/doc_ch/inference.md),导出inference model,用于模型预测。模型导出之后,假设放在`inference`目录下,则目录结构如下。
......@@ -149,6 +171,7 @@ inference/
| |--inference.pdmodel
```
<a name="22"></a>
### 2.2 编译PaddleOCR C++预测demo
......@@ -172,8 +195,9 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
* 编译完成之后,会在`build`文件夹下生成一个名为`ppocr`的可执行文件。
<a name="23"></a>
### 运行demo
### 2.3 运行demo
运行方式:
```shell
......@@ -258,6 +282,4 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
</div>
### 2.3 注意
* 在使用Paddle预测库时,推荐使用2.0.0版本的预测库。
**注意:在使用Paddle预测库时,推荐使用2.0.0版本的预测库。**
# Server-side C++ inference
# Server-side C++ Inference
This chapter introduces the C++ deployment method of the PaddleOCR model, and the corresponding python predictive deployment method refers to [document](../../doc/doc_ch/inference.md).
C++ is better than python in terms of performance calculation. Therefore, in most CPU and GPU deployment scenarios, C++ deployment is mostly used.
......@@ -6,14 +6,14 @@ This section will introduce how to configure the C++ environment and complete it
PaddleOCR model deployment.
## 1. Prepare the environment
## 1. Prepare the Environment
### Environment
- Linux, docker is recommended.
### 1.1 Compile opencv
### 1.1 Compile OpenCV
* First of all, you need to download the source code compiled package in the Linux environment from the opencv official website. Taking opencv3.4.7 as an example, the download command is as follows.
......@@ -73,7 +73,7 @@ opencv3/
|-- share
```
### 1.2 Compile or download or the Paddle inference library
### 1.2 Compile or Download or the Paddle Inference Library
* There are 2 ways to obtain the Paddle inference library, described in detail below.
......@@ -136,7 +136,7 @@ build/paddle_inference_install_dir/
Among them, `paddle` is the Paddle library required for C++ prediction later, and `version.txt` contains the version information of the current inference library.
## 2. Compile and run the demo
## 2. Compile and Run the Demo
### 2.1 Export the inference model
......
......@@ -35,15 +35,16 @@
#include <sys/stat.h>
#include <gflags/gflags.h>
#include "auto_log/autolog.h"
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
DEFINE_int32(cpu_math_library_num_threads, 10, "Num of threads with CPU.");
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU.");
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
DEFINE_bool(benchmark, true, "Whether use benchmark.");
DEFINE_bool(benchmark, false, "Whether use benchmark.");
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
// detection related
DEFINE_string(image_dir, "", "Dir of input image.");
......@@ -60,6 +61,7 @@ DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
DEFINE_int32(rec_batch_num, 1, "rec_batch_num.");
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");
......@@ -68,34 +70,6 @@ using namespace cv;
using namespace PaddleOCR;
void PrintBenchmarkLog(std::string model_name,
int batch_size,
std::string input_shape,
std::vector<double> time_info,
int img_num){
LOG(INFO) << "----------------------- Config info -----------------------";
LOG(INFO) << "runtime_device: " << (FLAGS_use_gpu ? "gpu" : "cpu");
LOG(INFO) << "ir_optim: " << "True";
LOG(INFO) << "enable_memory_optim: " << "True";
LOG(INFO) << "enable_tensorrt: " << FLAGS_use_tensorrt;
LOG(INFO) << "enable_mkldnn: " << (FLAGS_use_mkldnn ? "True" : "False");
LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_math_library_num_threads;
LOG(INFO) << "----------------------- Data info -----------------------";
LOG(INFO) << "batch_size: " << batch_size;
LOG(INFO) << "input_shape: " << input_shape;
LOG(INFO) << "data_num: " << img_num;
LOG(INFO) << "----------------------- Model info -----------------------";
LOG(INFO) << "model_name: " << model_name;
LOG(INFO) << "precision: " << FLAGS_precision;
LOG(INFO) << "----------------------- Perf info ------------------------";
LOG(INFO) << "Total time spent(ms): "
<< std::accumulate(time_info.begin(), time_info.end(), 0);
LOG(INFO) << "preprocess_time(ms): " << time_info[0] / img_num
<< ", inference_time(ms): " << time_info[1] / img_num
<< ", postprocess_time(ms): " << time_info[2] / img_num;
}
static bool PathExists(const std::string& path){
#ifdef _WIN32
struct _stat buffer;
......@@ -110,14 +84,14 @@ static bool PathExists(const std::string& path){
int main_det(std::vector<cv::String> cv_all_img_names) {
std::vector<double> time_info = {0, 0, 0};
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
FLAGS_use_polygon_score, FLAGS_visualize,
FLAGS_use_tensorrt, FLAGS_precision);
for (int i = 0; i < cv_all_img_names.size(); ++i) {
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
// LOG(INFO) << "The predict img: " << cv_all_img_names[i];
cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
if (!srcimg.data) {
......@@ -132,10 +106,30 @@ int main_det(std::vector<cv::String> cv_all_img_names) {
time_info[0] += det_times[0];
time_info[1] += det_times[1];
time_info[2] += det_times[2];
if (FLAGS_benchmark) {
cout << cv_all_img_names[i] << '\t';
for (int n = 0; n < boxes.size(); n++) {
for (int m = 0; m < boxes[n].size(); m++) {
cout << boxes[n][m][0] << ' ' << boxes[n][m][1] << ' ';
}
}
cout << endl;
}
}
if (FLAGS_benchmark) {
PrintBenchmarkLog("det", 1, "dynamic", time_info, cv_all_img_names.size());
AutoLogger autolog("ocr_det",
FLAGS_use_gpu,
FLAGS_use_tensorrt,
FLAGS_enable_mkldnn,
FLAGS_cpu_threads,
1,
"dynamic",
FLAGS_precision,
time_info,
cv_all_img_names.size());
autolog.report();
}
return 0;
}
......@@ -143,9 +137,15 @@ int main_det(std::vector<cv::String> cv_all_img_names) {
int main_rec(std::vector<cv::String> cv_all_img_names) {
std::vector<double> time_info = {0, 0, 0};
std::string char_list_file = FLAGS_char_list_file;
if (FLAGS_benchmark)
char_list_file = FLAGS_char_list_file.substr(6);
cout << "label file: " << char_list_file << endl;
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_char_list_file,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, char_list_file,
FLAGS_use_tensorrt, FLAGS_precision);
for (int i = 0; i < cv_all_img_names.size(); ++i) {
......@@ -166,17 +166,29 @@ int main_rec(std::vector<cv::String> cv_all_img_names) {
}
if (FLAGS_benchmark) {
PrintBenchmarkLog("rec", 1, "dynamic", time_info, cv_all_img_names.size());
AutoLogger autolog("ocr_rec",
FLAGS_use_gpu,
FLAGS_use_tensorrt,
FLAGS_enable_mkldnn,
FLAGS_cpu_threads,
1,
"dynamic",
FLAGS_precision,
time_info,
cv_all_img_names.size());
autolog.report();
}
return 0;
}
int main_system(std::vector<cv::String> cv_all_img_names) {
std::vector<double> time_info_det = {0, 0, 0};
std::vector<double> time_info_rec = {0, 0, 0};
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
FLAGS_use_polygon_score, FLAGS_visualize,
FLAGS_use_tensorrt, FLAGS_precision);
......@@ -184,22 +196,25 @@ int main_system(std::vector<cv::String> cv_all_img_names) {
Classifier *cls = nullptr;
if (FLAGS_use_angle_cls) {
cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_cls_thresh,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_cls_thresh,
FLAGS_use_tensorrt, FLAGS_precision);
}
std::string char_list_file = FLAGS_char_list_file;
if (FLAGS_benchmark)
char_list_file = FLAGS_char_list_file.substr(6);
cout << "label file: " << char_list_file << endl;
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_char_list_file,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, char_list_file,
FLAGS_use_tensorrt, FLAGS_precision);
auto start = std::chrono::system_clock::now();
for (int i = 0; i < cv_all_img_names.size(); ++i) {
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
cv::Mat srcimg = cv::imread(FLAGS_image_dir, cv::IMREAD_COLOR);
cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
if (!srcimg.data) {
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
exit(1);
......@@ -209,6 +224,9 @@ int main_system(std::vector<cv::String> cv_all_img_names) {
std::vector<double> rec_times;
det.Run(srcimg, boxes, &det_times);
time_info_det[0] += det_times[0];
time_info_det[1] += det_times[1];
time_info_det[2] += det_times[2];
cv::Mat crop_img;
for (int j = 0; j < boxes.size(); j++) {
......@@ -218,18 +236,36 @@ int main_system(std::vector<cv::String> cv_all_img_names) {
crop_img = cls->Run(crop_img);
}
rec.Run(crop_img, &rec_times);
time_info_rec[0] += rec_times[0];
time_info_rec[1] += rec_times[1];
time_info_rec[2] += rec_times[2];
}
auto end = std::chrono::system_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
std::cout << "Cost "
<< double(duration.count()) *
std::chrono::microseconds::period::num /
std::chrono::microseconds::period::den
<< "s" << std::endl;
}
if (FLAGS_benchmark) {
AutoLogger autolog_det("ocr_det",
FLAGS_use_gpu,
FLAGS_use_tensorrt,
FLAGS_enable_mkldnn,
FLAGS_cpu_threads,
1,
"dynamic",
FLAGS_precision,
time_info_det,
cv_all_img_names.size());
AutoLogger autolog_rec("ocr_rec",
FLAGS_use_gpu,
FLAGS_use_tensorrt,
FLAGS_enable_mkldnn,
FLAGS_cpu_threads,
1,
"dynamic",
FLAGS_precision,
time_info_rec,
cv_all_img_names.size());
autolog_det.report();
std::cout << endl;
autolog_rec.report();
}
return 0;
}
......
......@@ -112,12 +112,16 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
1 << 20, 10, 3,
precision,
false, false);
std::map<std::string, std::vector<int>> min_input_shape = {
{"x", {1, 3, 32, 10}}};
{"x", {1, 3, 32, 10}},
{"lstm_0.tmp_0", {10, 1, 96}}};
std::map<std::string, std::vector<int>> max_input_shape = {
{"x", {1, 3, 32, 2000}}};
{"x", {1, 3, 32, 2000}},
{"lstm_0.tmp_0", {1000, 1, 96}}};
std::map<std::string, std::vector<int>> opt_input_shape = {
{"x", {1, 3, 32, 320}}};
{"x", {1, 3, 32, 320}},
{"lstm_0.tmp_0", {25, 1, 96}}};
config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
opt_input_shape);
......@@ -139,7 +143,7 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
config.SwitchIrOptim(true);
config.EnableMemoryOptim();
config.DisableGlogInfo();
// config.DisableGlogInfo();
this->predictor_ = CreatePredictor(config);
}
......
......@@ -13,7 +13,7 @@ def read_params():
#params for text detector
cfg.det_algorithm = "DB"
cfg.det_model_dir = "./inference/ch_ppocr_mobile_v2.0_det_infer/"
cfg.det_model_dir = "./inference/ch_PP-OCRv2_det_infer/"
cfg.det_limit_side_len = 960
cfg.det_limit_type = 'max'
......
......@@ -13,7 +13,7 @@ def read_params():
#params for text recognizer
cfg.rec_algorithm = "CRNN"
cfg.rec_model_dir = "./inference/ch_ppocr_mobile_v2.0_rec_infer/"
cfg.rec_model_dir = "./inference/ch_PP-OCRv2_rec_infer/"
cfg.rec_image_shape = "3, 32, 320"
cfg.rec_char_type = 'ch'
......
......@@ -13,7 +13,7 @@ def read_params():
#params for text detector
cfg.det_algorithm = "DB"
cfg.det_model_dir = "./inference/ch_ppocr_mobile_v2.0_det_infer/"
cfg.det_model_dir = "./inference/ch_PP-OCRv2_det_infer/"
cfg.det_limit_side_len = 960
cfg.det_limit_type = 'max'
......@@ -31,7 +31,7 @@ def read_params():
#params for text recognizer
cfg.rec_algorithm = "CRNN"
cfg.rec_model_dir = "./inference/ch_ppocr_mobile_v2.0_rec_infer/"
cfg.rec_model_dir = "./inference/ch_PP-OCRv2_rec_infer/"
cfg.rec_image_shape = "3, 32, 320"
cfg.rec_char_type = 'ch'
......
......@@ -34,10 +34,10 @@ pip3 install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/sim
```
### 2. 下载推理模型
安装服务模块前,需要准备推理模型并放到正确路径。默认使用的是v2.0版的超轻量模型,默认模型路径为:
安装服务模块前,需要准备推理模型并放到正确路径。默认使用的是PP-OCRv2模型,默认模型路径为:
```
检测模型:./inference/ch_ppocr_mobile_v2.0_det_infer/
识别模型:./inference/ch_ppocr_mobile_v2.0_rec_infer/
检测模型:./inference/ch_PP-OCRv2_det_infer/
识别模型:./inference/ch_PP-OCRv2_rec_infer/
方向分类器:./inference/ch_ppocr_mobile_v2.0_cls_infer/
```
......
......@@ -35,10 +35,10 @@ pip3 install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/sim
```
### 2. Download inference model
Before installing the service module, you need to prepare the inference model and put it in the correct path. By default, the ultra lightweight model of v2.0 is used, and the default model path is:
Before installing the service module, you need to prepare the inference model and put it in the correct path. By default, the PP-OCRv2 models are used, and the default model path is:
```
detection model: ./inference/ch_ppocr_mobile_v2.0_det_infer/
recognition model: ./inference/ch_ppocr_mobile_v2.0_rec_infer/
detection model: ./inference/ch_PP-OCRv2_det_infer/
recognition model: ./inference/ch_PP-OCRv2_rec_infer/
text direction classifier: ./inference/ch_ppocr_mobile_v2.0_cls_infer/
```
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server.web_service import WebService, Op
import logging
import numpy as np
import cv2
import base64
# from paddle_serving_app.reader import OCRReader
from ocr_reader import OCRReader, DetResizeForTest
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
_LOGGER = logging.getLogger()
class DetOp(Op):
def init_op(self):
self.det_preprocess = Sequential([
DetResizeForTest(), Div(255),
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
(2, 0, 1))
])
self.filter_func = FilterBoxes(10, 10)
self.post_func = DBPostProcess({
"thresh": 0.3,
"box_thresh": 0.5,
"max_candidates": 1000,
"unclip_ratio": 1.5,
"min_size": 3
})
def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items()
data = base64.b64decode(input_dict["image"].encode('utf8'))
self.raw_im = data
data = np.fromstring(data, np.uint8)
# Note: class variables(self.var) can only be used in process op mode
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
self.ori_h, self.ori_w, _ = im.shape
det_img = self.det_preprocess(im)
_, self.new_h, self.new_w = det_img.shape
return {"x": det_img[np.newaxis, :].copy()}, False, None, ""
def postprocess(self, input_dicts, fetch_dict, log_id):
det_out = fetch_dict["save_infer_model/scale_0.tmp_1"]
ratio_list = [
float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
]
dt_boxes_list = self.post_func(det_out, [ratio_list])
dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
out_dict = {"dt_boxes": str(dt_boxes)}
return out_dict, None, ""
class OcrService(WebService):
def get_pipeline_response(self, read_op):
det_op = DetOp(name="det", input_ops=[read_op])
return det_op
uci_service = OcrService(name="ocr")
uci_service.prepare_pipeline_config("config.yml")
uci_service.run_service()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server.web_service import WebService, Op
import logging
import numpy as np
import cv2
import base64
# from paddle_serving_app.reader import OCRReader
from ocr_reader import OCRReader, DetResizeForTest
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
_LOGGER = logging.getLogger()
class RecOp(Op):
def init_op(self):
self.ocr_reader = OCRReader(
char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt")
def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items()
raw_im = base64.b64decode(input_dict["image"].encode('utf8'))
data = np.fromstring(raw_im, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
feed_list = []
max_wh_ratio = 0
## Many mini-batchs, the type of feed_data is list.
max_batch_size = 6 # len(dt_boxes)
# If max_batch_size is 0, skipping predict stage
if max_batch_size == 0:
return {}, True, None, ""
boxes_size = max_batch_size
rem = boxes_size % max_batch_size
h, w = im.shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
_, w, h = self.ocr_reader.resize_norm_img(im, max_wh_ratio).shape
norm_img = self.ocr_reader.resize_norm_img(im, max_batch_size)
norm_img = norm_img[np.newaxis, :]
feed = {"x": norm_img.copy()}
feed_list.append(feed)
return feed_list, False, None, ""
def postprocess(self, input_dicts, fetch_data, log_id):
res_list = []
if isinstance(fetch_data, dict):
if len(fetch_data) > 0:
rec_batch_res = self.ocr_reader.postprocess(
fetch_data, with_score=True)
for res in rec_batch_res:
res_list.append(res[0])
elif isinstance(fetch_data, list):
for one_batch in fetch_data:
one_batch_res = self.ocr_reader.postprocess(
one_batch, with_score=True)
for res in one_batch_res:
res_list.append(res[0])
res = {"res": str(res_list)}
return res, None, ""
class OcrService(WebService):
def get_pipeline_response(self, read_op):
rec_op = RecOp(name="rec", input_ops=[read_op])
return rec_op
uci_service = OcrService(name="ocr")
uci_service.prepare_pipeline_config("config.yml")
uci_service.run_service()
......@@ -75,7 +75,7 @@ def main(config, device, logger, vdl_writer):
model = build_model(config['Architecture'])
flops = paddle.flops(model, [1, 3, 640, 640])
logger.info(f"FLOPs before pruning: {flops}")
logger.info("FLOPs before pruning: {}".format(flops))
from paddleslim.dygraph import FPGMFilterPruner
model.train()
......@@ -106,33 +106,51 @@ def main(config, device, logger, vdl_writer):
def eval_fn():
metric = program.eval(model, valid_dataloader, post_process_class,
eval_class)
logger.info(f"metric['hmean']: {metric['hmean']}")
eval_class, False)
logger.info("metric['hmean']: {}".format(metric['hmean']))
return metric['hmean']
run_sensitive_analysis = False
"""
run_sensitive_analysis=True:
Automatically compute the sensitivities of convolutions in a model.
The sensitivity of a convolution is the losses of accuracy on test dataset in
differenct pruned ratios. The sensitivities can be used to get a group of best
ratios with some condition.
run_sensitive_analysis=False:
Set prune trim ratio to a fixed value, such as 10%. The larger the value,
the more convolution weights will be cropped.
"""
if run_sensitive_analysis:
params_sensitive = pruner.sensitive(
eval_func=eval_fn,
sen_file="./sen.pickle",
sen_file="./deploy/slim/prune/sen.pickle",
skip_vars=[
"conv2d_57.w_0", "conv2d_transpose_2.w_0", "conv2d_transpose_3.w_0"
"conv2d_57.w_0", "conv2d_transpose_2.w_0",
"conv2d_transpose_3.w_0"
])
logger.info(
"The sensitivity analysis results of model parameters saved in sen.pickle"
)
# calculate pruned params's ratio
params_sensitive = pruner._get_ratios_by_loss(params_sensitive, loss=0.02)
params_sensitive = pruner._get_ratios_by_loss(
params_sensitive, loss=0.02)
for key in params_sensitive.keys():
logger.info(f"{key}, {params_sensitive[key]}")
logger.info("{}, {}".format(key, params_sensitive[key]))
else:
params_sensitive = {}
for param in model.parameters():
if 'transpose' not in param.name and 'linear' not in param.name:
# set prune ratio as 10%. The larger the value, the more convolution weights will be cropped
params_sensitive[param.name] = 0.1
plan = pruner.prune_vars(params_sensitive, [0])
for param in model.parameters():
if ("weights" in param.name and "conv" in param.name) or (
"w_0" in param.name and "conv2d" in param.name):
logger.info(f"{param.name}: {param.shape}")
flops = paddle.flops(model, [1, 3, 640, 640])
logger.info(f"FLOPs after pruning: {flops}")
logger.info("FLOPs after pruning: {}".format(flops))
# start train
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append(
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
import yaml
import paddle
import paddle.distributed as dist
paddle.seed(2)
from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.losses import build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model
import tools.program as program
import paddleslim
from paddleslim.dygraph.quant import QAT
import numpy as np
dist.get_world_size()
class PACT(paddle.nn.Layer):
def __init__(self):
super(PACT, self).__init__()
alpha_attr = paddle.ParamAttr(
name=self.full_name() + ".pact",
initializer=paddle.nn.initializer.Constant(value=20),
learning_rate=1.0,
regularizer=paddle.regularizer.L2Decay(2e-5))
self.alpha = self.create_parameter(
shape=[1], attr=alpha_attr, dtype='float32')
def forward(self, x):
out_left = paddle.nn.functional.relu(x - self.alpha)
out_right = paddle.nn.functional.relu(-self.alpha - x)
x = x - out_left + out_right
return x
quant_config = {
# weight preprocess type, default is None and no preprocessing is performed.
'weight_preprocess_type': None,
# activation preprocess type, default is None and no preprocessing is performed.
'activation_preprocess_type': None,
# weight quantize type, default is 'channel_wise_abs_max'
'weight_quantize_type': 'channel_wise_abs_max',
# activation quantize type, default is 'moving_average_abs_max'
'activation_quantize_type': 'moving_average_abs_max',
# weight quantize bit num, default is 8
'weight_bits': 8,
# activation quantize bit num, default is 8
'activation_bits': 8,
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
'dtype': 'int8',
# window size for 'range_abs_max' quantization. default is 10000
'window_size': 10000,
# The decay coefficient of moving average, default is 0.9
'moving_rate': 0.9,
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
'quantizable_layer_type': ['Conv2D', 'Linear'],
}
def sample_generator(loader):
def __reader__():
for indx, data in enumerate(loader):
images = np.array(data[0])
yield images
return __reader__
def main(config, device, logger, vdl_writer):
# init dist environment
if config['Global']['distributed']:
dist.init_parallel_env()
global_config = config['Global']
# build dataloader
config['Train']['loader']['num_workers'] = 0
train_dataloader = build_dataloader(config, 'Train', device, logger)
if config['Eval']:
config['Eval']['loader']['num_workers'] = 0
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
else:
valid_dataloader = None
paddle.enable_static()
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
if 'inference_model' in global_config.keys(): # , 'inference_model'):
inference_model_dir = global_config['inference_model']
else:
inference_model_dir = os.path.dirname(global_config['pretrained_model'])
if not (os.path.exists(os.path.join(inference_model_dir, "inference.pdmodel")) and \
os.path.exists(os.path.join(inference_model_dir, "inference.pdiparams")) ):
raise ValueError(
"Please set inference model dir in Global.inference_model or Global.pretrained_model for post-quantazition"
)
paddleslim.quant.quant_post_static(
executor=exe,
model_dir=inference_model_dir,
model_filename='inference.pdmodel',
params_filename='inference.pdiparams',
quantize_model_path=global_config['save_inference_dir'],
sample_generator=sample_generator(train_dataloader),
save_model_filename='inference.pdmodel',
save_params_filename='inference.pdiparams',
batch_size=1,
batch_nums=None)
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess(is_train=True)
main(config, device, logger, vdl_writer)
......@@ -9,38 +9,42 @@
## PaddleOCR常见问题汇总(持续更新)
* [近期更新(2021.2.1](#近期更新)
* [近期更新(2021.6.29](#近期更新)
* [【精选】OCR精选10个问题](#OCR精选10个问题)
* [【理论篇】OCR通用32个问题](#OCR通用问题)
* [基础知识7题](#基础知识)
* [数据集7题](#数据集2)
* [模型训练调优18题](#模型训练调优2)
* [【实战篇】PaddleOCR实战120个问题](#PaddleOCR实战问题)
* [使用咨询38题](#使用咨询)
* [数据集18题](#数据集3)
* [模型训练调优30题](#模型训练调优3)
* [预测部署34题](#预测部署3)
* [【理论篇】OCR通用51个问题](#OCR通用问题)
* [基础知识16题](#基础知识)
* [数据集10题](#数据集2)
* [模型训练调优25题](#模型训练调优2)
* [【实战篇】PaddleOCR实战187个问题](#PaddleOCR实战问题)
* [使用咨询80题](#使用咨询)
* [数据集19题](#数据集3)
* [模型训练调优39题](#模型训练调优3)
* [预测部署49题](#预测部署3)
<a name="近期更新"></a>
## 近期更新(2021.2.1
## 近期更新(2021.6.29
#### Q3.2.18: PaddleOCR动态图版本如何finetune
**A**:finetune需要将配置文件里的 Global.load_static_weights设置为false,如果没有此字段可以手动添加,然后将模型地址放到Global.pretrained_model字段下即可
#### Q2.3.25: 图像正常识别出来的文字是OK的,旋转90度后识别出来的结果比较差,有什么方法可以优化
A: 整图旋转90之后效果变差是有可能的,因为目前PPOCR默认输入的图片是正向的; 可以自己训练一个整图的方向分类器,放在预测的最前端(可以参照现有方向分类器的方式),或者可以基于规则做一些预处理,比如判断长宽等等
#### Q3.1.78: 在线demo支持阿拉伯语吗
**A**: 在线demo目前只支持中英文, 多语言的都需要通过whl包自行处理
#### Q3.3.29: 微调v1.1预训练的模型,可以直接用文字垂直排列和上下颠倒的图片吗?还是必须要水平排列的
**A**1.1和2.0的模型一样,微调时,垂直排列的文字需要逆时针旋转 90° 后加入训练,上下颠倒的需要旋转为水平的
#### Q3.1.79: 某个类别的样本比较少,通过增加训练的迭代次数或者是epoch,变相增加小样本的数目,这样能缓解这个问题么
**A** 尽量保证类别均衡, 某些类别样本少,可以通过补充合成数据的方式处理;实验证明训练集中出现频次较少的字符,识别效果会比较差,增加迭代次数不能改变样本量少的问题
#### Q3.3.30: 模型训练过程中如何得到 best_accuracy 模型?
**A**:配置文件里的eval_batch_step字段用来控制多少次iter进行一次eval,在eval完成后会自动生成 best_accuracy 模型,所以如果希望很快就能拿到best_accuracy模型,可以将eval_batch_step改小一点(例如,10)。
#### Q3.1.80: 想把简历上的文字识别出来后,能够把关系一一对应起来,比如姓名和它后面的名字组成一对,籍贯、邮箱、学历等等都和各自的内容关联起来,这个应该如何处理,PPOCR目前支持吗?
**A**: 这样的需求在企业应用中确实比较常见,但往往都是个性化的需求,没有非常规整统一的处理方式。常见的处理方式有如下两种:
1. 对于单一版式、或者版式差异不大的应用场景,可以基于识别场景的一些先验信息,将识别内容进行配对; 比如运用表单结构信息:常见表单"姓名"关键字的后面,往往紧跟的就是名字信息
2. 对于版式多样,或者无固定版式的场景, 需要借助于NLP中的NER技术,给识别内容中的某些字段,赋予key值
#### Q3.4.33: 如何多进程运行paddleocr?
**A**:实例化多个paddleocr服务,然后将服务注册到注册中心,之后通过注册中心统一调度即可,关于注册中心,可以搜索eureka了解一下具体使用,其他的注册中心也行。
由于这部分需求和业务场景强相关,难以用一个统一的模型去处理,目前PPOCR暂不支持。 如果需要用到NER技术,可以参照Paddle团队的另一个开源套件: https://github.com/PaddlePaddle/ERNIE, 其提供的预训练模型ERNIE, 可以帮助提升NER任务的准确率。
#### Q3.4.34: 2.0训练出来的模型,能否在1.1版本上进行部署?
**A**:这个是不建议的,2.0训练出来的模型建议使用dygraph分支里提供的部署代码。
#### Q3.4.49: 同一个模型,c++部署和python部署方式,出来的结果不一致,如何定位?
**A**:有如下几个Debug经验:
1. 优先对一下几个阈值参数是否一致;
2. 排查一下c++代码和python代码的预处理和后处理方式是否一致;
3. 用python在模型输入输出各保存一下二进制文件,排除inference的差异性
<a name="OCR精选10个问题"></a>
## 【精选】OCR精选10个问题
......@@ -76,8 +80,7 @@
**A**:(1)在人眼确认可识别的条件下,对于背景有干扰的文字,首先要保证检测框足够准确,如果检测框不准确,需要考虑是否可以通过过滤颜色等方式对图像预处理并且增加更多相关的训练数据;在识别的部分,注意在训练数据中加入背景干扰类的扩增图像。
(2)如果MobileNet模型不能满足需求,可以尝试ResNet系列大模型来获得更好的效果
(2)如果MobileNet模型不能满足需求,可以尝试ResNet系列大模型来获得更好的效果。
#### Q1.1.6:OCR领域常用的评估指标是什么?
......@@ -125,7 +128,7 @@
#### Q1.1.10:PaddleOCR中,对于模型预测加速,CPU加速的途径有哪些?基于TenorRT加速GPU对输入有什么要求?
**A**:(1)CPU可以使用mkldnn进行加速;对于python inference的话,可以把enable_mkldnn改为true,[参考代码](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/tools/infer/utility.py#L84),对于cpp inference的话,在配置文件里面配置use_mkldnn 1即可,[参考代码](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/deploy/cpp_infer/tools/config.txt#L6)
**A**:(1)CPU可以使用mkldnn进行加速;对于python inference的话,可以把enable_mkldnn改为true,[参考代码](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/tools/infer/utility.py#L99),对于cpp inference的话,在配置文件里面配置use_mkldnn 1即可,[参考代码](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/deploy/cpp_infer/tools/config.txt#L6)
(2)GPU需要注意变长输入问题等,TRT6 之后才支持变长输入
......@@ -161,6 +164,39 @@
**A**:处理字符的时候,把多字符的当作一个字就行,字典中每行是一个字。
#### Q2.1.8: 端到端的场景文本识别方法大概分为几种?
**A**:端到端的场景文本识别方法大概分为2种:基于二阶段的方法和基于字符级别的方法。基于两阶段的方法一般先检测文本块,然后提取文本块中的特征用于识别,例如ABCNet;基于字符级别方法直接进行字符检测与识别,直接输出单词的文本框,字符框以及对应的字符类别,例如CharNet。
#### Q2.1.9: 二阶段的端到端的场景文本识别方法的不足有哪些?
**A**: 这类方法一般需要设计针对ROI提取特征的方法,而ROI操作一般比较耗时。
#### Q2.1.10: 基于字符级别的端到端的场景文本识别方法的不足有哪些?
**A**: 这类方法一方面训练时需要加入字符级别的数据,一般使用合成数据,但是合成数据和真实数据有分布Gap。另一方面,现有工作大多数假设文本阅读方向,从上到下,从左到右,没有解决文本方向预测问题。
#### Q2.1.11: AAAI 2021最新的端到端场景文本识别PGNet算法有什么特点?
**A**: PGNet不需要字符级别的标注,NMS操作以及ROI操作。同时提出预测文本行内的阅读顺序模块和基于图的修正模块来提升文本识别效果。该算法是百度自研,近期会在PaddleOCR开源。
#### Q2.1.12: PubTabNet 数据集关注的是什么问题?
**A**: PubTabNet是IBM提出的基于图片格式的表格识别数据集,包含 56.8 万张表格数据的图像,以及图像对应的 html 格式的注释。该数据集的发布推动了表格结构化算法的研发和落地应用。
#### Q2.1.13: PaddleOCR提供的文本识别算法包括哪些?
**A**: PaddleOCR主要提供五种文本识别算法,包括CRNN\StarNet\RARE\Rosetta和SRN, 其中CRNN\StarNet和Rosetta是基于ctc的文字识别算法,RARE是基于attention的文字识别算法;SRN为百度自研的文本识别算法,引入了语义信息,显著提升了准确率。 详情可参照如下页面: [文本识别算法](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.0/doc/doc_ch/algorithm_overview.md#%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95)
#### Q2.1.14: 在识别模型中,为什么降采样残差结构的stride为(2, 1)?
**A**: stride为(2, 1),表示在图像y方向(高度方向)上stride为2,x方向(宽度方向)上为1。由于待识别的文本图像通常为长方形,这样只在高度方向做下采样,尽量保留宽度方向的序列信息,避免宽度方向下采样后丢失过多的文字信息。
#### Q2.1.15: 文本识别方法CRNN关键技术有哪些?
**A**: CRNN 关键技术包括三部分。(1)CNN提取图像卷积特征。(2)深层双向LSTM网络,在卷积特征的基础上继续提取文字序列特征。(3)Connectionist Temporal Classification(CTC),解决训练时字符无法对齐的问题。
#### Q2.1.16: 百度自研的SRN文本识别方法特点有哪些?
**A**: SRN文本识别方法特点主要有四个部分:(1)使用Transformer Units(TUs)模块加强图像卷积特征的表达能力。(2)提出Parallel Visual Attention Module(PVAM)模块挖掘特征之间的相互关系。(3)提出Global Semantic Reasoning Module(GSRM)模块挖掘识别结果语义相互关系。(4)提出Visual-Semantic Fusion Decoder(VSFD)模块有效融合PVAM提取的视觉特征和GSRM提取的语义特征。
<a name="数据集2"></a>
### 数据集
......@@ -192,6 +228,16 @@
**A**:SRNet是借鉴GAN中图像到图像转换、风格迁移的想法合成文本数据。不同于通用GAN的方法只选择一个分支,SRNet将文本合成任务分解为三个简单的子模块,提升合成数据的效果。这三个子模块为不带背景的文本风格迁移模块、背景抽取模块和融合模块。PaddleOCR计划将在2020年12月中旬开源基于SRNet的实用模型。
#### Q2.2.8: DBNet如果想使用多边形作为输入,数据标签格式应该如何设定?
**A**:如果想使用多边形作为DBNet的输入,数据标签也应该用多边形来表示。这样子可以更好得拟合弯曲文本。PPOCRLabel暂时只支持矩形框标注和四边形框标注。
#### Q2.2.9: 端到端算法PGNet使用的是什么类型的数据集呢?
**A**: PGNet目前可以使用四点标注数据集,也可以使用多点标注数据集(十四点),多点标注训练的效果要比四点的好,一种可以尝试的策略是先在四点数据集上训练,之后用多点数据集在此基础上继续训练。
#### Q2.2.10: 文档版面分析常用数据集有哪些?
**A**: 文档版面分析常用数据集常用数据集有PubLayNet、TableBank word、TableBank latex等。
<a name="模型训练调优2"></a>
### 模型训练调优
......@@ -254,7 +300,7 @@
**A**:建议可以先了解OCR方向的基础知识,大概了解基础的检测和识别模型算法。然后在Github上可以查看OCR方向相关的repo。目前来看,从内容的完备性来看,PaddleOCR的中英文双语教程文档是有明显优势的,在数据集、模型训练、预测部署文档详实,可以快速入手。而且还有微信用户群答疑,非常适合学习实践。项目地址:[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
#### Q3.12:如何识别带空格的英文行文本图像?
#### Q2.3.12:如何识别带空格的英文行文本图像?
**A**:空格识别可以考虑以下两种方案:
......@@ -286,6 +332,33 @@
**A**:SE模块是MobileNetV3网络一个重要模块,目的是估计特征图每个特征通道重要性,给特征图每个特征分配权重,提高网络的表达能力。但是,对于文本检测,输入网络的分辨率比较大,一般是640\*640,利用SE模块估计特征图每个特征通道重要性比较困难,网络提升能力有限,但是该模块又比较耗时,因此在PP-OCR系统中,文本检测的骨干网络没有使用SE模块。实验也表明,当去掉SE模块,超轻量模型大小可以减小40%,文本检测效果基本不受影响。详细可以参考PP-OCR技术文章,https://arxiv.org/abs/2009.09941.
#### Q2.3.19: 参照文档做实际项目时,是重新训练还是在官方训练的基础上进行训练?具体如何操作?
**A**: 基于官方提供的模型,进行finetune的话,收敛会更快一些。 具体操作上,以识别模型训练为例:如果修改了字符文件,可以设置pretraind_model为官方提供的预训练模型
#### Q2.3.20: 如何根据不同的硬件平台选用不同的backbone?
**A**:在不同的硬件上,不同的backbone的速度优势不同,可以根据不同平台的速度-精度图来确定backbone,这里可以参考[PaddleClas模型速度-精度图](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/docs/zh_CN/models)
#### Q2.3.21: 端到端算法PGNet是否支持中文识别,速度会很慢嘛?
**A**:目前开源的PGNet算法模型主要是用于检测英文数字,对于中文的识别需要自己训练,大家可以使用开源的端到端中文数据集,而对于复杂文本(弯曲文本)的识别,也可以自己构造一批数据集针对进行训练,对于推理速度,可以先将模型转换为inference再进行预测,速度应该会相当可观。
#### Q2.3.22: 目前知识蒸馏有哪些主要的实践思路?
**A**:知识蒸馏即利用教师模型指导学生模型的训练,目前有3种主要的蒸馏思路:
1. 基于输出结果的蒸馏,即让学生模型学习教师模型的软标签(分类或者OCR识别等任务中)或者概率热度图(分割等任务中)。
2. 基于特征图的蒸馏,即让学生模型学习教师模型中间层的特征图,拟合中间层的一些特征。
3. 基于关系的蒸馏,针对不同的样本(假设个数为N),教师模型会有不同的输出,那么可以基于不同样本的输出,计算一个NxN的相关性矩阵,可以让学生模型去学习教师模型关于不同样本的相关性矩阵。
当然,知识蒸馏方法日新月异,也欢迎大家提出更多的总结与建议。
#### Q2.3.23: 文档版面分析常用方法有哪些?
**A**: 文档版面分析通常使用通用目标检测方法,包括Faster RCNN系列,YOLO系列等。面向产业实践,建议使用PaddleDetection中精度和效率出色的PP-YOLO v2目标检测方法进行训练。
#### Q2.3.24: 如何识别招牌或者广告图中的艺术字?
**A**: 招牌或者广告图中的艺术字是文本识别一个非常有挑战性的难题,因为艺术字中的单字和印刷体相比,变化非常大。如果需要识别的艺术字是在一个词典列表内,可以将改每个词典认为是一个待识别图像模板,通过通用图像检索识别系统解决识别问题。可以尝试使用PaddleClas的图像识别系统。
#### Q2.3.25: 图像正常识别出来的文字是OK的,旋转90度后识别出来的结果就比较差,有什么方法可以优化?
**A**: 整图旋转90之后效果变差是有可能的,因为目前PPOCR默认输入的图片是正向的; 可以自己训练一个整图的方向分类器,放在预测的最前端(可以参照现有方向分类器的方式),或者可以基于规则做一些预处理,比如判断长宽等等。
<a name="PaddleOCR实战问题"></a>
## 【实战篇】PaddleOCR实战问题
......@@ -361,13 +434,13 @@
(2)inference模型下载时,如果没有安装wget,可直接点击模型链接或将链接地址复制到浏览器进行下载,并解压放置到相应目录。
#### Q3.1.17:PaddleOCR开源的超轻量模型和通用OCR模型的区别?
**A**:目前PaddleOCR开源了2个中文模型,分别是9.4M超轻量中文模型和通用中文OCR模型。两者对比信息如下:
**A**:目前PaddleOCR开源了2个中文模型,分别是8.6M超轻量中文模型和通用中文OCR模型。两者对比信息如下:
- 相同点:两者使用相同的**算法****训练数据**
- 不同点:不同之处在于**骨干网络****通道参数**,超轻量模型使用MobileNetV3作为骨干网络,通用模型使用Resnet50_vd作为检测模型backbone,Resnet34_vd作为识别模型backbone,具体参数差异可对比两种模型训练的配置文件.
|模型|骨干网络|检测训练配置|识别训练配置|
|-|-|-|-|
|9.4M超轻量中文OCR模型|MobileNetV3+MobileNetV3|det_mv3_db.yml|rec_chinese_lite_train.yml|
|8.6M超轻量中文OCR模型|MobileNetV3+MobileNetV3|det_mv3_db.yml|rec_chinese_lite_train.yml|
|通用中文OCR模型|Resnet50_vd+Resnet34_vd|det_r50_vd_db.yml|rec_chinese_common_train.yml|
#### Q3.1.18:如何加入自己的检测算法?
......@@ -482,7 +555,239 @@ StyleText的用途主要是:提取style_image中的字体、背景等style信
**A**:Paddle版本问题,请安装2.0版本Paddle:pip install paddlepaddle==2.0.0。
#### Q3.1.39: 字典中没有的字应该如何标注,是用空格代替还是直接忽略掉?
**A**:可以直接按照图片内容标注,在编码的时候,会忽略掉字典中不存在的字符。
#### Q3.1.40: dygraph、release/2.0-rc1-0、release/2.0 这三个分支有什么区别?
**A**:dygraph是动态图分支,并且适配Paddle-develop,当然目前在Paddle2.0上也可以运行,新特性我们会在这里更新。
release/2.0-rc1-0是基于Paddle 2.0rc1的稳定版本,release/2.0是基于Paddle2.0的稳定版本,如果希望版本或者代
码稳定的话,建议使用release/2.0分支,如果希望可以实时拿到一些最新特性,建议使用dygraph分支。
#### Q3.1.41: style-text 融合模块的输入是生成的前景图像以及背景特征权重吗?
**A**:目前版本是直接输入两个图像进行融合的,没有用到feature_map,替换背景图片不会影响效果。
#### Q3.1.42: 训练识别任务的时候,在CPU上运行时,报错`The setting of Parameter-Server must has server_num or servers`。
**A**:这是训练任务启动方式不对造成的。
1. 在使用CPU或者单块GPU训练的时候,可以直接使用`python3 tools/train.py -c xxx.yml`的方式启动。
2. 在使用多块GPU训练的时候,需要使用`distributed.launch`的方式启动,如`python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c xxx.yml`,这种方式需要安装NCCL库,如果没有的话会报错。
#### Q3.1.43:使用StyleText进行数据合成时,文本(TextInput)的长度远超StyleInput的长度,该怎么处理与合成呢?
**A**:在使用StyleText进行数据合成的时候,建议StyleInput的长度长于TextInput的长度。有2种方法可以处理上述问题:
1. 将StyleInput按列的方向进行复制与扩充,直到其超过TextInput的长度。
2. 将TextInput进行裁剪,保证每段TextInput都稍短于StyleInput,分别合成之后,再拼接在一起。
实际使用中发现,使用第2种方法的效果在长文本合成的场景中的合成效果更好,StyleText中提供的也是第2种数据合成的逻辑。
#### Q3.1.44: 文字识别训练,设置图像高度不等于32时报错
**A**:ctc decode的时候,输入需要是1维向量,因此降采样之后,建议特征图高度为1,ppocr中,特征图会降采样32倍,之后高度正好为1,所以有2种解决方案
- 指定输入shape高度为32(推荐)
- 在backbone的mv3中添加更多的降采样模块,保证输出的特征图高度为1
#### Q3.1.45: 增大batch_size模型训练速度没有明显提升
**A**:如果batch_size打得太大,加速效果不明显的话,可以试一下增大初始化内存的值,运行代码前设置环境变量:
```
export FLAGS_initial_cpu_memory_in_mb=2000 # 设置初始化内存约2G左右
```
#### Q3.1.46: 动态图分支(dygraph,release/2.0),训练模型和推理模型效果不一致
**A**:当前问题表现为:使用训练完的模型直接测试结果较好,但是转换为inference model后,预测结果不一致;出现这个问题一般是两个原因:
1. 预处理函数设置的不一致
2. 后处理参数不一致
repo中config.yml文件的前后处理参数和inference预测默认的超参数有不一致的地方,建议排查下训练模型预测和inference预测的前后处理,
参考[issue](https://github.com/PaddlePaddle/PaddleOCR/issues/2080)
#### Q3.1.47: paddleocr package 报错 FatalError: `Process abort signal` is detected by the operating system
**A**:首先,按照[安装文档](./installation.md)安装PaddleOCR的运行环境;另外,检查python环境,python3.6/3.8上可能会出现这个问题,建议用python3.7,
参考[issue](https://github.com/PaddlePaddle/PaddleOCR/issues/2069)
#### Q3.1.48: 下载的识别模型解压后缺失文件,没有期望的inference.pdiparams, inference.pdmodel等文件
**A**:用解压软件解压可能会出现这个问题,建议二次解压下或者用命令行解压`tar xf `
#### Q3.1.49: 只想要识别票据中的部分片段,重新训练它的话,只需要训练文本检测模型就可以了吗?问文本识别,方向分类还是用原来的模型这样可以吗?
**A**:可以的。PaddleOCR的检测、识别、方向分类器三个模型是独立的,在实际使用中可以优化和替换其中任何一个模型。
#### Q3.1.50: 为什么在checkpoints中load下载的预训练模型会报错?
**A**: 这里有两个不同的概念:
- pretrained_model:指预训练模型,是已经训练完成的模型。这时会load预训练模型的参数,但并不会load学习率、优化器以及训练状态等。如果需要finetune,应该使用pretrained。
- checkpoints:指之前训练的中间结果,例如前一次训练到了100个epoch,想接着训练。这时会load尝试所有信息,包括模型的参数,之前的状态等。
这里应该使用pretrained_model而不是checkpoints
#### Q3.1.51: 如何用PaddleOCR识别视频中的文字?
**A**: 目前PaddleOCR主要针对图像做处理,如果需要视频识别,可以先对视频抽帧,然后用PPOCR识别。
#### Q3.1.52: 相机采集的图像为四通道,应该如何处理?
**A**: 有两种方式处理:
- 如果没有其他需要,可以在解码数据的时候指定模式为三通道,例如如果使用opencv,可以使用cv::imread(img_path, cv::IMREAD_COLOR)。
- 如果其他模块需要处理四通道的图像,那也可以在输入PaddleOCR模块之前进行转换,例如使用cvCvtColor(&img,img3chan,CV_RGBA2RGB)。
#### Q3.1.53: 预测时提示图像过大,显存、内存溢出了,应该如何处理?
**A**: 可以按照这个PR的修改来缓解显存、内存占用 [#2230](https://github.com/PaddlePaddle/PaddleOCR/pull/2230)
#### Q3.1.54: 用c++来部署,目前支持Paddle2.0的模型吗?
**A**: PPOCR 2.0的模型在arm上运行可以参照该PR [#1877](https://github.com/PaddlePaddle/PaddleOCR/pull/1877)
#### Q3.1.55: 目前PaddleOCR有知识蒸馏的demo吗?
**A**: 目前我们还没有提供PaddleOCR知识蒸馏的相关demo,PaddleClas开源了一个效果还不错的方案,可以移步[SSLD知识蒸馏方案](https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/docs/zh_CN/advanced_tutorials/distillation/distillation.md), paper: https://arxiv.org/abs/2103.05959 关于PaddleOCR的蒸馏,我们也会在未来支持。
#### Q3.1.56: 在使用PPOCRLabel的时候,如何标注倾斜的文字?
**A**: 如果矩形框标注后空白冗余较多,可以尝试PPOCRLabel提供的四点标注,可以标注各种倾斜角度的文本。
#### Q3.1.57: 端到端算法PGNet提供了两种后处理方式,两者之间有什么区别呢?
**A**: 两种后处理的区别主要在于速度的推理,config中PostProcess有fast/slow两种模式,slow模式的后处理速度慢,精度相对较高,fast模式的后处理速度快,精度也在可接受的范围之内。建议使用速度快的后处理方式。
#### Q3.1.58: 使用PGNet进行eval报错?
**A**: 需要注意,我们目前在release/2.1更新了评测代码,目前支持A,B两种评测模式:
* A模式:该模式主要为了方便用户使用,与训练集一样的标注文件就可以正常进行eval操作, 代码中默认是A模式。
* B模式:该模式主要为了保证我们的评测代码可以和Total Text官方的评测方式对齐,该模式下直接加载官方提供的mat文件进行eval。
#### Q3.1.59: 使用预训练模型进行预测,对于特定字符识别识别效果较差,怎么解决?
**A**: 由于我们所提供的识别模型是基于通用大规模数据集进行训练的,部分字符可能在训练集中包含较少,因此您可以构建特定场景的数据集,基于我们提供的预训练模型进行微调。建议用于微调的数据集中,每个字符出现的样本数量不低于300,但同时需要注意不同字符的数量均衡。具体可以参考:[微调](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/recognition.md#2-%E5%90%AF%E5%8A%A8%E8%AE%AD%E7%BB%83)
#### Q3.1.60: PGNet有中文预训练模型吗?
**A**: 目前我们尚未提供针对中文的预训练模型,如有需要,可以尝试自己训练。具体需要修改的地方有:
1. [config文件中](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/configs/e2e/e2e_r50_vd_pg.yml#L23-L24),字典文件路径及语种设置;
1. [网络结构中](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/ppocr/modeling/heads/e2e_pg_head.py#L181)`out_channels`修改为字典中的字符数目+1(考虑到空格);
1. [loss中](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/ppocr/losses/e2e_pg_loss.py#L93),修改`37`为字典中的字符数目+1(考虑到空格);
#### Q3.1.61: 用于PGNet的训练集,文本框的标注有要求吗?
**A**: PGNet支持多点标注,比如4点、8点、14点等。但需要注意的是,标注点尽可能分布均匀(相邻标注点间隔距离均匀一致),且label文件中的标注点需要从标注框的左上角开始,按标注点顺时针顺序依次编写,以上问题都可能对训练精度造成影响。
我们提供的,基于Total Text数据集的PGNet预训练模型使用了14点标注方式。
#### Q3.1.62: 弯曲文本(如略微形变的文档图像)漏检问题
**A**: db后处理中计算文本框平均得分时,是求rectangle区域的平均分数,容易造成弯曲文本漏检,已新增求polygon区域的平均分数,会更准确,但速度有所降低,可按需选择,在相关pr中可查看[可视化对比效果](https://github.com/PaddlePaddle/PaddleOCR/pull/2604)。该功能通过参数 [det_db_score_mode](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/tools/infer/utility.py#L51)进行选择,参数值可选[`fast`(默认)、`slow`],`fast`对应原始的rectangle方式,`slow`对应polygon方式。感谢用户[buptlihang](https://github.com/buptlihang)[pr](https://github.com/PaddlePaddle/PaddleOCR/pull/2574)帮助解决该问题🌹。
#### Q3.1.63: 请问端到端的pgnet相比于DB+CRNN在准确率上有优势吗?或者是pgnet最擅长的场景是什么场景呢?
**A**: pgnet是端到端算法,检测识别一步到位,不用分开训练2个模型,也支持弯曲文本的识别,但是在中文上的效果还没有充分验证;db+crnn的验证更充分,应用相对成熟,常规非弯曲的文本都能解的不错。
#### Q3.1.64: config yml文件中的ratio_list参数的作用是什么?
**A**: 在动态图中,ratio_list在有多个数据源的情况下使用,ratio_list中的每个值是每个epoch从对应数据源采样数据的比例。如ratio_list=[0.3,0.2],label_file_list=['data1','data2'],代表每个epoch的训练数据包含data1 30%的数据,和data2里 20%的数据,ratio_list中数值的和不需要等于1。ratio_list和label_file_list的长度必须一致。
静态图检测数据采样的逻辑与动态图不同,但基本不影响训练精度。
在静态图中,使用 检测 dataloader读取数据时,会先设置每个epoch的数据量,比如这里设置为1000,ratio_list中的值表示在1000中的占比,比如ratio_list是[0.3, 0.7],则表示使用两个数据源,每个epoch从第一个数据源采样1000*0.3=300张图,从第二个数据源采样700张图。ratio_list的值的和也不需要等于1。
#### Q3.1.65: 支持动态图模型的android和ios demo什么时候上线??
**A**: 支持动态图模型的android demo已经合入dygraph分支,欢迎试用(https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/deploy/android_demo/README.md); ios demo暂时未提供动态图模型版本,可以基于静态图版本(https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/ios_demo)自行改造。
#### Q3.1.66: iaa里面添加的数据增强方式,是每张图像训练都会做增强还是随机的?如何添加一个数据增强方法?
**A**:iaa增强的训练配置参考:https://github.com/PaddlePaddle/PaddleOCR/blob/0ccc1720c252beb277b9e522a1b228eb6abffb8a/configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml#L82,
其中{ 'type': Fliplr, 'args': { 'p': 0.5 } } p是概率。新增数据增强,可以参考这个方法:https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.1/doc/doc_ch/add_new_algorithm.md#%E6%95%B0%E6%8D%AE%E5%8A%A0%E8%BD%BD%E5%92%8C%E5%A4%84%E7%90%86
#### Q3.1.67: PGNet训练中文弯曲数据集,可视化时弯曲文本无法显示。
**A**: 可能是因为安装的OpenCV里,cv2.putText不能显示中文的原因,可以尝试用Pillow来添加显示中文,需要改draw_e2e_res函数里面的代码,可以参考如下代码:
```
box = box.astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
from PIL import ImageFont, ImageDraw, Image
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
fontStyle = ImageFont.truetype(
"font/msyh.ttc", 16, encoding="utf-8")
draw.text((int(box[0, 0, 0]), int(box[0, 0, 1])), text, (0, 255, 0), font=fontStyle)
src_im= cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
```
#### Q3.1.68: 用PGNet做进行端到端训练时,数据集标注的点的个数必须都是统一一样的吗? 能不能随意标点数,只要能够按顺时针从左上角开始标这样?
**A**: 目前代码要求标注为统一的点数。
#### Q3.1.69: 怎么加速训练过程呢?
**A**:OCR模型训练过程中一般包含大量的数据增广,这些数据增广是比较耗时的,因此可以离线生成大量增广后的图像,直接送入网络进行训练,机器资源充足的情况下,也可以使用分布式训练的方法,可以参考[分布式训练教程文档](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/distributed_training.md)
#### Q3.1.70: 文字识别模型模型的输出矩阵需要进行解码才能得到识别的文本。代码中实现为preds_idx = preds.argmax(axis=2),也就是最佳路径解码法。这是一种贪心算法,是每一个时间步只将最大概率的字符作为当前时间步的预测输出,但得到的结果不一定是最好的。为什么不使用beam search这种方式进行解码呢?
**A**:实验发现,使用贪心的方法去做解码,识别精度影响不大,但是速度方面的优势比较明显,因此PaddleOCR中使用贪心算法去做识别的解码。
#### Q3.1.71: 遇到中英文识别模型不支持的字符,该如何对模型做微调?
**A**:如果希望识别中英文识别模型中不支持的字符,需要更新识别的字典,并完成微调过程。比如说如果希望模型能够进一步识别罗马数字,可以按照以下步骤完成模型微调过程。
1. 准备中英文识别数据以及罗马数字的识别数据,用于训练,同时保证罗马数字和中英文识别数字的效果;
2. 修改默认的字典文件,在后面添加罗马数字的字符;
3. 下载PaddleOCR提供的预训练模型,配置预训练模型和数据的路径,开始训练。
#### Q3.1.72: 文字识别主要有CRNN和Attention两种方式,但是在我们的说明文档中,CRNN有对应的论文,但是Attention没看到,这个具体在哪里呢?
**A**:文字识别主要有CTC和Attention两种方式,基于CTC的算法有CRNN、Rosetta、StarNet,基于Attention的方法有RARE、其他的算法PaddleOCR里没有提供复现代码。论文的链接可以参考:[PaddleOCR文本识别算法教程文档](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/algorithm_overview.md#%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95)
#### Q3.1.73: 如何使用TensorRT加速PaddleOCR预测?
**A**: 目前paddle的dygraph分支已经支持了python和C++ TensorRT预测的代码,python端inference预测时把参数[--use_tensorrt=True](https://github.com/PaddlePaddle/PaddleOCR/blob/3ec57e8df9263de6fa897e33d2d91bc5d0849ef3/tools/infer/utility.py#L37)即可,
C++TensorRT预测需要使用支持TRT的预测库并在编译时打开[-DWITH_TENSORRT=ON](https://github.com/PaddlePaddle/PaddleOCR/blob/3ec57e8df9263de6fa897e33d2d91bc5d0849ef3/deploy/cpp_infer/tools/build.sh#L15)
如果想修改其他分支代码支持TensorRT预测,可以参考[PR](https://github.com/PaddlePaddle/PaddleOCR/pull/2921)
注:建议使用TensorRT大于等于6.1.0.5以上的版本。
#### Q3.1.74: ppocr检测效果不好,该如何优化?
**A**: 具体问题具体分析:
1. 如果在你的场景上检测效果不可用,首选是在你的数据上做finetune训练;
2. 如果图像过大,文字过于密集,建议不要过度压缩图像,可以尝试修改检测预处理的[resize逻辑](https://github.com/PaddlePaddle/PaddleOCR/blob/3ec57e8df9263de6fa897e33d2d91bc5d0849ef3/tools/infer/predict_det.py#L42),防止图像被过度压缩;
3. 检测框大小过于紧贴文字或检测框过大,可以调整[db_unclip_ratio](https://github.com/PaddlePaddle/PaddleOCR/blob/3ec57e8df9263de6fa897e33d2d91bc5d0849ef3/tools/infer/utility.py#L51)这个参数,加大参数可以扩大检测框,减小参数可以减小检测框大小;
4. 检测框存在很多漏检问题,可以减小DB检测后处理的阈值参数[det_db_box_thresh](https://github.com/PaddlePaddle/PaddleOCR/blob/3ec57e8df9263de6fa897e33d2d91bc5d0849ef3/tools/infer/utility.py#L50),防止一些检测框被过滤掉,也可以尝试设置[det_db_score_mode](https://github.com/PaddlePaddle/PaddleOCR/blob/3ec57e8df9263de6fa897e33d2d91bc5d0849ef3/tools/infer/utility.py#L54)为'slow';
5. 其他方法可以选择[use_dilation](https://github.com/PaddlePaddle/PaddleOCR/blob/3ec57e8df9263de6fa897e33d2d91bc5d0849ef3/tools/infer/utility.py#L53)为True,对检测输出的feature map做膨胀处理,一般情况下,会有效果改善;
#### Q3.1.75: lite预测库和nb模型版本不匹配,该如何解决?
**A**: 如果可以正常预测就不用管,如果这个问题导致无法正常预测,可以尝试使用同一个commit的Paddle Lite代码编译预测库和opt文件,可以参考[移动端部署教程](https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.1/deploy/lite/readme.md)
#### Q3.1.76: 'SystemError: (Fatal) Blocking queue is killed because the data reader raises an exception.' 遇到这个错如何处理?
这个报错说明dataloader的时候报错了,如果是还未开始训练就报错,需要检查下数据和标签格式是不是对的,ppocr的数据标签格式为
```
" 图像文件名 json.dumps编码的图像标注信息"
ch4_test_images/img_61.jpg [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}]
```
提供的标注文件格式如上,中间用"\t"分隔,不是四个空格分隔。
如果是训练期间报错了,需要检查下是不是遇到了异常数据,或者是共享内存不足导致了这个问题,可以使用tools/train.py中的test_reader进行调试,
linux系统共享内存位于/dev/shm目录下,如果内存不足,可以清理/dev/shm目录, 另外,如果是使用docker,在创建镜像时,可通过设置参数--shm_size=8G 设置较大的共享内存。
#### Q3.1.77: 使用mkldnn加速预测时遇到 'Please compile with MKLDNN first to use MKLDNN'
**A**: 报错提示当前环境没有mkldnn,建议检查下当前CPU是否支持mlkdnn(MAC上是无法用mkldnn);另外的可能是使用的预测库不支持mkldnn,
建议从[这里](https://paddle-inference.readthedocs.io/en/latest/user_guides/download_lib.html#linux)下载支持mlkdnn的CPU预测库。
#### Q3.1.78: 在线demo支持阿拉伯语吗
**A**: 在线demo目前只支持中英文, 多语言的都需要通过whl包自行处理
#### Q3.1.79: 某个类别的样本比较少,通过增加训练的迭代次数或者是epoch,变相增加小样本的数目,这样能缓解这个问题么?
**A**: 尽量保证类别均衡, 某些类别样本少,可以通过补充合成数据的方式处理;实验证明训练集中出现频次较少的字符,识别效果会比较差,增加迭代次数不能改变样本量少的问题。
#### Q3.1.80: 想把简历上的文字识别出来后,能够把关系一一对应起来,比如姓名和它后面的名字组成一对,籍贯、邮箱、学历等等都和各自的内容关联起来,这个应该如何处理,PPOCR目前支持吗?
**A**: 这样的需求在企业应用中确实比较常见,但往往都是个性化的需求,没有非常规整统一的处理方式。常见的处理方式有如下两种:
1. 对于单一版式、或者版式差异不大的应用场景,可以基于识别场景的一些先验信息,将识别内容进行配对; 比如运用表单结构信息:常见表单"姓名"关键字的后面,往往紧跟的就是名字信息
2. 对于版式多样,或者无固定版式的场景, 需要借助于NLP中的NER技术,给识别内容中的某些字段,赋予key值
由于这部分需求和业务场景强相关,难以用一个统一的模型去处理,目前PPOCR暂不支持。 如果需要用到NER技术,可以参照Paddle团队的另一个开源套件: https://github.com/PaddlePaddle/ERNIE, 其提供的预训练模型ERNIE, 可以帮助提升NER任务的准确率。
<a name="数据集3"></a>
### 数据集
#### Q3.2.1:如何制作PaddleOCR支持的数据格式
......@@ -576,6 +881,10 @@ StyleText的用途主要是:提取style_image中的字体、背景等style信
#### Q3.2.18: PaddleOCR动态图版本如何finetune?
**A**:finetune需要将配置文件里的 Global.load_static_weights设置为false,如果没有此字段可以手动添加,然后将模型地址放到Global.pretrained_model字段下即可。
#### Q3.2.19: 如何合成手写中文数据集?
**A**: 手写数据集可以通过手写单字数据集合成得到。随机选取一定数量的单字图片和对应的label,将图片高度resize为随机的统一高度后拼接在一起,即可得到合成数据集。对于需要添加文字背景的情况,建议使用阈值化将单字图片的白色背景处理为透明背景,再与真实背景图进行合成。具体可以参考文档[手写数据集](https://github.com/PaddlePaddle/PaddleOCR/blob/a72d6f23be9979e0c103d911a9dca3e4613e8ccf/doc/doc_ch/handwritten_datasets.md)
<a name="模型训练调优3"></a>
### 模型训练调优
......@@ -725,8 +1034,52 @@ ps -axu | grep train.py | awk '{print $2}' | xargs kill -9
**A**:1.1和2.0的模型一样,微调时,垂直排列的文字需要逆时针旋转 90°后加入训练,上下颠倒的需要旋转为水平的。
#### Q3.3.30: 模型训练过程中如何得到 best_accuracy 模型?
**A**:配置文件里的eval_batch_step字段用来控制多少次iter进行一次eval,在eval完成后会自动生成 best_accuracy 模型,所以如果希望很快就能拿到best_accuracy模型,可以将eval_batch_step改小一点,如改为[10,10],这样表示第10次迭代后,以后没隔10个迭代就进行一次模型的评估。
#### Q3.3.31: Cosine学习率的更新策略是怎样的?训练过程中为什么会在一个值上停很久?
**A**: Cosine学习率的说明可以参考[这里](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/optimizer/lr/CosineAnnealingDecay_cn.html#cosineannealingdecay)
在PaddleOCR中,为了让学习率更加平缓,我们将其中的epoch调整成了iter。
学习率的更新会和总的iter数量有关。当iter比较大时,会经过较多iter才能看出学习率的值有变化。
#### Q3.3.32: 之前的CosineWarmup方法为什么不见了?
**A**: 我们对代码结构进行了调整,目前的Cosine可以覆盖原有的CosineWarmup的功能,只需要在配置文件中增加相应配置即可。
例如下面的代码,可以设置warmup为2个epoch:
```
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 2
```
#### Q3.3.33: 训练识别和检测时学习率要加上warmup,目的是什么?
**A**: Warmup机制先使学习率从一个较小的值逐步升到一个较大的值,而不是直接就使用较大的学习率,这样有助于模型的稳定收敛。在OCR检测和OCR识别中,一般会带来精度~0.5%的提升。
#### Q3.3.34: 表格识别中,如何提高单字的识别结果?
**A**: 首先需要确认一下检测模型有没有有效的检测出单个字符,如果没有的话,需要在训练集当中添加相应的单字数据集。
#### Q3.3.35: SRN训练不收敛(loss不降)或SRN训练acc一直为0。
**A**: 如果loss下降不正常,需要确认没有修改yml文件中的image_shape,默认[1, 64, 256],代码中针对这个配置写死了,修改可能会造成无法收敛。如果确认参数无误,loss正常下降,可以多迭代一段时间观察下,开始acc为0是正常的。
#### Q3.3.36: 训练starnet网络,印章数据可以和非弯曲数据一起训练吗。
**A**: 可以的,starnet里的tps模块会对印章图片进行校正,使其和非弯曲的图片一样。
#### Q3.3.37: 训练过程中,训练程序意外退出/挂起,应该如何解决?
**A**: 考虑内存,显存(使用GPU训练的话)是否不足,可在配置文件中,将训练和评估的batch size调小一些。需要注意,训练batch size调小时,学习率learning rate也要调小,一般可按等比例调整。
#### Q3.3.38: 训练程序启动后直到结束,看不到训练过程log?
**A**: 可以从以下三方面考虑:
1. 检查训练进程是否正常退出、显存占用是否释放、是否有残留进程,如果确定是训练程序卡死,可以检查环境配置,遇到环境问题建议使用docker,可以参考说明文档[安装](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/installation.md)
2. 检查数据集的数据量是否太小,可调小batch size从而增加一个epoch中的训练step数量,或在训练config文件中,将参数print_batch_step改为1,即每一个step打印一次log信息。
3. 如果使用私有数据集训练,可先用PaddleOCR提供/推荐的数据集进行训练,排查私有数据集是否存在问题。
#### Q3.3.39: 配置文件中的参数num workers是什么意思,应该如何设置?
**A**: 训练数据的读取需要硬盘IO,而硬盘IO速度远小于GPU运算速度,为了避免数据读取成为训练速度瓶颈,可以使用多进程读取数据,num workers表示数据读取的进程数量,0表示不使用多进程读取。在Linux系统下,多进程读取数据时,进程间通信需要基于共享内存,因此使用多进程读取数据时,建议设置共享内存不低于2GB,最好可以达到8GB,此时,num workers可以设置为CPU核心数。如果机器硬件配置较低,或训练进程卡死、dataloader报错,可以将num workers设置为0,即不使用多进程读取数据。
<a name="预测部署3"></a>
### 预测部署
......@@ -771,10 +1124,6 @@ ps -axu | grep train.py | awk '{print $2}' | xargs kill -9
**A**:在安卓APK上无法设置,没有暴露这个接口,如果使用的是PaddledOCR/deploy/lite/的demo,可以修改config.txt中的对应参数来设置
#### Q3.4.9:PaddleOCR模型是否可以转换成ONNX模型?
**A**:目前暂不支持转ONNX,相关工作在研发中。
#### Q3.4.10:使用opt工具对检测模型转换时报错 can not found op arguments for node conv2_b_attr
**A**:这个问题大概率是编译opt工具的Paddle-Lite不是develop分支,建议使用Paddle-Lite 的develop分支编译opt工具。
......@@ -841,7 +1190,8 @@ ps -axu | grep train.py | awk '{print $2}' | xargs kill -9
**A**:使用EAST或SAST模型进行推理预测时,需要在命令中指定参数--det_algorithm="EAST" 或 --det_algorithm="SAST",使用DB时不用指定是因为该参数默认值是"DB":https://github.com/PaddlePaddle/PaddleOCR/blob/e7a708e9fdaf413ed7a14da8e4a7b4ac0b211e42/tools/infer/utility.py#L43
#### Q3.4.25: PaddleOCR模型Python端预测和C++预测结果不一致?
正常来说,python端预测和C++预测文本是一致的,如果预测结果差异较大,
**A**:正常来说,python端预测和C++预测文本是一致的,如果预测结果差异较大,
建议首先排查diff出现在检测模型还是识别模型,或者尝试换其他模型是否有类似的问题。
其次,检查python端和C++端数据处理部分是否存在差异,建议保存环境,更新PaddleOCR代码再试下。
如果更新代码或者更新代码都没能解决,建议在PaddleOCR微信群里或者issue中抛出您的问题。
......@@ -889,3 +1239,68 @@ Paddle2ONNX支持转换的[模型列表](https://github.com/PaddlePaddle/Paddle2
#### Q3.4.34: 2.0训练出来的模型,能否在1.1版本上进行部署?
**A**:这个是不建议的,2.0训练出来的模型建议使用dygraph分支里提供的部署代码。
#### Q3.4.35: 怎么解决paddleOCR在T4卡上有越预测越慢的情况?
**A**
1. T4 GPU没有主动散热,因此在测试的时候需要在每次infer之后需要sleep 30ms,否则机器容易因为过热而降频(inference速度会变慢),温度过高也有可能会导致宕机。
2. T4在不使用的时候,也有可能会降频,因此在做benchmark的时候需要锁频,下面这两条命令可以进行锁频。
```
nvidia-smi -i 0 -pm ENABLED
nvidia-smi --lock-gpu-clocks=1590 -i 0
```
#### Q3.4.36: DB有些框太贴文本了反而去掉了一些文本的边角影响识别,这个问题有什么办法可以缓解吗?
**A**:可以把后处理的参数unclip_ratio适当调大一点。
#### Q3.4.37: 在windows上进行cpp inference的部署时,总是提示找不到`paddle_fluid.dll`和`opencv_world346.dll`,
**A**:有2种方法可以解决这个问题:
1. 将paddle预测库和opencv库的地址添加到系统环境变量中。
2. 将提示缺失的dll文件拷贝到编译产出的`ocr_system.exe`文件夹中。
#### Q3.4.38:想在Mac上部署,从哪里下载预测库呢?
**A**:Mac上的Paddle预测库可以从这里下载:[https://paddle-inference-lib.bj.bcebos.com/mac/2.0.0/cpu_avx_openblas/paddle_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/mac/2.0.0/cpu_avx_openblas/paddle_inference.tgz)
#### Q3.4.39:内网环境如何进行服务化部署呢?
**A**:仍然可以使用PaddleServing或者HubServing进行服务化部署,保证内网地址可以访问即可。
#### Q3.4.40: 使用hub_serving部署,延时较高,可能的原因是什么呀?
**A**: 首先,测试的时候第一张图延时较高,可以多测试几张然后观察后几张图的速度;其次,如果是在cpu端部署serving端模型(如backbone为ResNet34),耗时较慢,建议在cpu端部署mobile(如backbone为MobileNetV3)模型。
#### Q3.4.41: PaddleOCR支持tensorrt推理吗?
**A**: 支持的,需要在编译的时候将CMakeLists.txt文件当中,将相关代码`option(WITH_TENSORRT "Compile demo with TensorRT." OFF)`的OFF改成ON。关于服务器端部署的更多设置,可以参考[飞桨官网](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/05_inference_deployment/inference/native_infer.html)
#### Q3.4.42: 在使用PaddleLite进行预测部署时,启动预测后卡死/手机死机?
**A**: 请检查模型转换时所用PaddleLite的版本,和预测库的版本是否对齐。即PaddleLite版本为2.8,则预测库版本也要为2.8。
#### Q3.4.43: 预测时显存爆炸、内存泄漏问题?
**A**: 打开显存/内存优化开关`enable_memory_optim`可以解决该问题,相关代码已合入,[查看详情](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/tools/infer/utility.py#L153)
#### Q3.4.44: 如何多进程预测?
**A**: 近期PaddleOCR新增了[多进程预测控制参数](https://github.com/PaddlePaddle/PaddleOCR/blob/a312647be716776c1aac33ff939ae358a39e8188/tools/infer/utility.py#L103)`use_mp`表示是否使用多进程,`total_process_num`表示在使用多进程时的进程数。具体使用方式请参考[文档](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/inference.md#1-%E8%B6%85%E8%BD%BB%E9%87%8F%E4%B8%AD%E6%96%87ocr%E6%A8%A1%E5%9E%8B%E6%8E%A8%E7%90%86)
#### Q3.4.45: win下C++部署中文识别乱码的解决方法
**A**: win下编码格式不是utf8,而ppocr_keys_v1.txt的编码格式的utf8,将ppocr_keys_v1.txt 的编码从utf-8修改为 Ansi 编码格式就行了。
#### Q3.4.46: windows 3060显卡GPU模式启动 加载模型慢。
**A**: 30系列的显卡需要使用cuda11。
#### Q3.4.47: 请教如何优化检测阶段时长?
**A**: 预测单张图会慢一点,如果批量预测,第一张图比较慢,后面就快了,因为最开始一些初始化操作比较耗时。服务部署的话,访问一次后,后面再访问就不会初始化了,推理的话每次都需要初始化的。
#### Q3.4.48: paddle serving 本地启动调用失败,怎么判断是否正常工作?
**A**:没有打印出预测结果,说明启动失败。可以参考这篇文档重新配置下动态图的paddle serving:https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/deploy/pdserving/README_CN.md
#### Q3.4.49: 同一个模型,c++部署和python部署方式,出来的结果不一致,如何定位?
**A**:有如下几个Debug经验:
1. 优先对一下几个阈值参数是否一致;
2. 排查一下c++代码和python代码的预处理和后处理方式是否一致;
3. 用python在模型输入输出各保存一下二进制文件,排除inference的差异性
......@@ -2,16 +2,18 @@
PaddleOCR将一个算法分解为以下几个部分,并对各部分进行模块化处理,方便快速组合出新的算法。
* 数据加载和处理
* 网络
* 后处理
* 损失函数
* 指标评估
* 优化器
* [1. 数据加载和处理](#1)
* [2. 网络](#2)
* [3. 后处理](#3)
* [4. 损失函数](#4)
* [5. 指标评估](#5)
* [6. 优化器](#6)
下面将分别对每个部分进行介绍,并介绍如何在该部分里添加新算法所需模块。
## 数据加载和处理
<a name="1"></a>
## 1. 数据加载和处理
数据加载和处理由不同的模块(module)组成,其完成了图片的读取、数据增强和label的制作。这一部分在[ppocr/data](../../ppocr/data)下。 各个文件及文件夹作用说明如下:
......@@ -64,7 +66,9 @@ transforms:
keep_keys: [ 'image', 'label' ] # dataloader will return list in this order
```
## 网络
<a name="2"></a>
## 2. 网络
网络部分完成了网络的组网操作,PaddleOCR将网络划分为四部分,这一部分在[ppocr/modeling](../../ppocr/modeling)下。 进入网络的数据将按照顺序(transforms->backbones->
necks->heads)依次通过这四个部分。
......@@ -123,7 +127,9 @@ Architecture:
args1: args1
```
## 后处理
<a name="3"></a>
## 3. 后处理
后处理实现解码网络输出获得文本框或者识别到的文字。这一部分在[ppocr/postprocess](../../ppocr/postprocess)下。
PaddleOCR内置了DB,EAST,SAST,CRNN和Attention等算法相关的后处理模块,对于没有内置的组件可通过如下步骤添加:
......@@ -171,7 +177,9 @@ PostProcess:
args2: args2
```
## 损失函数
<a name="4"></a>
## 4. 损失函数
损失函数用于计算网络输出和label之间的距离。这一部分在[ppocr/losses](../../ppocr/losses)下。
PaddleOCR内置了DB,EAST,SAST,CRNN和Attention等算法相关的损失函数模块,对于没有内置的模块可通过如下步骤添加:
......@@ -208,7 +216,9 @@ Loss:
args2: args2
```
## 指标评估
<a name="5"></a>
## 5. 指标评估
指标评估用于计算网络在当前batch上的性能。这一部分在[ppocr/metrics](../../ppocr/metrics)下。 PaddleOCR内置了检测,分类和识别等算法相关的指标评估模块,对于没有内置的模块可通过如下步骤添加:
......@@ -262,7 +272,9 @@ Metric:
main_indicator: acc
```
## 优化器
<a name="6"></a>
## 6. 优化器
优化器用于训练网络。优化器内部还包含了网络正则化和学习率衰减模块。 这一部分在[ppocr/optimizer](../../ppocr/optimizer)下。 PaddleOCR内置了`Momentum`,`Adam`
`RMSProp`等常用的优化器模块,`Linear`,`Cosine`,`Step``Piecewise`等常用的正则化模块与`L1Decay``L2Decay`等常用的学习率衰减模块。
......
......@@ -9,11 +9,13 @@
### 1.文本检测算法
PaddleOCR开源的文本检测算法列表:
- [x] DB([paper]( https://arxiv.org/abs/1911.08947)) [2](ppocr推荐)
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))[1]
- [x] SAST([paper](https://arxiv.org/abs/1908.05498))[4]
- [x] DB([paper]( https://arxiv.org/abs/1911.08947))(ppocr推荐)
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))
- [x] SAST([paper](https://arxiv.org/abs/1908.05498))
- [x] PSENet([paper](https://arxiv.org/abs/1903.12473v2)
在ICDAR2015文本检测公开数据集上,算法效果如下:
|模型|骨干网络|precision|recall|Hmean|下载链接|
| --- | --- | --- | --- | --- | --- |
|EAST|ResNet50_vd|85.80%|86.71%|86.25%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
......@@ -21,6 +23,8 @@ PaddleOCR开源的文本检测算法列表:
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
|PSE|ResNet50_vd|85.81%|79.53%|82.55%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)|
|PSE|MobileNetV3|82.20%|70.48%|75.89%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_mv3_pse_v2.0_train.tar)|
在Total-text文本检测公开数据集上,算法效果如下:
......@@ -39,13 +43,16 @@ PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训
### 2.文本识别算法
PaddleOCR基于动态图开源的文本识别算法列表:
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7](ppocr推荐)
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10]
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11]
- [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12]
- [x] SRN([paper](https://arxiv.org/abs/2003.12294))[5]
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))(ppocr推荐)
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [x] SRN([paper](https://arxiv.org/abs/2003.12294))
- [x] NRTR([paper](https://arxiv.org/abs/1806.00926v2))
- [x] SAR([paper](https://arxiv.org/abs/1811.00751v2))
- [x] SEED([paper](https://arxiv.org/pdf/2005.10977.pdf))
参考[DTRB][3](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
参考[DTRB](https://arxiv.org/abs/1904.01906) 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
|---|---|---|---|---|
......@@ -58,6 +65,7 @@ PaddleOCR基于动态图开源的文本识别算法列表:
|RARE|MobileNetV3|82.5%|rec_mv3_tps_bilstm_att |[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)|
|RARE|Resnet34_vd|83.6%|rec_r34_vd_tps_bilstm_att |[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)|
|SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) |
|NRTR|NRTR_MTB| 84.3% | rec_mtb_nrtr | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) |
|SAR|Resnet31| 87.2% | rec_r31_sar | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) |
|SEED| Aster_Resnet | 85.2% | rec_resnet_stn_bilstm_att | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar)|
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)
## 文字角度分类
### 方法介绍
文字角度分类主要用于图片非0度的场景下,在这种场景下需要对图片里检测到的文本行进行一个转正的操作。在PaddleOCR系统内,
# 文本方向分类器
- [1.方法介绍](#方法介绍)
- [2.数据准备](#数据准备)
- [3.启动训练](#启动训练)
- [4.训练](#训练)
- [5.评估](#评估)
- [6.预测](#预测)
<a name="方法介绍"></a>
## 1. 方法介绍
文本方向分类器主要用于图片非0度的场景下,在这种场景下需要对图片里检测到的文本行进行一个转正的操作。在PaddleOCR系统内,
文字检测之后得到的文本行图片经过仿射变换之后送入识别模型,此时只需要对文字进行一个0和180度的角度分类,因此PaddleOCR内置的
文字角度分类器**只支持了0和180度的分类**。如果想支持更多角度,可以自己修改算法进行支持。
......@@ -8,7 +17,8 @@
![](../imgs_results/angle_class_example.jpg)
### 数据准备
<a name="数据准备"></a>
## 2. 数据准备
请按如下步骤设置数据集:
......@@ -59,6 +69,8 @@ train/cls/train/word_002.jpg 180
|- word_003.jpg
| ...
```
<a name="启动训练"></a>
## 3. 启动训练
### 启动训练
......@@ -88,7 +100,8 @@ PaddleOCR提供了多种数据增强方式,如果您希望在训练时加入
*由于OpenCV的兼容性问题,扰动操作暂时只支持linux*
### 训练
<a name="训练"></a>
## 4. 训练
PaddleOCR支持训练和评估交替进行, 可以在 `configs/cls/cls_mv3.yml` 中修改 `eval_batch_step` 设置评估频率,默认每1000个iter评估一次。训练过程中将会保存如下内容:
```bash
......@@ -106,7 +119,8 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/cls/cls_mv3.yml`
**注意,预测/评估时的配置文件请务必与训练一致。**
### 评估
<a name="评估"></a>
## 5. 评估
评估数据集可以通过修改`configs/cls/cls_mv3.yml`文件里的`Eval.dataset.label_file_list` 字段设置。
......@@ -116,7 +130,8 @@ export CUDA_VISIBLE_DEVICES=0
python3 tools/eval.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
### 预测
<a name="预测"></a>
## 6. 预测
* 训练引擎的预测
......
......@@ -12,40 +12,27 @@
## 评估指标
说明:
- v1.0是未添加优化策略的DB+CRNN模型,v1.1是添加多种优化策略和方向分类器的PP-OCR模型。slim_v1.1是使用裁剪或量化的模型。
- 检测输入图像的的长边尺寸是960。
- 评估耗时阶段为图像输入到结果输出的完整阶段,包括了图像的预处理和后处理。
- 评估耗时阶段为图像预测耗时,不包括图像的预处理和后处理。
- `Intel至强6148`为服务器端CPU型号,测试中使用Intel MKL-DNN 加速。
- `骁龙855`为移动端处理平台型号。
不同预测模型大小和整体识别精度对比
预测模型大小和整体识别精度对比
| 模型名称 | 整体模型<br>大小\(M\) | 检测模型<br>大小\(M\) | 方向分类器<br>模型大小\(M\) | 识别模型<br>大小\(M\) | 整体识别<br>F\-score |
|:-:|:-:|:-:|:-:|:-:|:-:|
| ch\_ppocr\_mobile\_v1\.1 | 8\.1 | 2\.6 | 0\.9 | 4\.6 | 0\.5193 |
| ch\_ppocr\_server\_v1\.1 | 155\.1 | 47\.2 | 0\.9 | 107 | 0\.5414 |
| ch\_ppocr\_mobile\_v1\.0 | 8\.6 | 4\.1 | \- | 4\.5 | 0\.393 |
| ch\_ppocr\_server\_v1\.0 | 203\.8 | 98\.5 | \- | 105\.3 | 0\.4436 |
不同预测模型在T4 GPU上预测速度对比,单位ms
| 模型名称 | 整体 | 检测 | 方向分类器 | 识别 |
|:-:|:-:|:-:|:-:|:-:|
| ch\_ppocr\_mobile\_v1\.1 | 137 | 35 | 24 | 78 |
| ch\_ppocr\_server\_v1\.1 | 204 | 39 | 25 | 140 |
| ch\_ppocr\_mobile\_v1\.0 | 117 | 41 | \- | 76 |
| ch\_ppocr\_server\_v1\.0 | 199 | 52 | \- | 147 |
| PP-OCRv2 | 11\.6 | 3\.0 | 0\.9 | 8\.6 | 0\.5224 |
| PP-OCR mobile | 8\.1 | 2\.6 | 0\.9 | 4\.6 | 0\.503 |
| PP-OCR server | 155\.1 | 47\.2 | 0\.9 | 107 | 0\.570 |
不同预测模型在CPU上预测速度对比,单位ms
| 模型名称 | 整体 | 检测 | 方向分类器 | 识别 |
|:-:|:-:|:-:|:-:|:-:|
| ch\_ppocr\_mobile\_v1\.1 | 421 | 164 | 51 | 206 |
| ch\_ppocr\_mobile\_v1\.0 | 398 | 219 | \- | 179 |
预测模型在CPU和GPU上的速度对比,单位ms
裁剪量化模型和原始模型模型大小,整体识别精度和在SD 855上预测速度对比
| 模型名称 | CPU | T4 GPU |
|:-:|:-:|:-:|
| PP-OCRv2 | 330 | 111 |
| PP-OCR mobile | 356 | 11 6|
| PP-OCR server | 1056 | 200 |
| 模型名称 | 整体模型<br>大小\(M\) | 检测模型<br>大小\(M\) | 方向分类器<br>模型大小\(M\) | 识别模型<br>大小\(M\) | 整体识别<br>F\-score | SD 855<br>\(ms\) |
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| ch\_ppocr\_mobile\_v1\.1 | 8\.1 | 2\.6 | 0\.9 | 4\.6 | 0\.5193 | 306 |
| ch\_ppocr\_mobile\_slim\_v1\.1 | 3\.5 | 1\.4 | 0\.5 | 1\.6 | 0\.521 | 268 |
更多 PP-OCR 系列模型的预测指标可以参考[PP-OCR Benchmark](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/benchmark.md)
## 可选参数列表
# 配置文件内容与生成
* [1. 可选参数列表](#1)
* [2. 配置文件参数介绍](#2)
* [3. 多语言配置文件生成](#3)
<a name="1"></a>
## 1. 可选参数列表
以下列表可以通过`--help`查看
......@@ -7,8 +15,9 @@
| -c | ALL | 指定配置文件 | None | **配置模块说明请参考 参数介绍** |
| -o | ALL | 设置配置文件里的参数内容 | None | 使用-o配置相较于-c选择的配置文件具有更高的优先级。例如:`-o Global.use_gpu=false` |
<a name="2"></a>
## 配置文件参数介绍
## 2. 配置文件参数介绍
`rec_chinese_lite_train_v2.0.yml ` 为例
### Global
......@@ -28,10 +37,9 @@
| checkpoints | 加载模型参数路径 | None | 用于中断后加载参数继续训练 |
| use_visualdl | 设置是否启用visualdl进行可视化log展示 | False | [教程地址](https://www.paddlepaddle.org.cn/paddle/visualdl) |
| infer_img | 设置预测图像路径或文件夹路径 | ./infer_img | \|
| character_dict_path | 设置字典路径 | ./ppocr/utils/ppocr_keys_v1.txt | \ |
| character_dict_path | 设置字典路径 | ./ppocr/utils/ppocr_keys_v1.txt | 如果为空,则默认使用小写字母+数字作为字典 |
| max_text_length | 设置文本最大长度 | 25 | \ |
| character_type | 设置字符类型 | ch | en/ch, en时将使用默认dict,ch时使用自定义dict|
| use_space_char | 设置是否识别空格 | True | 仅在 character_type=ch 时支持空格 |
| use_space_char | 设置是否识别空格 | True | |
| label_list | 设置方向分类器支持的角度 | ['0','180'] | 仅在方向分类器中生效 |
| save_res_path | 设置检测模型的结果保存地址 | ./output/det_db/predicts_db.txt | 仅在检测模型中生效 |
......@@ -52,7 +60,7 @@
### Architecture ([ppocr/modeling](../../ppocr/modeling))
ppocr中,网络被划分为Transform,Backbone,Neck和Head四个阶段
PaddleOCR中,网络被划分为Transform,Backbone,Neck和Head四个阶段
| 字段 | 用途 | 默认值 | 备注 |
| :---------------------: | :---------------------: | :--------------: | :--------------------: |
......@@ -121,3 +129,98 @@
| batch_size_per_card | 训练时单卡batch size | 256 | \ |
| drop_last | 是否丢弃因数据集样本数不能被 batch_size 整除而产生的最后一个不完整的mini-batch | True | \ |
| num_workers | 用于加载数据的子进程个数,若为0即为不开启子进程,在主进程中进行数据加载 | 8 | \ |
<a name="3"></a>
## 3. 多语言配置文件生成
PaddleOCR目前已支持80种(除中文外)语种识别,`configs/rec/multi_languages` 路径下提供了一个多语言的配置文件模版: [rec_multi_language_lite_train.yml](../../configs/rec/multi_language/rec_multi_language_lite_train.yml)
您有两种方式创建所需的配置文件:
1. 通过脚本自动生成
[generate_multi_language_configs.py](../../configs/rec/multi_language/generate_multi_language_configs.py) 可以帮助您生成多语言模型的配置文件
- 以意大利语为例,如果您的数据是按如下格式准备的:
```
|-train_data
|- it_train.txt # 训练集标签
|- it_val.txt # 验证集标签
|- data
|- word_001.jpg
|- word_002.jpg
|- word_003.jpg
| ...
```
可以使用默认参数,生成配置文件:
```bash
# 该代码需要在指定目录运行
cd PaddleOCR/configs/rec/multi_language/
# 通过-l或者--language参数设置需要生成的语种的配置文件,该命令会将默认参数写入配置文件
python3 generate_multi_language_configs.py -l it
```
- 如果您的数据放置在其他位置,或希望使用自己的字典,可以通过指定相关参数来生成配置文件:
```bash
# -l或者--language字段是必须的
# --train修改训练集,--val修改验证集,--data_dir修改数据集目录,--dict修改字典路径, -o修改对应默认参数
cd PaddleOCR/configs/rec/multi_language/
python3 generate_multi_language_configs.py -l it \ # 语种
--train {path/of/train_label.txt} \ # 训练标签文件的路径
--val {path/of/val_label.txt} \ # 验证集标签文件的路径
--data_dir {train_data/path} \ # 训练数据的根目录
--dict {path/of/dict} \ # 字典文件路径
-o Global.use_gpu=False # 是否使用gpu
...
```
意大利文由拉丁字母组成,因此执行完命令后会得到名为 rec_latin_lite_train.yml 的配置文件。
2. 手动修改配置文件
您也可以手动修改模版中的以下几个字段得到配置文件:
```
Global:
use_gpu: True
epoch_num: 500
...
character_dict_path: {path/of/dict} # 字典文件所在路径
Train:
dataset:
name: SimpleDataSet
data_dir: train_data/ # 数据存放根目录
label_file_list: ["./train_data/train_list.txt"] # 训练集label路径
...
Eval:
dataset:
name: SimpleDataSet
data_dir: train_data/ # 数据存放根目录
label_file_list: ["./train_data/val_list.txt"] # 验证集label路径
...
```
目前PaddleOCR支持的多语言算法有:
| 配置文件 | 算法名称 | backbone | trans | seq | pred | language |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: |
| rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 中文繁体 |
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 英语(区分大小写) |
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 法语 |
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 德语 |
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 日语 |
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 韩语 |
| rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 拉丁字母 |
| rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 阿拉伯字母 |
| rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 斯拉夫字母 |
| rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 梵文字母 |
更多支持语种请参考: [多语言模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/multi_languages.md#%E8%AF%AD%E7%A7%8D%E7%BC%A9%E5%86%99)
# 文字检测
本节以icdar2015数据集为例,介绍PaddleOCR中检测模型的训练、评估与测试。
# 目录
- [1. 文字检测](#1-----)
* [1.1 数据准备](#11-----)
* [1.2 下载预训练模型](#12--------)
* [1.3 启动训练](#13-----)
* [1.4 断点训练](#14-----)
* [1.5 更换Backbone 训练](#15---backbone---)
* [1.6 指标评估](#16-----)
* [1.7 测试检测效果](#17-------)
* [1.8 转inference模型测试](#18--inference----)
- [2. FAQ](#2-faq)
## 数据准备
<a name="1-----"></a>
# 1. 文字检测
本节以icdar2015数据集为例,介绍PaddleOCR中检测模型训练、评估、测试的使用方式。
<a name="11-----"></a>
## 1.1 数据准备
icdar2015 TextLocalization数据集是文本检测的数据集,包含1000张训练图像和500张测试图像。
icdar2015数据集可以从[官网](https://rrc.cvc.uab.es/?ch=4&com=downloads)下载到,首次下载需注册。
注册完成登陆后,下载下图中红色框标出的部分,其中, `Training Set Images`下载的内容保存为`icdar_c4_train_imgs`文件夹下,`Test Set Images` 下载的内容保存为`ch4_test_images`文件夹下
<p align="center">
<img src="../datasets/ic15_location_download.png" align="middle" width = "700"/>
<p align="center">
将下载到的数据集解压到工作目录下,假设解压在 PaddleOCR/train_data/ 下。另外,PaddleOCR将零散的标注文件整理成单独的标注文件
将下载到的数据集解压到工作目录下,假设解压在 PaddleOCR/train_data/下。另外,PaddleOCR将零散的标注文件整理成单独的标注文件
,您可以通过wget的方式进行下载。
```shell
# 在PaddleOCR路径下
......@@ -23,7 +46,7 @@ python gen_label.py --mode="det" --root_path="/path/to/icdar_c4_train_imgs/" \
--output_label="/path/to/train_icdar2015_label.txt"
```
解压数据集和下载标注文件后,PaddleOCR/train_data/ 有两个文件夹和两个文件,分别是
解压数据集和下载标注文件后,PaddleOCR/train_data/ 有两个文件夹和两个文件,按照如下方式组织icdar2015数据集
```
/PaddleOCR/train_data/icdar2015/text_localization/
└─ icdar_c4_train_imgs/ icdar数据集的训练数据
......@@ -42,11 +65,13 @@ json.dumps编码前的图像标注信息是包含多个字典的list,字典中
如果您想在其他数据集上训练,可以按照上述形式构建标注文件。
## 快速启动训练
<a name="12--------"></a>
## 1.2 下载预训练模型
首先下载模型backbone的pretrain model,PaddleOCR的检测模型目前支持两种backbone,分别是MobileNetV3、ResNet_vd系列,
您可以根据需求使用[PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/develop/ppcls/modeling/architectures)中的模型更换backbone,
对应的backbone预训练模型可以从[PaddleClas repo 主页中找到下载链接](https://github.com/PaddlePaddle/PaddleClas#mobile-series)
您可以根据需求使用[PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/ppcls/modeling/architectures)中的模型更换backbone,
对应的backbone预训练模型可以从[PaddleClas repo 主页中找到下载链接](https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/README_cn.md#resnet%E5%8F%8A%E5%85%B6vd%E7%B3%BB%E5%88%97)
```shell
cd PaddleOCR/
# 根据backbone的不同选择下载对应的预训练模型
......@@ -56,23 +81,23 @@ wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dyg
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams
# 或,下载ResNet50_vd的预训练模型
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
```
#### 启动训练
<a name="13-----"></a>
## 1.3 启动训练
*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false*
```shell
# 单机单卡训练 mv3_db 模型
python3 tools/train.py -c configs/det/det_mv3_db.yml \
-o Global.pretrain_weights=./pretrain_models/MobileNetV3_large_x0_5_pretrained/
-o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
# 单机多卡训练,通过 --gpus 参数设置使用的GPU ID
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
-o Global.pretrain_weights=./pretrain_models/MobileNetV3_large_x0_5_pretrained/
-o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
上述指令中,通过-c 选择训练使用configs/det/det_db_mv3.yml配置文件。
有关配置文件的详细解释,请参考[链接](./config.md)
......@@ -81,46 +106,122 @@ python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Optimizer.base_lr=0.0001
```
#### 断点训练
<a name="14-----"></a>
## 1.4 断点训练
如果训练程序中断,如果希望加载训练中断的模型从而恢复训练,可以通过指定Global.checkpoints指定要加载的模型路径:
```shell
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./your/trained/model
```
**注意**`Global.checkpoints`的优先级高于`Global.pretrained_model`的优先级,即同时指定两个参数时,优先加载`Global.checkpoints`指定的模型,如果`Global.checkpoints`指定的模型路径有误,会加载`Global.pretrained_model`指定的模型。
<a name="15---backbone---"></a>
## 1.5 更换Backbone 训练
PaddleOCR将网络划分为四部分,分别在[ppocr/modeling](../../ppocr/modeling)下。 进入网络的数据将按照顺序(transforms->backbones->
necks->heads)依次通过这四个部分。
```bash
├── architectures # 网络的组网代码
├── transforms # 网络的图像变换模块
├── backbones # 网络的特征提取模块
├── necks # 网络的特征增强模块
└── heads # 网络的输出模块
```
如果要更换的Backbone 在PaddleOCR中有对应实现,直接修改配置yml文件中`Backbone`部分的参数即可。
如果要使用新的Backbone,更换backbones的例子如下:
1.[ppocr/modeling/backbones](../../ppocr/modeling/backbones) 文件夹下新建文件,如my_backbone.py。
2. 在 my_backbone.py 文件内添加相关代码,示例代码如下:
```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class MyBackbone(nn.Layer):
def __init__(self, *args, **kwargs):
super(MyBackbone, self).__init__()
# your init code
self.conv = nn.xxxx
def forward(self, inputs):
# your network forward
y = self.conv(inputs)
return y
```
**注意**`Global.checkpoints`的优先级高于`Global.pretrain_weights`的优先级,即同时指定两个参数时,优先加载`Global.checkpoints`指定的模型,如果`Global.checkpoints`指定的模型路径有误,会加载`Global.pretrain_weights`指定的模型。
3.[ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py)文件内导入添加的`MyBackbone`模块,然后修改配置文件中Backbone进行配置即可使用,格式如下:
```yaml
Backbone:
name: MyBackbone
args1: args1
```
## 指标评估
**注意**:如果要更换网络的其他模块,可以参考[文档](./add_new_algorithm.md)
PaddleOCR计算三个OCR检测相关的指标,分别是:Precision、Recall、Hmean。
<a name="16-----"></a>
## 1.6 指标评估
运行如下代码,根据配置文件`det_db_mv3.yml``save_res_path`指定的测试集检测结果文件,计算评估指标
PaddleOCR计算三个OCR检测相关的指标,分别是:Precision、Recall、Hmean(F-Score)
评估时设置后处理参数`box_thresh=0.5``unclip_ratio=1.5`,使用不同数据集、不同模型训练,可调整这两个参数进行优化
训练中模型参数默认保存在`Global.save_model_dir`目录下。在评估指标时,需要设置`Global.checkpoints`指向保存的参数文件。
```shell
python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.5 PostProcess.unclip_ratio=1.5
python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{path/to/weights}/best_accuracy"
```
* 注:`box_thresh``unclip_ratio`是DB后处理所需要的参数,在评估EAST模型时不需要设置
## 测试检测效果
<a name="17-------"></a>
## 1.7 测试检测效果
测试单张图像的检测效果
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"
```
测试DB模型时,调整后处理阈值
测试DB模型时,调整后处理阈值
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=2.0
```
测试文件夹下所有图像的检测效果
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy"
```
<a name="18--inference----"></a>
## 1.8 转inference模型测试
inference 模型(`paddle.jit.save`保存的模型)
一般是模型训练,把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。
训练过程中保存的模型是checkpoints模型,保存的只有模型的参数,多用于恢复训练等。
与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。
检测模型转inference 模型方式:
```shell
# 加载配置文件`det_mv3_db.yml`,从`output/det_db`目录下加载`best_accuracy`模型,inference模型保存在`./output/det_db_inference`目录下
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="./output/det_db/best_accuracy" Global.save_inference_dir="./output/det_db_inference/"
```
DB检测模型inference 模型预测:
```shell
python3 tools/infer/predict_det.py --det_algorithm="DB" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```
如果是其他检测,比如EAST模型,det_algorithm参数需要修改为EAST,默认为DB算法:
```shell
python3 tools/infer/predict_det.py --det_algorithm="EAST" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```
<a name="2"></a>
# 2. FAQ
Q1: 训练模型转inference 模型之后预测效果不一致?
**A**:此类问题出现较多,问题多是trained model预测时候的预处理、后处理参数和inference model预测的时候的预处理、后处理参数不一致导致的。以det_mv3_db.yml配置文件训练的模型为例,训练模型、inference模型预测结果不一致问题解决方式如下:
- 检查[trained model预处理](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L116),和[inference model的预测预处理](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/predict_det.py#L42)函数是否一致。算法在评估的时候,输入图像大小会影响精度,为了和论文保持一致,训练icdar15配置文件中将图像resize到[736, 1280],但是在inference model预测的时候只有一套默认参数,会考虑到预测速度问题,默认限制图像最长边为960做resize的。训练模型预处理和inference模型的预处理函数位于[ppocr/data/imaug/operators.py](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/ppocr/data/imaug/operators.py#L147)
- 检查[trained model后处理](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L51),和[inference 后处理参数](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/utility.py#L50)是否一致。
# Enhanced CTC Loss
在OCR识别中, CRNN是一种在工业界广泛使用的文字识别算法。 在训练阶段,其采用CTCLoss来计算网络损失; 在推理阶段,其采用CTCDecode来获得解码结果。虽然CRNN算法在实际业务中被证明能够获得很好的识别效果, 然而用户对识别准确率的要求却是无止境的,如何进一步提升文字识别的准确率呢? 本文以CTCLoss为切人点,分别从难例挖掘、 多任务学习、 Metric Learning 3个不同的角度探索了CTCLoss的改进融合方案,提出了EnhancedCTCLoss,其包括如下3个组成部分: Focal-CTC Loss,A-CTC Loss, C-CTC Loss。
## 1. Focal-CTC Loss
Focal Loss 出自论文《Focal Loss for Dense Object Detection》, 该loss最先提出的时候主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘。
其损失函数形式如下:
<div align="center">
<img src="./focal_loss_formula.png" width = "600" />
</div>
其中, y' 是经过激活函数的输出,取值在0-1之间。其在原始的交叉熵损失的基础上加了一个调制系数(1 – y’)^ &gamma;和平衡因子&alpha;。 当&alpha; = 1,y=1时,其损失函数与交叉熵损失的对比如下图所示:
<div align="center">
<img src="./focal_loss_image.png" width = "600" />
</div>
从上图可以看到, 当&gamma;> 0时,调整系数(1-y’)^&gamma; 赋予易分类样本损失一个更小的权重,使得网络更关注于困难的、错分的样本。 调整因子&gamma;用于调节简单样本权重降低的速率,当&gamma;为0时即为交叉熵损失函数,当&gamma;增加时,调整因子的影响也会随之增大。实验发现&gamma;为2是最优。平衡因子&alpha;用来平衡正负样本本身的比例不均,文中&alpha;取0.25。
对于经典的CTC算法,假设某个特征序列(f<sub>1</sub>, f<sub>2</sub>, ......f<sub>t</sub>), 经过CTC解码之后结果等于label的概率为y’, 则CTC解码结果不为label的概率即为(1-y’);不难发现, CTCLoss值和y’有如下关系:
<div align="center">
<img src="./equation_ctcloss.png" width = "250" />
</div>
结合Focal Loss的思想,赋予困难样本较大的权重,简单样本较小的权重,可以使网络更加聚焦于对困难样本的挖掘,进一步提升识别的准确率,由此我们提出了Focal-CTC Loss; 其定义如下所示:
<div align="center">
<img src="./equation_focal_ctc.png" width = "500" />
</div>
实验中,&gamma;取值为2, &alpha;= 1, 具体实现见: [rec_ctc_loss.py](../../ppocr/losses/rec_ctc_loss.py)
## 2. A-CTC Loss
A-CTC Loss是CTC Loss + ACE Loss的简称。 其中ACE Loss出自论文< Aggregation Cross-Entropy for Sequence Recognition>. ACE Loss相比于CTCLoss,主要有如下两点优势:
+ ACE Loss能够解决2-D文本的识别问题; CTCLoss只能够处理1-D文本
+ ACE Loss 在时间复杂度和空间复杂度上优于CTC loss
前人总结的OCR识别算法的优劣如下图所示:
<div align="center">
<img src="./rec_algo_compare.png" width = "1000" />
</div>
虽然ACELoss确实如上图所说,可以处理2D预测,在内存占用及推理速度方面具备优势,但在实践过程中,我们发现单独使用ACE Loss, 识别效果并不如CTCLoss. 因此,我们尝试将CTCLoss和ACELoss进行结合,同时以CTCLoss为主,将ACELoss 定位为一个辅助监督loss。 这一尝试收到了效果,在我们内部的实验数据集上,相比单独使用CTCLoss,识别准确率可以提升1%左右。
A_CTC Loss定义如下:
<div align="center">
<img src="./equation_a_ctc.png" width = "300" />
</div>
实验中,λ = 0.1. ACE loss实现代码见: [ace_loss.py](../../ppocr/losses/ace_loss.py)
## 3. C-CTC Loss
C-CTC Loss是CTC Loss + Center Loss的简称。 其中Center Loss出自论文 < A Discriminative Feature Learning Approach for Deep Face Recognition>. 最早用于人脸识别任务,用于增大类间距离,减小类内距离, 是Metric Learning领域一种较早的、也比较常用的一种算法。
在中文OCR识别任务中,通过对badcase分析, 我们发现中文识别的一大难点是相似字符多,容易误识。 由此我们想到是否可以借鉴Metric Learing的想法, 增大相似字符的类间距,从而提高识别准确率。然而,MetricLearning主要用于图像识别领域,训练数据的标签为一个固定的值;而对于OCR识别来说,其本质上是一个序列识别任务,特征和label之间并不具有显式的对齐关系,因此两者如何结合依然是一个值得探索的方向。
通过尝试Arcmargin, Cosmargin等方法, 我们最终发现Centerloss 有助于进一步提升识别的准确率。C_CTC Loss定义如下:
<div align="center">
<img src="./equation_c_ctc.png" width = "300" />
</div>
实验中,我们设置λ=0.25. center_loss实现代码见: [center_loss.py](../../ppocr/losses/center_loss.py)
值得一提的是, 在C-CTC Loss中,选择随机初始化Center并不能够带来明显的提升. 我们的Center初始化方法如下:
+ 基于原始的CTCLoss, 训练得到一个网络N
+ 挑选出训练集中,识别完全正确的部分, 组成集合G
+ 将G中的每个样本送入网络,进行前向计算, 提取最后一个FC层的输入(即feature)及其经过argmax计算的结果(即index)之间的对应关系
+ 将相同index的feature进行聚合,计算平均值,得到各自字符的初始center.
以配置文件`configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml`为例, center提取命令如下所示:
```
python tools/export_center.py -c configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml -o Global.pretrained_model: "./output/rec_mobile_pp-OCRv2/best_accuracy"
```
运行完后,会在PaddleOCR主目录下生成`train_center.pkl`.
## 4. 实验
对于上述的三种方案,我们基于百度内部数据集进行了训练、评测,实验情况如下表所示:
|algorithm| Focal_CTC | A_CTC | C-CTC |
|:------| :------| ------: | :------: |
|gain| +0.3% | +0.7% | +1.7% |
基于上述实验结论,我们在PP-OCRv2中,采用了C-CTC的策略。 值得一提的是,由于PP-OCRv2 处理的是6625个中文字符的识别任务,字符集比较大,形似字较多,所以在该任务上C-CTC 方案带来的提升较大。 但如果换做其他OCR识别任务,结论可能会有所不同。大家可以尝试Focal-CTC,A-CTC, C-CTC以及组合方案EnhancedCTC,相信会带来不同程度的提升效果。
统一的融合方案见如下文件: [rec_enhanced_ctc_loss.py](../../ppocr/losses/rec_enhanced_ctc_loss.py)
# 运行环境准备
Windows和Mac用户推荐使用Anaconda搭建Python环境,Linux用户建议使用docker搭建PyThon环境。
推荐环境:
- PaddlePaddle >= 2.0.0 (2.1.2)
- python3.7
- CUDA10.1 / CUDA10.2
- CUDNN 7.6
如果对于Python环境熟悉的用户可以直接跳到第2步安装PaddlePaddle。
* [1. Python环境搭建](#1)
+ [1.1 Windows](#1.1)
+ [1.2 Mac](#1.2)
+ [1.3 Linux](#1.3)
* [2. 安装PaddlePaddle](#2)
<a name="1"></a>
## 1. Python环境搭建
<a name="1.1"></a>
### 1.1 Windows
#### 1.1.1 安装Anaconda
- 说明:使用paddlepaddle需要先安装python环境,这里我们选择python集成环境Anaconda工具包
- Anaconda是1个常用的python包管理程序
- 安装完Anaconda后,可以安装python环境,以及numpy等所需的工具包环境。
- Anaconda下载:
- 地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D
- 大部分win10电脑均为64位操作系统,选择x86_64版本;若电脑为32位操作系统,则选择x86.exe
<img src="../install/windows/Anaconda_download.png" alt="anaconda download" width="800" align="center"/>
- 下载完成后,双击安装程序进入图形界面
- 默认安装位置为C盘,建议将安装位置更改到D盘:
<img src="../install/windows/anaconda_install_folder.png" alt="install config" width="500" align="center"/>
- 勾选conda加入环境变量,忽略警告:
<img src="../install/windows/anaconda_install_env.png" alt="add conda to path" width="500" align="center"/>
#### 1.1.2 打开终端并创建conda环境
- 打开Anaconda Prompt终端:左下角Windows Start Menu -> Anaconda3 -> Anaconda Prompt启动控制台
<img src="../install/windows/anaconda_prompt.png" alt="anaconda download" width="300" align="center"/>
- 创建新的conda环境
```shell
# 在命令行输入以下命令,创建名为paddle_env的环境
# 此处为加速下载,使用清华源
conda create --name paddle_env python=3.8 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ # 这是一行命令
```
该命令会创建1个名为paddle_env、python版本为3.8的可执行环境,根据网络状态,需要花费一段时间
之后命令行中会输出提示信息,输入y并回车继续安装
<img src="../install/windows/conda_new_env.png" alt="conda create" width="700" align="center"/>
- 激活刚创建的conda环境,在命令行中输入以下命令:
```shell
# 激活paddle_env环境
conda activate paddle_env
# 查看当前python的位置
where python
```
<img src="../install/windows/conda_list_env.png" alt="create environment" width="600" align="center"/>
以上anaconda环境和python环境安装完毕
<a name="1.2"></a>
### 1.2 Mac
#### 1.2.1 安装Anaconda
- 说明:使用paddlepaddle需要先安装python环境,这里我们选择python集成环境Anaconda工具包
- Anaconda是1个常用的python包管理程序
- 安装完Anaconda后,可以安装python环境,以及numpy等所需的工具包环境
- Anaconda下载:
- 地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D
<img src="../install/mac/anaconda_start.png" alt="anaconda download" width="800" align="center"/>
- 选择最下方的`Anaconda3-2021.05-MacOSX-x86_64.pkg`下载
- 下载完成后,双击.pkg文件进入图形界面
- 按默认设置即可,安装需要花费一段时间
- 建议安装vscode或pycharm等代码编辑器
#### 1.2.2 打开终端并创建conda环境
- 打开终端
- 同时按下command键和空格键,在聚焦搜索中输入"终端",双击进入终端
- **将conda加入环境变量**
- 加入环境变量是为了让系统能识别conda命令
- 输入以下命令,在终端中打开`~/.bash_profile`
```shell
vim ~/.bash_profile
```
-`~/.bash_profile`中将conda添加为环境变量:
```shell
# 先按i进入编辑模式
# 在第一行输入:
export PATH="~/opt/anaconda3/bin:$PATH"
# 若安装时自定义了安装位置,则将~/opt/anaconda3/bin改为自定义的安装目录下的bin文件夹
```
```shell
# 修改后的~/.bash_profile文件应如下(其中xxx为用户名):
export PATH="~/opt/anaconda3/bin:$PATH"
# >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
__conda_setup="$('/Users/xxx/opt/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
eval "$__conda_setup"
else
if [ -f "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" ]; then
. "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh"
else
export PATH="/Users/xxx/opt/anaconda3/bin:$PATH"
fi
fi
unset __conda_setup
# <<< conda initialize <<<
```
- 修改完成后,先按`esc`键退出编辑模式,再输入`:wq!`并回车,以保存退出
- 验证是否能识别conda命令:
- 在终端中输入`source ~/.bash_profile`以更新环境变量
- 再在终端输入`conda info --envs`,若能显示当前有base环境,则conda已加入环境变量
- 创建新的conda环境
```shell
# 在命令行输入以下命令,创建名为paddle_env的环境
# 此处为加速下载,使用清华源
conda create --name paddle_env python=3.8 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
```
- 该命令会创建1个名为paddle_env、python版本为3.8的可执行环境,根据网络状态,需要花费一段时间
- 之后命令行中会输出提示信息,输入y并回车继续安装
- <img src="../install/mac/conda_create.png" alt="conda_create" width="600" align="center"/>
- 激活刚创建的conda环境,在命令行中输入以下命令:
```shell
# 激活paddle_env环境
conda activate paddle_env
# 查看当前python的位置
where python
```
<img src="../install/mac/conda_activate.png" alt="conda_actviate" width="600" align="center"/>
以上anaconda环境和python环境安装完毕
<a name="1.3"></a>
### 1.3 Linux
Linux用户可选择Anaconda或Docker两种方式运行。如果你熟悉Docker且需要训练PaddleOCR模型,推荐使用Docker环境,PaddleOCR的开发流程均在Docker环境下运行。如果你不熟悉Docker,也可以使用Anaconda来运行项目。
#### 1.3.1 Anaconda环境配置
- 说明:使用paddlepaddle需要先安装python环境,这里我们选择python集成环境Anaconda工具包
- Anaconda是1个常用的python包管理程序
- 安装完Anaconda后,可以安装python环境,以及numpy等所需的工具包环境
- **下载Anaconda**
- 下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D
<img src="../install/linux/anaconda_download.png" akt="anaconda download" width="800" align="center"/>
- 选择适合您操作系统的版本
- 可在终端输入`uname -m`查询系统所用的指令集
- 下载法1:本地下载,再将安装包传到linux服务器上
- 下载法2:直接使用linux命令行下载
```shell
# 首先安装wget
sudo apt-get install wget # Ubuntu
sudo yum install wget # CentOS
```
```shell
# 然后使用wget从清华源上下载
# 如要下载Anaconda3-2021.05-Linux-x86_64.sh,则下载命令如下:
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.05-Linux-x86_64.sh
# 若您要下载其他版本,需要将最后1个/后的文件名改成您希望下载的版本
```
- 安装Anaconda:
- 在命令行输入`sh Anaconda3-2021.05-Linux-x86_64.sh`
- 若您下载的是其它版本,则将该命令的文件名替换为您下载的文件名
- 按照安装提示安装即可
- 查看许可时可输入q来退出
- **将conda加入环境变量**
- 加入环境变量是为了让系统能识别conda命令,若您在安装时已将conda加入环境变量path,则可跳过本步
- 在终端中打开`~/.bashrc`
```shell
# 在终端中输入以下命令:
vim ~/.bashrc
```
- 在`~/.bashrc`中将conda添加为环境变量:
```shell
# 先按i进入编辑模式
# 在第一行输入:
export PATH="~/anaconda3/bin:$PATH"
# 若安装时自定义了安装位置,则将~/anaconda3/bin改为自定义的安装目录下的bin文件夹
```
```shell
# 修改后的~/.bash_profile文件应如下(其中xxx为用户名):
export PATH="~/opt/anaconda3/bin:$PATH"
# >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
__conda_setup="$('/Users/xxx/opt/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
eval "$__conda_setup"
else
if [ -f "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" ]; then
. "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh"
else
export PATH="/Users/xxx/opt/anaconda3/bin:$PATH"
fi
fi
unset __conda_setup
# <<< conda initialize <<<
```
- 修改完成后,先按`esc`键退出编辑模式,再输入`:wq!`并回车,以保存退出
- 验证是否能识别conda命令:
- 在终端中输入`source ~/.bash_profile`以更新环境变量
- 再在终端输入`conda info --envs`,若能显示当前有base环境,则conda已加入环境变量
- 创建新的conda环境
```shell
# 在命令行输入以下命令,创建名为paddle_env的环境
# 此处为加速下载,使用清华源
conda create --name paddle_env python=3.8 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
```
- 该命令会创建1个名为paddle_env、python版本为3.8的可执行环境,根据网络状态,需要花费一段时间
- 之后命令行中会输出提示信息,输入y并回车继续安装
<img src="../install/linux/conda_create.png" alt="conda_create" width="500" align="center"/>
- 激活刚创建的conda环境,在命令行中输入以下命令:
```shell
# 激活paddle_env环境
conda activate paddle_env
```
以上anaconda环境和python环境安装完毕
#### 1.3.2 Docker环境配置
**注意:第一次使用这个镜像,会自动下载该镜像,请耐心等待。您也可以访问[DockerHub](https://hub.docker.com/r/paddlepaddle/paddle/tags/)获取与您机器适配的镜像。**
```bash
# 切换到工作目录下
cd /home/Projects
# 首次运行需创建一个docker容器,再次运行时不需要运行当前命令
# 创建一个名字为ppocr的docker容器,并将当前目录映射到容器的/paddle目录下
#如果您希望在CPU环境下使用docker,使用docker而不是nvidia-docker创建docker
sudo docker run --name ppocr -v $PWD:/paddle --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda10.2-cudnn7 /bin/bash
#如果使用CUDA10,请运行以下命令创建容器,设置docker容器共享内存shm-size为64G,建议设置32G以上
# 如果是CUDA11+CUDNN8,推荐使用镜像registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda11.2-cudnn8
sudo nvidia-docker run --name ppocr -v $PWD:/paddle --shm-size=64G --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda10.2-cudnn7 /bin/bash
# ctrl+P+Q可退出docker 容器,重新进入docker 容器使用如下命令
sudo docker container exec -it ppocr /bin/bash
```
<a name="2"></a>
## 2. 安装PaddlePaddle
- 如果您的机器安装的是CUDA9或CUDA10,请运行以下命令安装
```bash
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
```
- 如果您的机器是CPU,请运行以下命令安装
```bash
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
```
更多的版本需求,请参照[飞桨官网安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
......@@ -273,7 +273,7 @@ python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o G
CRNN 文本识别模型推理,可以执行如下命令:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
```
![](../imgs_words_en/word_336.png)
......@@ -288,7 +288,7 @@ Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
- 训练时采用的图像分辨率不同,训练上述模型采用的图像分辨率是[3,32,100],而中文模型训练时,为了保证长文本的识别效果,训练时采用的图像分辨率是[3, 32, 320]。预测推理程序默认的的形状参数是训练中文采用的图像分辨率,即[3, 32, 320]。因此,这里推理上述英文模型时,需要通过参数rec_image_shape设置识别图像的形状。
- 字符列表,DTRB论文中实验只是针对26个小写英文本母和10个数字进行实验,总共36个字符。所有大小字符都转成了小写字符,不在上面列表的字符都忽略,认为是空格。因此这里没有输入字符字典,而是通过如下命令生成字典.因此在推理时需要设置参数rec_char_type,指定为英文"en"。
- 字符列表,DTRB论文中实验只是针对26个小写英文本母和10个数字进行实验,总共36个字符。所有大小字符都转成了小写字符,不在上面列表的字符都忽略,认为是空格。因此这里没有输入字符字典,而是通过如下命令生成字典.因此在推理时需要设置参数rec_char_dict_path,指定为英文字典"./ppocr/utils/ic15_dict.txt"。
```
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
......@@ -303,15 +303,15 @@ dict_character = list(self.character_str)
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
--rec_model_dir="./inference/srn/" \
--rec_image_shape="1, 64, 256" \
--rec_char_type="en" \
--rec_char_dict_path="./ppocr/utils/ic15_dict.txt" \
--rec_algorithm="SRN"
```
### 4. 自定义文本识别字典的推理
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径,并且设置 `rec_char_type=ch`
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
```
<a name="多语言模型的推理"></a>
......@@ -320,7 +320,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png
需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/fonts/` 路径下有默认提供的小语种字体,例如韩文识别:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
```
![](../imgs_words/korean/1.jpg)
......@@ -388,7 +388,7 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --de
下面给出基于EAST文本检测和STAR-Net文本识别执行命令:
```
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
```
执行命令后,识别结果图像如下:
......
# PP-OCR模型库快速推理
本文介绍针对PP-OCR模型库的Python推理引擎使用方法,内容依次为文本检测、文本识别、方向分类器以及三者串联在CPU、GPU上的预测方法。
- [1. 文本检测模型推理](#文本检测模型推理)
- [2. 文本识别模型推理](#文本识别模型推理)
- [2.1 超轻量中文识别模型推理](#超轻量中文识别模型推理)
- [2.2 多语言模型的推理](#多语言模型的推理)
- [3. 方向分类模型推理](#方向分类模型推理)
- [4. 文本检测、方向分类和文字识别串联推理](#文本检测、方向分类和文字识别串联推理)
<a name="文本检测模型推理"></a>
## 1. 文本检测模型推理
文本检测模型推理,默认使用DB模型的配置参数。超轻量中文检测模型推理,可以执行如下命令:
```
# 下载超轻量中文检测模型:
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tartar xf ch_ppocr_mobile_v2.0_det_infer.tarpython3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_ppocr_mobile_v2.0_det_infer/"
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
![](/Users/zhulingfeng01/OCR/PaddleOCR/doc/imgs_results/det_res_00018069.jpg)
通过参数`limit_type``det_limit_side_len`来对图片的尺寸进行限制,
`limit_type`可选参数为[`max`, `min`],
`det_limit_size_len` 为正整数,一般设置为32 的倍数,比如960。
参数默认设置为`limit_type='max', det_limit_side_len=960`。表示网络输入图像的最长边不能超过960,
如果超过这个值,会对图像做等宽比的resize操作,确保最长边为`det_limit_side_len`
设置为`limit_type='min', det_limit_side_len=960` 则表示限制图像的最短边为960。
如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以设置det_limit_side_len 为想要的值,比如1216:
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
```
如果想使用CPU进行预测,执行命令如下
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
```
<a name="文本识别模型推理"></a>
## 2. 文本识别模型推理
<a name="超轻量中文识别模型推理"></a>
### 2.1 超轻量中文识别模型推理
超轻量中文识别模型推理,可以执行如下命令:
```
# 下载超轻量中文识别模型:
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
```
![](/Users/zhulingfeng01/OCR/PaddleOCR/doc/imgs_words/ch/word_4.jpg)
执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:
```bash
Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.98458153)
```
<a name="多语言模型的推理"></a>
### 2.2 多语言模型的推理
如果您需要预测的是其他语言模型,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径, 同时为了得到正确的可视化结果,
需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/fonts/` 路径下有默认提供的小语种字体,例如韩文识别:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
```
![](/Users/zhulingfeng01/OCR/PaddleOCR/doc/imgs_words/korean/1.jpg)
执行命令后,上图的预测结果为:
``` text
Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
```
<a name="方向分类模型推理"></a>
## 3. 方向分类模型推理
方向分类模型推理,可以执行如下命令:
```
# 下载超轻量中文方向分类器模型:
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"
```
![](/Users/zhulingfeng01/OCR/PaddleOCR/doc/imgs_words/ch/word_1.jpg)
执行命令后,上面图像的预测结果(分类的方向和得分)会打印到屏幕上,示例如下:
```
Predicts of ./doc/imgs_words/ch/word_4.jpg:['0', 0.9999982]
```
<a name="文本检测、方向分类和文字识别串联推理"></a>
## 4. 文本检测、方向分类和文字识别串联推理
以超轻量中文OCR模型推理为例,在执行预测时,需要通过参数`image_dir`指定单张图像或者图像集合的路径、参数`det_model_dir`,`cls_model_dir``rec_model_dir`分别指定检测,方向分类和识别的inference模型路径。参数`use_angle_cls`用于控制是否启用方向分类模型。`use_mp`表示是否使用多进程。`total_process_num`表示在使用多进程时的进程数。可视化识别结果默认保存到 ./inference_results 文件夹里面。
```shell
# 使用方向分类器
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
# 不使用方向分类器
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false
# 使用多进程
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false --use_mp=True --total_process_num=6
```
执行命令后,识别结果图像如下:
![](/Users/zhulingfeng01/OCR/PaddleOCR/doc/imgs_results/system_res_00018069.jpg)
......@@ -39,7 +39,7 @@ PaddleOCR中集成了知识蒸馏的算法,具体地,有以下几个主要
### 2.1 识别配置文件解析
配置文件在[rec_chinese_lite_train_distillation_v2.1.yml](../../configs/rec/ch_ppocr_v2.1/rec_chinese_lite_train_distillation_v2.1.yml)
配置文件在[ch_PP-OCRv2_rec_distillation.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec_distillation.yml)
#### 2.1.1 模型结构
......@@ -246,6 +246,39 @@ Metric:
关于`DistillationMetric`更加具体的实现可以参考: [distillation_metric.py](../../ppocr/metrics/distillation_metric.py#L24)
#### 2.1.5 蒸馏模型微调
对蒸馏得到的识别蒸馏进行微调有2种方式。
(1)基于知识蒸馏的微调:这种情况比较简单,下载预训练模型,在[ch_PP-OCRv2_rec_distillation.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec_distillation.yml)中配置好预训练模型路径以及自己的数据路径,即可进行模型微调训练。
(2)微调时不使用知识蒸馏:这种情况,需要首先将预训练模型中的学生模型参数提取出来,具体步骤如下。
* 首先下载预训练模型并解压。
```shell
# 下面预训练模型并解压
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar
tar -xf ch_PP-OCRv2_rec_train.tar
```
* 然后使用python,对其中的学生模型参数进行提取
```python
import paddle
# 加载预训练模型
all_params = paddle.load("ch_PP-OCRv2_rec_train/best_accuracy.pdparams")
# 查看权重参数的keys
print(all_params.keys())
# 学生模型的权重提取
s_params = {key[len("Student."):]: all_params[key] for key in all_params if "Student." in key}
# 查看学生模型权重参数的keys
print(s_params.keys())
# 保存
paddle.save(s_params, "ch_PP-OCRv2_rec_train/student.pdparams")
```
转化完成之后,使用[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml),修改预训练模型的路径(为导出的`student.pdparams`模型路径)以及自己的数据路径,即可进行模型微调。
### 2.2 检测配置文件解析
* coming soon!
# PP-OCR模型与配置文件
PP-OCR模型与配置文件一章主要补充一些OCR模型的基本概念、配置文件的内容与作用以便对模型后续的参数调整和训练中拥有更好的体验。
本章包含三个部分,首先在[PP-OCR模型下载](./models_list.md)中解释PP-OCR模型的类型概念,并提供所有模型的下载链接。然后在[配置文件内容与生成](./config.md)中详细说明调整PP-OCR模型所需的参数。最后的[模型库快速使用](./inference_ppocr.md)是对第一节PP-OCR模型库使用方法的介绍,可以通过Python推理引擎快速利用丰富的模型库模型获得测试结果。
------
下面我们首先了解一些OCR相关的基本概念:
- [1. OCR 简要介绍](#1-ocr-----)
* [1.1 OCR 检测模型基本概念](#11-ocr---------)
* [1.2 OCR 识别模型基本概念](#12-ocr---------)
* [1.3 PP-OCR模型](#13-pp-ocr--)
<a name="1-ocr-----"></a>
## 1. OCR 简要介绍
本节简要介绍OCR检测模型、识别模型的基本概念,并介绍PaddleOCR的PP-OCR模型。
OCR(Optical Character Recognition,光学字符识别)目前是文字识别的统称,已不限于文档或书本文字识别,更包括识别自然场景下的文字,又可以称为STR(Scene Text Recognition)。
OCR文字识别一般包括两个部分,文本检测和文本识别;文本检测首先利用检测算法检测到图像中的文本行;然后检测到的文本行用识别算法去识别到具体文字。
<a name="11-ocr---------"></a>
### 1.1 OCR 检测模型基本概念
文本检测就是要定位图像中的文字区域,然后通常以边界框的形式将单词或文本行标记出来。传统的文字检测算法多是通过手工提取特征的方式,特点是速度快,简单场景效果好,但是面对自然场景,效果会大打折扣。当前多是采用深度学习方法来做。
基于深度学习的文本检测算法可以大致分为以下几类:
1. 基于目标检测的方法;一般是预测得到文本框后,通过NMS筛选得到最终文本框,多是四点文本框,对弯曲文本场景效果不理想。典型算法为EAST、Text Box等方法。
2. 基于分割的方法;将文本行当成分割目标,然后通过分割结果构建外接文本框,可以处理弯曲文本,对于文本交叉场景问题效果不理想。典型算法为DB、PSENet等方法。
3. 混合目标检测和分割的方法;
<a name="12-ocr---------"></a>
### 1.2 OCR 识别模型基本概念
OCR识别算法的输入数据一般是文本行,背景信息不多,文字占据主要部分,识别算法目前可以分为两类算法:
1. 基于CTC的方法;即识别算法的文字预测模块是基于CTC的,常用的算法组合为CNN+RNN+CTC。目前也有一些算法尝试在网络中加入transformer模块等等。
2. 基于Attention的方法;即识别算法的文字预测模块是基于Attention的,常用算法组合是CNN+RNN+Attention。
<a name="13-pp-ocr--"></a>
### 1.3 PP-OCR模型
PaddleOCR 中集成了很多OCR算法,文本检测算法有DB、EAST、SAST等等,文本识别算法有CRNN、RARE、StarNet、Rosetta、SRN等算法。
其中PaddleOCR针对中英文自然场景通用OCR,推出了PP-OCR系列模型,PP-OCR模型由DB+CRNN算法组成,利用海量中文数据训练加上模型调优方法,在中文场景上具备较高的文本检测识别能力。并且PaddleOCR推出了高精度超轻量PP-OCRv2模型,检测模型仅3M,识别模型仅8.5M,利用[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)的模型量化方法,可以在保持精度不降低的情况下,将检测模型压缩到0.8M,识别压缩到3M,更加适用于移动端部署场景。
## OCR模型列表(V2.0,2021年1月20日更新)
## OCR模型列表(V2.1,2021年9月6日更新)
> **说明**
> 1. 2.0版模型和[1.1版模型](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/models_list.md) 的主要区别在于动态图训练vs.静态图训练,模型性能上无明显差距。
> 2. 本文档提供的是PPOCR自研模型列表,更多基于公开数据集的算法介绍与预训练模型可以参考:[算法概览文档](./algorithm_overview.md)。
> 1. 2.1版模型相比2.0版模型,2.1的模型在模型精度上做了提升
> 2. 2.0版模型和[1.1版模型](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/models_list.md) 的主要区别在于动态图训练vs.静态图训练,模型性能上无明显差距。
> 3. 本文档提供的是PPOCR自研模型列表,更多基于公开数据集的算法介绍与预训练模型可以参考:[算法概览文档](./algorithm_overview.md)。
- [一、文本检测模型](#文本检测模型)
......@@ -32,6 +33,8 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
| --- | --- | --- | --- | --- |
|ch_PP-OCRv2_det_slim|slim量化+蒸馏版超轻量模型,支持中英文、多语种文本检测|[ch_PP-OCRv2_det_cml.yml](../../configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml)| 3M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar)|
|ch_PP-OCRv2_det|原始超轻量模型,支持中英文、多语种文本检测|[ch_PP-OCRv2_det_cml.yml](../../configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml)|3M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)|
|ch_ppocr_mobile_slim_v2.0_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| 2.6M |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar)|
|ch_ppocr_mobile_v2.0_det|原始超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
|ch_ppocr_server_v2.0_det|通用模型,支持中英文、多语种文本检测,比超轻量模型更大,但效果更好|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
......@@ -45,6 +48,8 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
| --- | --- | --- | --- | --- |
|ch_PP-OCRv2_rec_slim|slim量化版超轻量模型,支持中英文、数字识别|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)| 9M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_train.tar) |
|ch_PP-OCRv2_rec|原始超轻量模型,支持中英文、数字识别|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)|8.5M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| 6M |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|ch_ppocr_mobile_v2.0_rec|原始超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|5.2M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|ch_ppocr_server_v2.0_rec|通用模型,支持中英文、数字识别|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
......@@ -62,46 +67,6 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
<a name="多语言识别模型"></a>
#### 3. 多语言识别模型(更多语言持续更新中...)
**说明:** 新增的多语言模型的配置文件通过代码方式生成,您可以通过`--help`参数查看当前PaddleOCR支持生成哪些多语言的配置文件:
```bash
# 该代码需要在指定目录运行
cd {your/path/}PaddleOCR/configs/rec/multi_language/
python3 generate_multi_language_configs.py --help
```
下面以生成意大利语配置文件为例:
##### 1. 生成意大利语配置文件测试现有模型
如果您仅仅想用配置文件测试PaddleOCR提供的多语言模型可以通过下面命令生成默认的配置文件,使用PaddleOCR提供的小语种字典进行预测。
```bash
# 该代码需要在指定目录运行
cd {your/path/}PaddleOCR/configs/rec/multi_language/
# 通过-l或者--language参数设置需要生成的语种的配置文件,该命令会将默认参数写入配置文件
python3 generate_multi_language_configs.py -l it
```
##### 2. 生成意大利语配置文件训练自己的数据
如果您想训练自己的小语种模型,可以准备好训练集文件、验证集文件、字典文件和训练数据路径,这里假设准备的意大利语的训练集、验证集、字典和训练数据路径为:
- 训练集:{your/path/}PaddleOCR/train_data/train_list.txt
- 验证集:{your/path/}PaddleOCR/train_data/val_list.txt
- 使用PaddleOCR提供的默认字典:{your/path/}PaddleOCR/ppocr/utils/dict/it_dict.txt
- 训练数据路径:{your/path/}PaddleOCR/train_data
使用以下命令生成配置文件:
```bash
# 该代码需要在指定目录运行
cd {your/path/}PaddleOCR/configs/rec/multi_language/
# -l或者--language字段是必须的
# --train修改训练集,--val修改验证集,--data_dir修改数据集目录,-o修改对应默认参数
# --dict命令改变字典路径,示例使用默认字典路径则该参数可不填
python3 generate_multi_language_configs.py -l it \
--train train_data/train_list.txt \
--val train_data/val_list.txt \
--data_dir train_data \
-o Global.use_gpu=False
```
<a name="多语言模型与配置文件"></a>
##### 3. 多语言模型与配置文件
|模型名称|字典文件|模型简介|配置文件|推理模型大小|下载地址|
| --- | --- | --- | --- |--- | --- |
| french_mobile_v2.0_rec | ppocr/utils/dict/french_dict.txt |法文识别|[rec_french_lite_train.yml](../../configs/rec/multi_language/rec_french_lite_train.yml)|2.65M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_train.tar) |
......@@ -125,13 +90,16 @@ python3 generate_multi_language_configs.py -l it \
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
| --- | --- | --- | --- | --- |
|ch_ppocr_mobile_slim_v2.0_cls|slim量化版模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| 2.1M |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) |
|ch_ppocr_mobile_v2.0_cls|原始模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
|ch_ppocr_mobile_slim_v2.0_cls|slim量化版模型,对检测到的文本行文字角度分类|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| 2.1M |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) |
|ch_ppocr_mobile_v2.0_cls|原始分类器模型,对检测到的文本行文字角度分类|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
<a name="Paddle-Lite模型"></a>
### 四、Paddle-Lite 模型
|模型版本|模型简介|模型大小|检测模型|文本方向分类模型|识别模型|Paddle-Lite版本|
|---|---|---|---|---|---|---|
|V2.0|超轻量中文OCR 移动端模型|7.8M|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_rec_opt.nb)|v2.9|
|V2.0(slim)|超轻量中文OCR 移动端模型|3.3M|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_slim_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_slim_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_rec_slim_opt.nb)|v2.9|
|PP-OCRv2|蒸馏版超轻量中文OCR移动端模型|11M|[下载地址](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer_opt.nb)|v2.9|
|PP-OCRv2(slim)|蒸馏版超轻量中文OCR移动端模型|4.9M|[下载地址](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_slim_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_opt.nb)|v2.9|
|V2.0|ppocr_v2.0超轻量中文OCR移动端模型|7.8M|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_rec_opt.nb)|v2.9|
|V2.0(slim)|ppocr_v2.0超轻量中文OCR移动端模型|3.3M|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_slim_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_slim_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_rec_slim_opt.nb)|v2.9|
......@@ -200,9 +200,9 @@ ppocr 支持使用自己的数据进行自定义训练或finetune, 其中识别
|英文|english|en| |乌克兰文|Ukranian|uk|
|法文|french|fr| |白俄罗斯文|Belarusian|be|
|德文|german|german| |泰卢固文|Telugu |te|
|日文|japan|japan| | |阿巴扎文|Abaza |abq|
|日文|japan|japan| | 阿巴扎文 | Abaza | abq |
|韩文|korean|korean| |泰米尔文|Tamil |ta|
|中文繁体|chinese traditional |ch_tra| |南非荷兰文 |Afrikaans |af|
|中文繁体|chinese traditional |chinese_cht| |南非荷兰文 |Afrikaans |af|
|意大利文| Italian |it| |阿塞拜疆文 |Azerbaijani |az|
|西班牙文|Spanish |es| |波斯尼亚文|Bosnian|bs|
|葡萄牙文| Portuguese|pt| |捷克文|Czech|cs|
......
# PaddleOCR全景图与项目克隆
## 1. PaddleOCR全景图
PaddleOCR包含丰富的文本检测、文本识别以及端到端算法。结合实际测试与产业经验,PaddleOCR选择DB和CRNN作为基础的检测和识别模型,经过一系列优化策略提出面向产业应用的PP-OCR模型。PP-OCR模型针对通用场景,根据不同语种形成了PP-OCR模型库。基于PP-OCR的能力,PaddleOCR针对文档场景任务发布PP-Structure工具库,包含版面分析和表格识别两大任务。为了打通产业落地的全流程,PaddleOCR提供了规模化的数据生产工具和多种预测部署工具,助力开发者快速落地。
<div align="center">
<img src="../overview.png">
</div>
## 2. 项目克隆
### **2.1 克隆PaddleOCR repo代码**
```
【推荐】git clone https://github.com/PaddlePaddle/PaddleOCR
```
如果因为网络问题无法pull成功,也可选择使用码云上的托管:
```
git clone https://gitee.com/paddlepaddle/PaddleOCR
```
注:码云托管代码可能无法实时同步本github项目更新,存在3~5天延时,请优先使用推荐方式。
### **2.2 安装第三方库**
```
cd PaddleOCR
pip3 install -r requirements.txt
```
# PaddleOCR快速开始
# 中文OCR模型快速使用
## 1.环境配置
- [PaddleOCR快速开始](#paddleocr)
请先参考[快速安装](./installation.md)配置PaddleOCR运行环境。
+ [1. 安装PaddleOCR whl包](#1)
* [2. 便捷使用](#2)
+ [2.1 命令行使用](#21)
- [2.1.1 中英文模型](#211)
- [2.1.2 多语言模型](#212)
- [2.1.3 版面分析](#213)
+ [2.2 Python脚本使用](#22)
- [2.2.1 中英文与多语言使用](#221)
- [2.2.2 版面分析](#222)
*注意:也可以通过 whl 包安装使用PaddleOCR,具体参考[Paddleocr Package使用说明](./whl.md)。*
<a name="1"></a>
## 2.inference模型下载
## 1. 安装PaddleOCR whl包
* 移动端和服务器端的检测与识别模型如下,更多模型下载(包括多语言),可以参考[PP-OCR v2.0 系列模型下载](../doc_ch/models_list.md)
```bash
pip install "paddleocr>=2.0.1" # 推荐使用2.0.1+版本
```
| 模型简介 | 模型名称 |推荐场景 | 检测模型 | 方向分类器 | 识别模型 |
| ------------ | --------------- | ----------------|---- | ---------- | -------- |
| 中英文超轻量OCR模型(8.1M) | ch_ppocr_mobile_v2.0_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
| 中英文通用OCR模型(143M) | ch_ppocr_server_v2.0_xx |服务器端 |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
- 对于Windows环境用户:
直接通过pip安装的shapely库可能出现`[winRrror 126] 找不到指定模块的问题`。建议从[这里](https://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely)下载shapely安装包完成安装,
* windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下
- 使用**版面分析**功能时,运行以下命令**安装 Layout-Parser**
复制上表中的检测和识别的`inference模型`下载地址,并解压
```bash
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
```
```
mkdir inference && cd inference
# 下载检测模型并解压
wget {url/of/detection/inference_model} && tar xf {name/of/detection/inference_model/package}
# 下载识别模型并解压
wget {url/of/recognition/inference_model} && tar xf {name/of/recognition/inference_model/package}
# 下载方向分类器模型并解压
wget {url/of/classification/inference_model} && tar xf {name/of/classification/inference_model/package}
cd ..
```
以超轻量级模型为例:
<a name="2"></a>
## 2. 便捷使用
<a name="21"></a>
### 2.1 命令行使用
PaddleOCR提供了一系列测试图片,点击[这里](https://paddleocr.bj.bcebos.com/dygraph_v2.1/ppocr_img.zip)下载并解压,然后在终端中切换到相应目录
```
mkdir inference && cd inference
# 下载超轻量级中文OCR模型的检测模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# 下载超轻量级中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
# 下载超轻量级中文OCR模型的文本方向分类器模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
cd ..
cd /path/to/ppocr_img
```
解压完毕后应有如下文件结构:
如果不使用提供的测试图片,可以将下方`--image_dir`参数替换为相应的测试图片路径
<a name="211"></a>
#### 2.1.1 中英文模型
* 检测+方向分类器+识别全流程:设置方向分类器参数`--use_angle_cls true`后可对竖排文本进行识别。
```bash
paddleocr --image_dir ./imgs/11.jpg --use_angle_cls true
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
......
```
- 单独使用检测:设置`--rec``false`
```bash
paddleocr --image_dir ./imgs/11.jpg --rec false
```
结果是一个list,每个item只包含文本框
```bash
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
......
```
- 单独使用识别:设置`--det``false`
```bash
paddleocr --image_dir ./imgs_words/ch/word_1.jpg --det false
```
结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```
如需使用2.0模型,请指定参数`--version PP-OCR`,paddleocr默认使用2.1模型(`--versioin PP-OCRv2`)。更多whl包使用可参考[whl包文档](./whl.md)
<a name="212"></a>
#### 2.1.2 多语言模型
Paddleocr目前支持80个语种,可以通过修改`--lang`参数进行切换,对于英文模型,指定`--lang=en`
``` bash
paddleocr --image_dir ./imgs_en/254.jpg --lang=en
```
├── ch_ppocr_mobile_v2.0_cls_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
├── ch_ppocr_mobile_v2.0_det_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
├── ch_ppocr_mobile_v2.0_rec_infer
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
<div align="center">
<img src="../imgs_en/254.jpg" width="300" height="600">
<img src="../imgs_results/multi_lang/img_02.jpg" width="600" height="600">
</div>
结果是一个list,每个item包含了文本框,文字和识别置信度
```text
[('PHO CAPITAL', 0.95723116), [[66.0, 50.0], [327.0, 44.0], [327.0, 76.0], [67.0, 82.0]]]
[('107 State Street', 0.96311164), [[72.0, 90.0], [451.0, 84.0], [452.0, 116.0], [73.0, 121.0]]]
[('Montpelier Vermont', 0.97389287), [[69.0, 132.0], [501.0, 126.0], [501.0, 158.0], [70.0, 164.0]]]
[('8022256183', 0.99810505), [[71.0, 175.0], [363.0, 170.0], [364.0, 202.0], [72.0, 207.0]]]
[('REG 07-24-201706:59 PM', 0.93537045), [[73.0, 299.0], [653.0, 281.0], [654.0, 318.0], [74.0, 336.0]]]
[('045555', 0.99346405), [[509.0, 331.0], [651.0, 325.0], [652.0, 356.0], [511.0, 362.0]]]
[('CT1', 0.9988654), [[535.0, 367.0], [654.0, 367.0], [654.0, 406.0], [535.0, 406.0]]]
......
```
## 3.单张图像或者图像集合预测
常用的多语言简写包括
以下代码实现了文本检测、方向分类器和识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数`det_model_dir`指定检测inference模型的路径、参数`rec_model_dir`指定识别inference模型的路径、参数`use_angle_cls`指定是否使用方向分类器、参数`cls_model_dir`指定方向分类器inference模型的路径、参数`use_space_char`指定是否预测空格字符。可视化识别结果默认保存到`./inference_results`文件夹里面。
| 语种 | 缩写 | | 语种 | 缩写 | | 语种 | 缩写 |
| -------- | ----------- | ---- | -------- | ------ | ---- | -------- | ------ |
| 中文 | ch | | 法文 | fr | | 日文 | japan |
| 英文 | en | | 德文 | german | | 韩文 | korean |
| 繁体中文 | chinese_cht | | 意大利文 | it | | 俄罗斯文 | ru |
```bash
全部语种及其对应的缩写列表可查看[多语言模型教程](./multi_languages.md)
<a name="213"></a>
#### 2.1.3 版面分析
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
版面分析是指对文档图片中的文字、标题、列表、图片和表格5类区域进行划分。对于前三类区域,直接使用OCR模型完成对应区域文字检测与识别,并将结果保存在txt中。对于表格类区域,经过表格结构化处理后,表格图片转换为相同表格样式的Excel文件。图片区域会被单独裁剪成图像。
# 预测image_dir指定的图像集合
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
使用PaddleOCR的版面分析功能,需要指定`--type=structure`
# 如果想使用CPU进行预测,需设置use_gpu参数为False
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True --use_gpu=False
```bash
paddleocr --image_dir=./table/1.png --type=structure
```
- 通用中文OCR模型
- **返回结果说明**
PP-Structure的返回结果为一个dict组成的list,示例如下
```shell
[{ 'type': 'Text',
'bbox': [34, 432, 345, 462],
'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
[('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent ', 0.465441)])
}
]
```
其中各个字段说明如下
| 字段 | 说明 |
| ---- | ------------------------------------------------------------ |
| type | 图片区域的类型 |
| bbox | 图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y] |
| res | 图片区域的OCR或表格识别结果。<br>表格: 表格的HTML字符串; <br>OCR: 一个包含各个单行文字的检测坐标和识别结果的元组 |
运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名为表格在图片里的坐标。
```
/output/table/1/
└─ res.txt
└─ [454, 360, 824, 658].xlsx 表格识别结果
└─ [16, 2, 828, 305].jpg 被裁剪出的图片区域
└─ [17, 361, 404, 711].xlsx 表格识别结果
```
- **参数说明**
| 字段 | 说明 | 默认值 |
| --------------- | ---------------------------------------- | -------------------------------------------- |
| output | excel和识别结果保存的地址 | ./output/table |
| table_max_len | 表格结构模型预测时,图像的长边resize尺度 | 488 |
| table_model_dir | 表格结构模型 inference 模型地址 | None |
| table_char_type | 表格结构模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.txt |
大部分参数和paddleocr whl包保持一致,见 [whl包文档](./whl.md)
<a name="22"></a>
### 2.2 Python脚本使用
<a name="221"></a>
#### 2.2.1 中英文与多语言使用
请按照上述步骤下载相应的模型,并且更新相关的参数,示例如下:
通过Python脚本使用PaddleOCR whl包,whl包会自动下载ppocr轻量级模型作为默认模型。
* 检测+方向分类器+识别全流程
```python
from paddleocr import PaddleOCR, draw_ocr
# Paddleocr目前支持的多语言语种可以通过修改lang参数进行切换
# 例如`ch`, `en`, `fr`, `german`, `korean`, `japan`
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = './imgs/11.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
print(line)
# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_server_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_server_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
......
```
* 注意:
- 如果希望使用不支持空格的识别模型,在预测的时候需要注意:请将代码更新到最新版本,并添加参数 `--use_space_char=False`
- 如果不希望使用方向分类器,在预测的时候需要注意:请将代码更新到最新版本,并添加参数 `--use_angle_cls=False`
结果可视化
<div align="center">
<img src="../imgs_results/whl/11_det_rec.jpg" width="800">
</div>
<a name="222"></a>
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于Python预测引擎推理](./inference.md)
#### 2.2.2 版面分析
此外,文档教程中也提供了中文OCR模型的其他预测部署方式:
- [基于C++预测引擎推理](../../deploy/cpp_infer/readme.md)
- [服务部署](../../deploy/hubserving)
- [端侧部署(目前只支持静态图)](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/deploy/lite)
```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res
table_engine = PPStructure(show_log=True)
save_folder = './output/table'
img_path = './table/paper-image.jpg'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
from PIL import Image
font_path = './fonts/simfang.ttf' # PaddleOCR下提供字体包
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
## 文字识别
# 文字识别
本文提供了PaddleOCR文本识别任务的全流程指南,包括数据准备、模型训练、调优、评估、预测,各个阶段的详细说明:
- [1 数据准备](#数据准备)
- [1.1 自定义数据集](#自定义数据集)
- [1.2 数据下载](#数据下载)
- [1.3 字典](#字典)
- [1.4 支持空格](#支持空格)
- [2 启动训练](#启动训练)
- [2.1 数据增强](#数据增强)
- [2.2 训练](#训练)
- [2.3 小语种](#小语种)
- [2.2 通用模型训练](#通用模型训练)
- [2.3 多语言模型训练](#多语言模型训练)
- [3 评估](#评估)
- [4 预测](#预测)
- [4.1 训练引擎预测](#训练引擎预测)
- [5 转Inference模型测试](#Inference)
<a name="数据准备"></a>
### 1. 数据准备
## 1. 数据准备
PaddleOCR 支持两种数据格式:
- `lmdb` 用于训练以lmdb格式存储的数据集;
- `通用数据` 用于训练以文本文件存储的数据集:
- `lmdb` 用于训练以lmdb格式存储的数据集(LMDBDataSet);
- `通用数据` 用于训练以文本文件存储的数据集(SimpleDataSet);
训练数据的默认存储路径是 `PaddleOCR/train_data`,如果您的磁盘上已有数据集,只需创建软链接至数据集目录:
......@@ -36,7 +34,7 @@ mklink /d <path/to/paddle_ocr>/train_data/dataset <path/to/dataset>
```
<a name="准备数据集"></a>
#### 1.1 自定义数据集
### 1.1 自定义数据集
下面以通用数据集为例, 介绍如何准备数据集:
* 训练集
......@@ -82,13 +80,15 @@ train_data/rec/train/word_002.jpg 用科技让复杂的世界更简单
<a name="数据下载"></a>
1.2 数据下载
### 1.2 数据下载
若您本地没有数据集,可以在官网下载 [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads) 数据,用于快速验证。也可以参考[DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,下载 benchmark 所需的lmdb格式数据集。
- ICDAR2015
如果你使用的是icdar2015的公开数据集,PaddleOCR 提供了一份用于训练 icdar2015 数据集的标签文件,通过以下方式下载:
若您本地没有数据集,可以在官网下载 [ICDAR2015](http://rrc.cvc.uab.es/?ch=4&com=downloads) 数据,用于快速验证。也可以参考[DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,下载 benchmark 所需的lmdb格式数据集。
如果希望复现SRN的论文指标,需要下载离线[增广数据](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA),提取码: y3ry。增广数据是由MJSynth和SynthText做旋转和扰动得到的。数据下载完成后请解压到 {your_path}/PaddleOCR/train_data/data_lmdb_release/training/ 路径下。
如果希望复现SAR的论文指标,需要下载[SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), 提取码:627x。此外,真实数据集icdar2013, icdar2015, cocotext, IIIT5也作为训练数据的一部分。具体数据细节可以参考论文SAR。
如果你使用的是icdar2015的公开数据集,PaddleOCR 提供了一份用于训练 ICDAR2015 数据集的标签文件,通过以下方式下载:
```
# 训练集标签
......@@ -97,15 +97,25 @@ wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_t
wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
```
PaddleOCR 也提供了数据格式转换脚本,可以将官网 label 转换支持的数据格式。 数据转换工具在 `ppocr/utils/gen_label.py`, 这里以训练集为例:
PaddleOCR 也提供了数据格式转换脚本,可以将ICDAR官网 label 转换为PaddleOCR支持的数据格式。 数据转换工具在 `ppocr/utils/gen_label.py`, 这里以训练集为例:
```
# 将官网下载的标签文件转换为 rec_gt_label.txt
python gen_label.py --mode="rec" --input_path="{path/of/origin/label}" --output_label="rec_gt_label.txt"
```
数据样式格式如下,(a)为原始图片,(b)为每张图片对应的 Ground Truth 文本文件:
![](../datasets/icdar_rec.png)
- 多语言数据集
多语言模型的训练数据集均为100w的合成数据,使用了开源合成工具 [text_renderer](https://github.com/Sanster/text_renderer) ,少量的字体可以通过下面两种方式下载。
* [百度网盘](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA) 提取码:frgi
* [google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)
<a name="字典"></a>
1.3 字典
### 1.3 字典
最后需要提供一个字典({word_dict_name}.txt),使模型在训练时,可以将所有出现的字符映射为字典的索引。
......@@ -149,16 +159,29 @@ PaddleOCR内置了一部分字典,可以按需使用。
- 自定义字典
如需自定义dic文件,请在 `configs/rec/rec_icdar15_train.yml` 中添加 `character_dict_path` 字段, 指向您的字典路径。
并将 `character_type` 设置为 `ch`
<a name="支持空格"></a>
1.4 添加空格类别
### 1.4 添加空格类别
如果希望支持识别"空格"类别, 请将yml文件中的 `use_space_char` 字段设置为 `True`
<a name="启动训练"></a>
### 2. 启动训练
## 2. 启动训练
<a name="数据增强"></a>
### 2.1 数据增强
PaddleOCR提供了多种数据增强方式,默认配置文件中已经添加了数据增广。
默认的扰动方式有:颜色空间转换(cvtColor)、模糊(blur)、抖动(jitter)、噪声(Gasuss noise)、随机切割(random crop)、透视(perspective)、颜色反转(reverse)、TIA数据增广。
训练过程中每种扰动方式以40%的概率被选择,具体代码实现请参考:[rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)
*由于OpenCV的兼容性问题,扰动操作暂时只支持Linux*
<a name="通用模型训练"></a>
### 2.2 通用模型训练
PaddleOCR提供了训练脚本、评估脚本和预测脚本,本节将以 CRNN 识别模型为例:
......@@ -178,23 +201,16 @@ tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc
*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false*
```
# GPU训练 支持单卡,多卡训练,通过--gpus参数指定卡号
# GPU训练 支持单卡,多卡训练
# 训练icdar15英文数据 训练日志会自动保存为 "{save_model_dir}" 下的train.log
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml
```
<a name="数据增强"></a>
#### 2.1 数据增强
PaddleOCR提供了多种数据增强方式,如果您希望在训练时加入扰动,请在配置文件中设置 `distort: true`
默认的扰动方式有:颜色空间转换(cvtColor)、模糊(blur)、抖动(jitter)、噪声(Gasuss noise)、随机切割(random crop)、透视(perspective)、颜色反转(reverse)。
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
训练过程中每种扰动方式以50%的概率被选择,具体代码实现请参考:[img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py)
*由于OpenCV的兼容性问题,扰动操作暂时只支持Linux*
#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml
```
<a name="训练"></a>
#### 2.2 训练
PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_train.yml` 中修改 `eval_batch_step` 设置评估频率,默认每500个iter评估一次。评估过程中默认将最佳acc模型,保存为 `output/rec_CRNN/best_accuracy`
......@@ -215,6 +231,11 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t
| rec_mv3_tps_bilstm_att.yml | CRNN | Mobilenet_v3 | TPS | BiLSTM | att |
| rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att |
| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
| rec_mtb_nrtr.yml | NRTR | nrtr_mtb | None | transformer encoder | transformer decoder |
| rec_r31_sar.yml | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
| rec_resnet_stn_bilstm_att.yml | SEED | Aster_Resnet | STN | BiLSTM | att |
*其中SEED模型需要额外加载FastText训练好的[语言模型](https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz)
训练中文数据,推荐使用[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件:
......@@ -224,8 +245,6 @@ Global:
...
# 添加自定义字典,如修改字典请将路径指向新字典
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
# 修改字符类型
character_type: ch
...
# 识别空格
use_space_char: True
......@@ -282,105 +301,28 @@ Eval:
```
**注意,预测/评估时的配置文件请务必与训练一致。**
<a name="小语种"></a>
#### 2.3 小语种
<a name="多语言模型训练"></a>
### 2.3 多语言模型训练
PaddleOCR目前已支持80种(除中文外)语种识别,`configs/rec/multi_languages` 路径下提供了一个多语言的配置文件模版: [rec_multi_language_lite_train.yml](../../configs/rec/multi_language/rec_multi_language_lite_train.yml)
您有两种方式创建所需的配置文件:
1. 通过脚本自动生成
[generate_multi_language_configs.py](../../configs/rec/multi_language/generate_multi_language_configs.py) 可以帮助您生成多语言模型的配置文件
- 以意大利语为例,如果您的数据是按如下格式准备的:
```
|-train_data
|- it_train.txt # 训练集标签
|- it_val.txt # 验证集标签
|- data
|- word_001.jpg
|- word_002.jpg
|- word_003.jpg
| ...
```
可以使用默认参数,生成配置文件:
```bash
# 该代码需要在指定目录运行
cd PaddleOCR/configs/rec/multi_language/
# 通过-l或者--language参数设置需要生成的语种的配置文件,该命令会将默认参数写入配置文件
python3 generate_multi_language_configs.py -l it
```
- 如果您的数据放置在其他位置,或希望使用自己的字典,可以通过指定相关参数来生成配置文件:
```bash
# -l或者--language字段是必须的
# --train修改训练集,--val修改验证集,--data_dir修改数据集目录,--dict修改字典路径, -o修改对应默认参数
cd PaddleOCR/configs/rec/multi_language/
python3 generate_multi_language_configs.py -l it \ # 语种
--train {path/of/train_label.txt} \ # 训练标签文件的路径
--val {path/of/val_label.txt} \ # 验证集标签文件的路径
--data_dir {train_data/path} \ # 训练数据的根目录
--dict {path/of/dict} \ # 字典文件路径
-o Global.use_gpu=False # 是否使用gpu
...
```
意大利文由拉丁字母组成,因此执行完命令后会得到名为 rec_latin_lite_train.yml 的配置文件。
2. 手动修改配置文件
您也可以手动修改模版中的以下几个字段:
```
Global:
use_gpu: True
epoch_num: 500
...
character_type: it # 需要识别的语种
character_dict_path: {path/of/dict} # 字典文件所在路径
Train:
dataset:
name: SimpleDataSet
data_dir: train_data/ # 数据存放根目录
label_file_list: ["./train_data/train_list.txt"] # 训练集label路径
...
Eval:
dataset:
name: SimpleDataSet
data_dir: train_data/ # 数据存放根目录
label_file_list: ["./train_data/val_list.txt"] # 验证集label路径
...
```
目前PaddleOCR支持的多语言算法有:
| 配置文件 | 算法名称 | backbone | trans | seq | pred | language | character_type |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: | :-----: |
| rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 中文繁体 | chinese_cht|
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 英语(区分大小写) | EN |
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 法语 | french |
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 德语 | german |
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 日语 | japan |
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 韩语 | korean |
| rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 拉丁字母 | latin |
| rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 阿拉伯字母 | ar |
| rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 斯拉夫字母 | cyrillic |
| rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 梵文字母 | devanagari |
按语系划分,目前PaddleOCR支持的语种有:
| 配置文件 | 算法名称 | backbone | trans | seq | pred | language |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: |
| rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 中文繁体 |
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 英语(区分大小写) |
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 法语 |
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 德语 |
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 日语 |
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 韩语 |
| rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 拉丁字母 |
| rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 阿拉伯字母 |
| rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 斯拉夫字母 |
| rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 梵文字母 |
更多支持语种请参考: [多语言模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/multi_languages.md#%E8%AF%AD%E7%A7%8D%E7%BC%A9%E5%86%99)
多语言模型训练方式与中文模型一致,训练数据集均为100w的合成数据,少量的字体可以通过下面两种方式下载。
* [百度网盘](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA)。提取码:frgi。
* [google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)
如您希望在现有模型效果的基础上调优,请参考下列说明修改配置文件:
`rec_french_lite_train` 为例:
......@@ -416,7 +358,7 @@ Eval:
...
```
<a name="评估"></a>
### 3 评估
## 3 评估
评估数据集可以通过 `configs/rec/rec_icdar15_train.yml` 修改Eval中的 `label_file_path` 设置。
......@@ -426,14 +368,29 @@ python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec
```
<a name="预测"></a>
### 4 预测
<a name="训练引擎预测"></a>
#### 4.1 训练引擎的预测
## 4 预测
使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。
默认预测图片存储在 `infer_img` 里,通过 `-o Global.checkpoints` 指定权重:
默认预测图片存储在 `infer_img` 里,通过 `-o Global.checkpoints` 加载训练好的参数文件:
根据配置文件中设置的的 `save_model_dir``save_epoch_step` 字段,会有以下几种参数被保存下来:
```
output/rec/
├── best_accuracy.pdopt
├── best_accuracy.pdparams
├── best_accuracy.states
├── config.yml
├── iter_epoch_3.pdopt
├── iter_epoch_3.pdparams
├── iter_epoch_3.states
├── latest.pdopt
├── latest.pdparams
├── latest.states
└── train.log
```
其中 best_accuracy.* 是评估集上的最优模型;iter_epoch_x.* 是以 `save_epoch_step` 为间隔保存下来的模型;latest.* 是最后一个epoch的模型。
```
# 预测英文结果
......@@ -469,3 +426,37 @@ python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v
infer_img: doc/imgs_words/ch/word_1.jpg
result: ('韩国小馆', 0.997218)
```
<a name="Inference"></a>
## 5. 转Inference模型测试
识别模型转inference模型与检测的方式相同,如下:
```
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn/
```
**注意:**如果您是在自己的数据集上训练的模型,并且调整了中文字符的字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
转换成功后,在目录下有三个文件:
```
/inference/rec_crnn/
├── inference.pdiparams # 识别inference模型的参数文件
├── inference.pdiparams.info # 识别inference模型的参数信息,可忽略
└── inference.pdmodel # 识别inference模型的program文件
```
- 自定义模型推理
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径,并且设置 `rec_char_type=ch`
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
```
# 模型训练
本文将介绍模型训练时需掌握的基本概念,和训练时的调优方法。
同时会简单介绍PaddleOCR模型训练数据的组成部分,以及如何在垂类场景中准备数据finetune模型。
- [1. 基本概念](#基本概念)
* [1.1 学习率](#学习率)
* [1.2 正则化](#正则化)
* [1.3 评估指标](#评估指标)
- [2. 数据与垂类场景](#数据与垂类场景)
* [2.1 训练数据](#训练数据)
* [2.2 垂类场景](#垂类场景)
* [2.3 自己构建数据集](#自己构建数据集)
* [3. 常见问题](#常见问题)
<a name="基本概念"></a>
## 1. 基本概念
OCR(Optical Character Recognition,光学字符识别)是指对图像进行分析识别处理,获取文字和版面信息的过程,是典型的计算机视觉任务,
通常由文本检测和文本识别两个子任务构成。
模型调优时需要关注以下参数:
<a name="学习率"></a>
### 1.1 学习率
学习率是训练神经网络的重要超参数之一,它代表在每一次迭代中梯度向损失函数最优解移动的步长。
在PaddleOCR中提供了多种学习率更新策略,可以通过配置文件修改,例如:
```
Optimizer:
...
lr:
name: Piecewise
decay_epochs : [700, 800]
values : [0.001, 0.0001]
warmup_epoch: 5
```
Piecewise 代表分段常数衰减,在不同的学习阶段指定不同的学习率,在每段内学习率相同。
warmup_epoch 代表在前5个epoch中,学习率将逐渐从0增加到base_lr。全部策略可以参考代码[learning_rate.py](../../ppocr/optimizer/learning_rate.py)
<a name="正则化"></a>
### 1.2 正则化
正则化可以有效的避免算法过拟合,PaddleOCR中提供了L1、L2正则方法,L1 和 L2 正则化是最常用的正则化方法。L1 正则化向目标函数添加正则化项,以减少参数的绝对值总和;而 L2 正则化中,添加正则化项的目的在于减少参数平方的总和。配置方法如下:
```
Optimizer:
...
regularizer:
name: L2
factor: 2.0e-05
```
<a name="评估指标"></a>
### 1.3 评估指标
(1)检测阶段:先按照检测框和标注框的IOU评估,IOU大于某个阈值判断为检测准确。这里检测框和标注框不同于一般的通用目标检测框,是采用多边形进行表示。检测准确率:正确的检测框个数在全部检测框的占比,主要是判断检测指标。检测召回率:正确的检测框个数在全部标注框的占比,主要是判断漏检的指标。
(2)识别阶段: 字符识别准确率,即正确识别的文本行占标注的文本行数量的比例,只有整行文本识别对才算正确识别。
(3)端到端统计: 端对端召回率:准确检测并正确识别文本行在全部标注文本行的占比; 端到端准确率:准确检测并正确识别文本行在 检测到的文本行数量 的占比; 准确检测的标准是检测框与标注框的IOU大于某个阈值,正确识别的的检测框中的文本与标注的文本相同。
<a name="数据与垂类场景"></a>
## 2. 数据与垂类场景
<a name="训练数据"></a>
### 2.1 训练数据
目前开源的模型,数据集和量级如下:
- 检测:
- 英文数据集,ICDAR2015
- 中文数据集,LSVT街景数据集训练数据3w张图片
- 识别:
- 英文数据集,MJSynth和SynthText合成数据,数据量上千万。
- 中文数据集,LSVT街景数据集根据真值将图crop出来,并进行位置校准,总共30w张图像。此外基于LSVT的语料,合成数据500w。
- 小语种数据集,使用不同语料和字体,分别生成了100w合成数据集,并使用ICDAR-MLT作为验证集。
其中,公开数据集都是开源的,用户可自行搜索下载,也可参考[中文数据集](./datasets.md),合成数据暂不开源,用户可使用开源合成工具自行合成,可参考的合成工具包括[text_renderer](https://github.com/Sanster/text_renderer)[SynthText](https://github.com/ankush-me/SynthText)[TextRecognitionDataGenerator](https://github.com/Belval/TextRecognitionDataGenerator) 等。
<a name="垂类场景"></a>
### 2.2 垂类场景
PaddleOCR主要聚焦通用OCR,如果有垂类需求,您可以用PaddleOCR+垂类数据自己训练;
如果缺少带标注的数据,或者不想投入研发成本,建议直接调用开放的API,开放的API覆盖了目前比较常见的一些垂类。
<a name="自己构建数据集"></a>
### 2.3 自己构建数据集
在构建数据集时有几个经验可供参考:
(1) 训练集的数据量:
a. 检测需要的数据相对较少,在PaddleOCR模型的基础上进行Fine-tune,一般需要500张可达到不错的效果。
b. 识别分英文和中文,一般英文场景需要几十万数据可达到不错的效果,中文则需要几百万甚至更多。
(2)当训练数据量少时,可以尝试以下三种方式获取更多的数据:
a. 人工采集更多的训练数据,最直接也是最有效的方式。
b. 基于PIL和opencv基本图像处理或者变换。例如PIL中ImageFont, Image, ImageDraw三个模块将文字写到背景中,opencv的旋转仿射变换,高斯滤波等。
c. 利用数据生成算法合成数据,例如pix2pix或StyleText等算法。
<a name="常见问题"></a>
## 3. 常见问题
**Q**:训练CRNN识别时,如何选择合适的网络输入shape?
A:一般高度采用32,最长宽度的选择,有两种方法:
(1)统计训练样本图像的宽高比分布。最大宽高比的选取考虑满足80%的训练样本。
(2)统计训练样本文字数目。最长字符数目的选取考虑满足80%的训练样本。然后中文字符长宽比近似认为是1,英文认为3:1,预估一个最长宽度。
**Q**:识别训练时,训练集精度已经到达90了,但验证集精度一直在70,涨不上去怎么办?
A:训练集精度90,测试集70多的话,应该是过拟合了,有两个可尝试的方法:
(1)加入更多的增广方式或者调大增广prob的[概率](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppocr/data/imaug/rec_img_aug.py#L341),默认为0.4。
(2)调大系统的[l2 dcay值](https://github.com/PaddlePaddle/PaddleOCR/blob/a501603d54ff5513fc4fc760319472e59da25424/configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml#L47)
**Q**: 识别模型训练时,loss能正常下降,但acc一直为0
A:识别模型训练初期acc为0是正常的,多训一段时间指标就上来了。
***
具体的训练教程可点击下方链接跳转:
- [文本检测模型训练](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/detection.md)
- [文本识别模型训练](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/recognition.md)
- [文本方向分类器训练](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/angle_class.md)
\ No newline at end of file
# 更新
- 2021.9.7 发布PaddleOCR v2.3,发布[PP-OCRv2](#PP-OCRv2),CPU推理速度相比于PP-OCR server提升220%;效果相比于PP-OCR mobile 提升7%。
- 2021.8.3 发布PaddleOCR v2.2,新增文档结构分析[PP-Structure](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/ppstructure/README_ch.md)工具包,支持版面分析与表格识别(含Excel导出)。
- 2021.6.29 [FAQ](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/FAQ.md)新增5个高频问题,总数248个,每周一都会更新,欢迎大家持续关注。
- 2021.4.8 release 2.1版本,新增AAAI 2021论文[端到端识别算法PGNet](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/pgnet.md)开源,[多语言模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/multi_languages.md)支持种类增加到80+。
- 2020.12.15 更新数据合成工具[Style-Text](../../StyleText/README_ch.md),可以批量合成大量与目标场景类似的图像,在多个场景验证,效果明显提升。
- 2020.12.07 [FAQ](../../doc/doc_ch/FAQ.md)新增5个高频问题,总数124个,并且计划以后每周一都会更新,欢迎大家持续关注。
- 2020.11.25 更新半自动标注工具[PPOCRLabel](../../PPOCRLabel/README_ch.md),辅助开发者高效完成标注任务,输出格式与PP-OCR训练任务完美衔接。
......
# 效果展示
<a name="超轻量PP-OCRv2效果展示"></a>
## 超轻量PP-OCRv2效果展示
<img src="../imgs_results/PP-OCRv2/PP-OCRv2-pic001.jpg" width="800">
<img src="../imgs_results/PP-OCRv2/PP-OCRv2-pic002.jpg" width="800">
<img src="../imgs_results/PP-OCRv2/PP-OCRv2-pic003.jpg" width="800">
<a name="超轻量ppocr_server_2.0效果展示"></a>
## 通用ppocr_server_2.0 效果展示
## 通用PP-OCR server 效果展示
<div align="center">
<img src="../imgs_results/ch_ppocr_mobile_v2.0/00006737.jpg" width="800">
......@@ -10,8 +16,6 @@
<img src="../imgs_results/ch_ppocr_mobile_v2.0/00018069.jpg" width="800">
<img src="../imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
<img src="../imgs_results/ch_ppocr_mobile_v2.0/00057937.jpg" width="800">
<img src="../imgs_results/ch_ppocr_mobile_v2.0/00059985.jpg" width="800">
<img src="../imgs_results/ch_ppocr_mobile_v2.0/00111002.jpg" width="800">
<img src="../imgs_results/ch_ppocr_mobile_v2.0/00077949.jpg" width="800">
<img src="../imgs_results/ch_ppocr_mobile_v2.0/00207393.jpg" width="800">
</div>
......
......@@ -210,7 +210,7 @@ paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --use_angle_cls true
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]µ
......
```
......
......@@ -11,9 +11,10 @@ This tutorial lists the text detection algorithms and text recognition algorithm
### 1. Text Detection Algorithm
PaddleOCR open source text detection algorithms list:
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))[2]
- [x] DB([paper](https://arxiv.org/abs/1911.08947))[1]
- [x] SAST([paper](https://arxiv.org/abs/1908.05498))[4]
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))
- [x] DB([paper](https://arxiv.org/abs/1911.08947))
- [x] SAST([paper](https://arxiv.org/abs/1908.05498))
- [x] PSE([paper](https://arxiv.org/abs/1903.12473v2))
On the ICDAR2015 dataset, the text detection result is as follows:
......@@ -24,6 +25,8 @@ On the ICDAR2015 dataset, the text detection result is as follows:
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
|PSE|ResNet50_vd|85.81%|79.53%|82.55%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)|
|PSE|MobileNetV3|82.20%|70.48%|75.89%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_mv3_pse_v2.0_train.tar)|
On Total-Text dataset, the text detection result is as follows:
......@@ -41,11 +44,13 @@ For the training guide and use of PaddleOCR text detection algorithms, please re
### 2. Text Recognition Algorithm
PaddleOCR open-source text recognition algorithms list:
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7]
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10]
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11]
- [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12]
- [x] SRN([paper](https://arxiv.org/abs/2003.12294))[5]
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [x] SRN([paper](https://arxiv.org/abs/2003.12294))
- [x] NRTR([paper](https://arxiv.org/abs/1806.00926v2))
- [x] SAR([paper](https://arxiv.org/abs/1811.00751v2))
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
......@@ -60,5 +65,7 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|RARE|MobileNetV3|82.5%|rec_mv3_tps_bilstm_att |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)|
|RARE|Resnet34_vd|83.6%|rec_r34_vd_tps_bilstm_att |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)|
|SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar)|
|NRTR|NRTR_MTB| 84.3% | rec_mtb_nrtr | [Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) |
|SAR|Resnet31| 87.2% | rec_r31_sar | [Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) |
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./recognition_en.md)
## TEXT ANGLE CLASSIFICATION
# Text Direction Classification
### Method introduction
- [1. Method Introduction](#method-introduction)
- [2. Data Preparation](#data-preparation)
- [3. Training](#training)
- [4. Evaluation](#evaluation)
- [5. Prediction](#prediction)
<a name="method-introduction"></a>
## 1. Method Introduction
The angle classification is used in the scene where the image is not 0 degrees. In this scene, it is necessary to perform a correction operation on the text line detected in the picture. In the PaddleOCR system,
The text line image obtained after text detection is sent to the recognition model after affine transformation. At this time, only a 0 and 180 degree angle classification of the text is required, so the built-in PaddleOCR text angle classifier **only supports 0 and 180 degree classification**. If you want to support more angles, you can modify the algorithm yourself to support.
......@@ -9,6 +17,9 @@ Example of 0 and 180 degree data samples:
![](../imgs_results/angle_class_example.jpg)
### DATA PREPARATION
<a name="data-preparation"></a>
## 2. Data Preparation
Please organize the dataset as follows:
The default storage path for training data is `PaddleOCR/train_data/cls`, if you already have a dataset on your disk, just create a soft link to the dataset directory:
......@@ -62,8 +73,8 @@ containing all images (test) and a cls_gt_test.txt. The structure of the test se
|- word_003.jpg
| ...
```
### TRAINING
<a name="training"></a>
## 3. Training
Write the prepared txt file and image folder path into the configuration file under the `Train/Eval.dataset.label_file_list` and `Train/Eval.dataset.data_dir` fields, the absolute path of the image consists of the `Train/Eval.dataset.data_dir` field and the image name recorded in the txt file.
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts.
......@@ -107,7 +118,8 @@ If the evaluation set is large, the test will be time-consuming. It is recommend
**Note that the configuration file for prediction/evaluation must be consistent with the training.**
### EVALUATION
<a name="evaluation"></a>
## 4. Evaluation
The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/cls/cls_mv3.yml` file.
......@@ -116,6 +128,8 @@ export CUDA_VISIBLE_DEVICES=0
# GPU evaluation, Global.checkpoints is the weight to be tested
python3 tools/eval.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
<a name="prediction"></a>
## 5. Prediction
### PREDICTION
......
# BENCHMARK
# Benchmark
This document gives the performance of the series models for Chinese and English recognition.
## TEST DATA
## Test Data
We collected 300 images for different real application scenarios to evaluate the overall OCR system, including contract samples, license plates, nameplates, train tickets, test sheets, forms, certificates, street view images, business cards, digital meter, etc. The following figure shows some images of the test set.
......@@ -10,10 +10,9 @@ We collected 300 images for different real application scenarios to evaluate the
<img src="../datasets/doc.jpg" width = "1000" height = "500" />
</div>
## MEASUREMENT
## Measurement
Explanation:
- v1.0 indicates DB+CRNN models without the strategies. v1.1 indicates the PP-OCR models with the strategies and the direction classify. slim_v1.1 indicates the PP-OCR models with prunner or quantization.
- The long size of the input for the text detector is 960.
......@@ -27,30 +26,16 @@ Compares the model size and F-score:
| Model Name | Model Size <br> of the <br> Whole System\(M\) | Model Size <br>of the Text <br> Detector\(M\) | Model Size <br> of the Direction <br> Classifier\(M\) | Model Size<br>of the Text <br> Recognizer \(M\) | F\-score |
|:-:|:-:|:-:|:-:|:-:|:-:|
| ch\_ppocr\_mobile\_v1\.1 | 8\.1 | 2\.6 | 0\.9 | 4\.6 | 0\.5193 |
| ch\_ppocr\_server\_v1\.1 | 155\.1 | 47\.2 | 0\.9 | 107 | 0\.5414 |
| ch\_ppocr\_mobile\_v1\.0 | 8\.6 | 4\.1 | \- | 4\.5 | 0\.393 |
| ch\_ppocr\_server\_v1\.0 | 203\.8 | 98\.5 | \- | 105\.3 | 0\.4436 |
| PP-OCRv2 | 11\.6 | 3\.0 | 0\.9 | 8\.6 | 0\.5224 |
| PP-OCR mobile | 8\.1 | 2\.6 | 0\.9 | 4\.6 | 0\.503 |
| PP-OCR server | 155\.1 | 47\.2 | 0\.9 | 107 | 0\.570 |
Compares the time-consuming on T4 GPU (ms):
Compares the time-consuming on CPU and T4 GPU (ms):
| Model Name | Overall | Text Detector | Direction Classifier | Text Recognizer |
|:-:|:-:|:-:|:-:|:-:|
| ch\_ppocr\_mobile\_v1\.1 | 137 | 35 | 24 | 78 |
| ch\_ppocr\_server\_v1\.1 | 204 | 39 | 25 | 140 |
| ch\_ppocr\_mobile\_v1\.0 | 117 | 41 | \- | 76 |
| ch\_ppocr\_server\_v1\.0 | 199 | 52 | \- | 147 |
| Model Name | CPU | T4 GPU |
|:-:|:-:|:-:|
| PP-OCRv2 | 330 | 111 |
| PP-OCR mobile | 356 | 116|
| PP-OCR server | 1056 | 200 |
Compares the time-consuming on CPU (ms):
| Model Name | Overall | Text Detector | Direction Classifier | Text Recognizer |
|:-:|:-:|:-:|:-:|:-:|
| ch\_ppocr\_mobile\_v1\.1 | 421 | 164 | 51 | 206 |
| ch\_ppocr\_mobile\_v1\.0 | 398 | 219 | \- | 179 |
Compares the model size, F-score, the time-consuming on SD 855 of between the slim models and the original models:
| Model Name | Model Size <br> of the <br> Whole System\(M\) | Model Size <br>of the Text <br> Detector\(M\) | Model Size <br> of the Direction <br> Classifier\(M\) | Model Size<br>of the Text <br> Recognizer \(M\) | F\-score | SD 855<br>\(ms\) |
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| ch\_ppocr\_mobile\_v1\.1 | 8\.1 | 2\.6 | 0\.9 | 4\.6 | 0\.5193 | 306 |
| ch\_ppocr\_mobile\_slim\_v1\.1 | 3\.5 | 1\.4 | 0\.5 | 1\.6 | 0\.521 | 268 |
More indicators of PP-OCR series models can be referred to [PP-OCR Benchmark](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/doc/doc_en/benchmark_en.md)
## Optional parameter list
# Configuration
- [1. Optional Parameter List](#1-optional-parameter-list)
- [2. Intorduction to Global Parameters of Configuration File](#2-intorduction-to-global-parameters-of-configuration-file)
- [3. Multilingual Config File Generation](#3-multilingual-config-file-generation)
<a name="1-optional-parameter-list"></a>
## 1. Optional Parameter List
The following list can be viewed through `--help`
......@@ -7,7 +15,9 @@ The following list can be viewed through `--help`
| -c | ALL | Specify configuration file to use | None | **Please refer to the parameter introduction for configuration file usage** |
| -o | ALL | set configuration options | None | Configuration using -o has higher priority than the configuration file selected with -c. E.g: -o Global.use_gpu=false |
## INTRODUCTION TO GLOBAL PARAMETERS OF CONFIGURATION FILE
<a name="2-intorduction-to-global-parameters-of-configuration-file"></a>
## 2. Intorduction to Global Parameters of Configuration File
Take rec_chinese_lite_train_v2.0.yml as an example
### Global
......@@ -27,9 +37,8 @@ Take rec_chinese_lite_train_v2.0.yml as an example
| checkpoints | set model parameter path | None | Used to load parameters after interruption to continue training|
| use_visualdl | Set whether to enable visualdl for visual log display | False | [Tutorial](https://www.paddlepaddle.org.cn/paddle/visualdl) |
| infer_img | Set inference image path or folder path | ./infer_img | \|
| character_dict_path | Set dictionary path | ./ppocr/utils/ppocr_keys_v1.txt | \ |
| character_dict_path | Set dictionary path | ./ppocr/utils/ppocr_keys_v1.txt | If the character_dict_path is None, model can only recognize number and lower letters |
| max_text_length | Set the maximum length of text | 25 | \ |
| character_type | Set character type | ch | en/ch, the default dict will be used for en, and the custom dict will be used for ch |
| use_space_char | Set whether to recognize spaces | True | Only support in character_type=ch mode |
| label_list | Set the angle supported by the direction classifier | ['0','180'] | Only valid in angle classifier model |
| save_res_path | Set the save address of the test model results | ./output/det_db/predicts_db.txt | Only valid in the text detection model |
......@@ -51,7 +60,7 @@ Take rec_chinese_lite_train_v2.0.yml as an example
### Architecture ([ppocr/modeling](../../ppocr/modeling))
In ppocr, the network is divided into four stages: Transform, Backbone, Neck and Head
In PaddleOCR, the network is divided into four stages: Transform, Backbone, Neck and Head
| Parameter | Use | Defaults | Note |
| :---------------------: | :---------------------: | :--------------: | :--------------------: |
......@@ -120,3 +129,108 @@ In ppocr, the network is divided into four stages: Transform, Backbone, Neck and
| batch_size_per_card | Single card batch size during training | 256 | \ |
| drop_last | Whether to discard the last incomplete mini-batch because the number of samples in the data set cannot be divisible by batch_size | True | \ |
| num_workers | The number of sub-processes used to load data, if it is 0, the sub-process is not started, and the data is loaded in the main process | 8 | \ |
<a name="3-multilingual-config-file-generation"></a>
## 3. Multilingual Config File Generation
PaddleOCR currently supports 80 (except Chinese) language recognition. A multi-language configuration file template is
provided under the path `configs/rec/multi_languages`: [rec_multi_language_lite_train.yml](../../configs/rec/multi_language/rec_multi_language_lite_train.yml)
There are two ways to create the required configuration file::
1. Automatically generated by script
[generate_multi_language_configs.py](../../configs/rec/multi_language/generate_multi_language_configs.py) Can help you generate configuration files for multi-language models
- Take Italian as an example, if your data is prepared in the following format:
```
|-train_data
|- it_train.txt # train_set label
|- it_val.txt # val_set label
|- data
|- word_001.jpg
|- word_002.jpg
|- word_003.jpg
| ...
```
You can use the default parameters to generate a configuration file:
```bash
# The code needs to be run in the specified directory
cd PaddleOCR/configs/rec/multi_language/
# Set the configuration file of the language to be generated through the -l or --language parameter.
# This command will write the default parameters into the configuration file
python3 generate_multi_language_configs.py -l it
```
- If your data is placed in another location, or you want to use your own dictionary, you can generate the configuration file by specifying the relevant parameters:
```bash
# -l or --language field is required
# --train to modify the training set
# --val to modify the validation set
# --data_dir to modify the data set directory
# --dict to modify the dict path
# -o to modify the corresponding default parameters
cd PaddleOCR/configs/rec/multi_language/
python3 generate_multi_language_configs.py -l it \ # language
--train {path/of/train_label.txt} \ # path of train_label
--val {path/of/val_label.txt} \ # path of val_label
--data_dir {train_data/path} \ # root directory of training data
--dict {path/of/dict} \ # path of dict
-o Global.use_gpu=False # whether to use gpu
...
```
Italian is made up of Latin letters, so after executing the command, you will get the rec_latin_lite_train.yml.
2. Manually modify the configuration file
You can also manually modify the following fields in the template:
```
Global:
use_gpu: True
epoch_num: 500
...
character_dict_path: {path/of/dict} # path of dict
Train:
dataset:
name: SimpleDataSet
data_dir: train_data/ # root directory of training data
label_file_list: ["./train_data/train_list.txt"] # train label path
...
Eval:
dataset:
name: SimpleDataSet
data_dir: train_data/ # root directory of val data
label_file_list: ["./train_data/val_list.txt"] # val label path
...
```
Currently, the multi-language algorithms supported by PaddleOCR are:
| Configuration file | Algorithm name | backbone | trans | seq | pred | language |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: |
| rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | chinese traditional |
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | English(Case sensitive) |
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | French |
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | German |
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Japanese |
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Korean |
| rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Latin |
| rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | arabic |
| rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | cyrillic |
| rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | devanagari |
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods.
* [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA),Extraction code:frgi.
* [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)
# TEXT DETECTION
# Text Detection
This section uses the icdar2015 dataset as an example to introduce the training, evaluation, and testing of the detection model in PaddleOCR.
## DATA PREPARATION
The icdar2015 dataset can be obtained from [official website](https://rrc.cvc.uab.es/?ch=4&com=downloads). Registration is required for downloading.
- [1. Data and Weights Preparation](#1-data-and-weights-preparatio)
* [1.1 Data Preparation](#11-data-preparation)
* [1.2 Download Pretrained Model](#12-download-pretrained-model)
- [2. Training](#2-training)
* [2.1 Start Training](#21-start-training)
* [2.2 Load Trained Model and Continue Training](#22-load-trained-model-and-continue-training)
* [2.3 Training with New Backbone](#23-training-with-new-backbone)
- [3. Evaluation and Test](#3-evaluation-and-test)
* [3.1 Evaluation](#31-evaluation)
* [3.2 Test](#32-test)
- [4. Inference](#4-inference)
- [5. FAQ](#2-faq)
## 1. Data and Weights Preparation
### 1.1 Data Preparation
The icdar2015 dataset contains train set which has 1000 images obtained with wearable cameras and test set which has 500 images obtained with wearable cameras. The icdar2015 can be obtained from [official website](https://rrc.cvc.uab.es/?ch=4&com=downloads). Registration is required for downloading.
After registering and logging in, download the part marked in the red box in the figure below. And, the content downloaded by `Training Set Images` should be saved as the folder `icdar_c4_train_imgs`, and the content downloaded by `Test Set Images` is saved as the folder `ch4_test_images`
<p align="center">
<img src="../datasets/ic15_location_download.png" align="middle" width = "700"/>
<p align="center">
Decompress the downloaded dataset to the working directory, assuming it is decompressed under PaddleOCR/train_data/. In addition, PaddleOCR organizes many scattered annotation files into two separate annotation files for train and test respectively, which can be downloaded by wget:
```shell
......@@ -36,10 +59,11 @@ The `points` in the dictionary represent the coordinates (x, y) of the four poin
If you want to train PaddleOCR on other datasets, please build the annotation file according to the above format.
## TRAINING
### 1.2 Download Pretrained Model
First download the pretrained model. The detection model of PaddleOCR currently supports 3 backbones, namely MobileNetV3, ResNet18_vd and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/ppcls/modeling/architectures) to replace backbone according to your needs.
And the responding download link of backbone pretrain weights can be found in (https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/README_cn.md#resnet%E5%8F%8A%E5%85%B6vd%E7%B3%BB%E5%88%97).
First download the pretrained model. The detection model of PaddleOCR currently supports 3 backbones, namely MobileNetV3, ResNet18_vd and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/develop/ppcls/modeling/architectures) to replace backbone according to your needs.
And the responding download link of backbone pretrain weights can be found in [PaddleClas repo](https://github.com/PaddlePaddle/PaddleClas#mobile-series).
```shell
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
......@@ -49,11 +73,16 @@ wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dyg
# or, download the pre-trained model of ResNet50_vd
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
```
## 2. Training
### 2.1 Start Training
#### START TRAINING
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
```shell
python3 tools/train.py -c configs/det/det_mv3_db.yml
python3 tools/train.py -c configs/det/det_mv3_db.yml \
-o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file.
......@@ -62,16 +91,17 @@ For a detailed explanation of the configuration file, please refer to [config](.
You can also use `-o` to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001
```shell
# single GPU training
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Optimizer.base_lr=0.0001
python3 tools/train.py -c configs/det/det_mv3_db.yml -o \
Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
Optimizer.base_lr=0.0001
# multi-GPU training
# Set the GPU ID used by the '--gpus' parameter.
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml -o Optimizer.base_lr=0.0001
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
#### load trained model and continue training
### 2.2 Load Trained Model and Continue Training
If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.
For example:
......@@ -79,12 +109,64 @@ For example:
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./your/trained/model
```
**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrain_weights`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrain_weights` will be loaded.
**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrained_model`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrained_model` will be loaded.
### 2.3 Training with New Backbone
The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).
```bash
├── architectures # Code for building network
├── transforms # Image Transformation Module
├── backbones # Feature extraction module
├── necks # Feature enhancement module
└── heads # Output module
```
If the Backbone to be replaced has a corresponding implementation in PaddleOCR, you can directly modify the parameters in the `Backbone` part of the configuration yml file.
However, if you want to use a new Backbone, an example of replacing the backbones is as follows:
1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:
```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class MyBackbone(nn.Layer):
def __init__(self, *args, **kwargs):
super(MyBackbone, self).__init__()
# your init code
self.conv = nn.xxxx
def forward(self, inputs):
# your network forward
y = self.conv(inputs)
return y
```
## EVALUATION
3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.
PaddleOCR calculates three indicators for evaluating performance of OCR detection task: Precision, Recall, and Hmean.
After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:
```yaml
Backbone:
name: MyBackbone
args1: args1
```
**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).
## 3. Evaluation and Test
### 3.1 Evaluation
PaddleOCR calculates three indicators for evaluating performance of OCR detection task: Precision, Recall, and Hmean(F-Score).
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3.yml`
......@@ -95,10 +177,9 @@ The model parameters during training are saved in the `Global.save_model_dir` di
python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
```
* Note: `box_thresh` and `unclip_ratio` are parameters required for DB post-processing, and not need to be set when evaluating the EAST and SAST model.
* Note: `box_thresh` and `unclip_ratio` are parameters required for DB post-processing, and not need to be set when evaluating the EAST model.
## TEST
### 3.2 Test
Test the detection result on a single image:
```shell
......@@ -107,7 +188,7 @@ python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./
When testing the DB model, adjust the post-processing threshold:
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=2.0
```
......@@ -115,3 +196,33 @@ Test the detection result on all images in the folder:
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy"
```
## 4. Inference
The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.
Firstly, we can convert DB trained model to inference model:
```shell
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="./output/det_db/best_accuracy" Global.save_inference_dir="./output/det_db_inference/"
```
The detection inference model prediction:
```shell
python3 tools/infer/predict_det.py --det_algorithm="DB" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```
If it is other detection algorithms, such as the EAST, the det_algorithm parameter needs to be modified to EAST, and the default is the DB algorithm:
```shell
python3 tools/infer/predict_det.py --det_algorithm="EAST" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```
## 5. FAQ
Q1: The prediction results of trained model and inference model are inconsistent?
**A**: Most of the problems are caused by the inconsistency of the pre-processing and post-processing parameters during the prediction of the trained model and the pre-processing and post-processing parameters during the prediction of the inference model. Taking the model trained by the det_mv3_db.yml configuration file as an example, the solution to the problem of inconsistent prediction results between the training model and the inference model is as follows:
- Check whether the [trained model preprocessing](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L116) is consistent with the prediction [preprocessing function of the inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/predict_det.py#L42). When the algorithm is evaluated, the input image size will affect the accuracy. In order to be consistent with the paper, the image is resized to [736, 1280] in the training icdar15 configuration file, but there is only a set of default parameters when the inference model predicts, which will be considered To predict the speed problem, the longest side of the image is limited to 960 for resize by default. The preprocessing function of the training model preprocessing and the inference model is located in [ppocr/data/imaug/operators.py](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/ppocr/data/imaug/operators.py#L147)
- Check whether the [post-processing of the trained model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L51) is consistent with the [post-processing parameters of the inference](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/utility.py#L50).
# Environment Preparation
Recommended working environment:
- PaddlePaddle >= 2.0.0 (2.1.2)
- python3.7
- CUDA10.1 / CUDA10.2
- CUDNN 7.6
* [1. Python Environment Setup](#1)
+ [1.1 Windows](#1.1)
+ [1.2 Mac](#1.2)
+ [1.3 Linux](#1.3)
* [2. Install PaddlePaddle 2.0](#2)
<a name="1"></a>
## 1. Python Environment Setup
<a name="1.1"></a>
### 1.1 Windows
#### 1.1.1 Install Anaconda
- Note: To use paddlepaddle you need to install python environment first, here we choose python integrated environment Anaconda toolkit
- Anaconda is a common python package manager
- After installing Anaconda, you can install the python environment, as well as numpy and other required toolkit environment.
- Anaconda download.
- Address: https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D
- Most Win10 computers are 64-bit operating systems, choose x86_64 version; if the computer is a 32-bit operating system, choose x86.exe
<img src="../install/windows/Anaconda_download.png" alt="anaconda download" width="800" align="center "/>
- After the download is complete, double-click the installer to enter the graphical interface
- The default installation location is C drive, it is recommended to change the installation location to D drive.
<img src="../install/windows/anaconda_install_folder.png" alt="install config" width="500" align=" left"/>
- Check conda to add environment variables and ignore the warning that
<img src="../install/windows/anaconda_install_env.png" alt="add conda to path" width="500" align="center"/>
#### 1.1.2 Opening the terminal and creating the conda environment
- Open Anaconda Prompt terminal: bottom left Windows Start Menu -> Anaconda3 -> Anaconda Prompt start console
<img src="../install/windows/anaconda_prompt.png" alt="anaconda download" width="300" align="center"/>
- Create a new conda environment
```shell
# Enter the following command at the command line to create an environment named paddle_env
# Here to speed up the download, use the Tsinghua source
conda create --name paddle_env python=3.8 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ # This is a one line command
```
This command will create an executable environment named paddle_env with python version 3.8, which will take a while depending on the network status
The command line will then output a prompt, type y and enter to continue the installation
<img src="../install/windows/conda_new_env.png" alt="conda create" width="700" align="center"/>
- To activate the conda environment you just created, enter the following command at the command line.
```shell
# Activate the paddle_env environment
conda activate paddle_env
# View the current location of python
where python
```
<img src="../install/windows/conda_list_env.png" alt="create environment" width="600" align="center"/>
The above anaconda environment and python environment are installed
<a name="1.2"></a>
### 1.2 Mac
#### 1.2.1 Installing Anaconda
- Note: To use paddlepaddle you need to install the python environment first, here we choose the python integrated environment Anaconda toolkit
- Anaconda is a common python package manager
- After installing Anaconda, you can install the python environment, as well as numpy and other required toolkit environment
- Anaconda download:.
- Address: https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D
<img src="../install/mac/anaconda_start.png" alt="anaconda download" width="800" align="center"/>
- Select `Anaconda3-2021.05-MacOSX-x86_64.pkg` at the bottom to download
- After downloading, double click on the .pkg file to enter the graphical interface
- Just follow the default settings, it will take a while to install
- It is recommended to install a code editor such as vscode or pycharm
#### 1.2.2 Open a terminal and create a conda environment
- Open the terminal
- Press command and spacebar at the same time, type "terminal" in the focus search, double click to enter terminal
- **Add conda to the environment variables**
- Environment variables are added so that the system can recognize the conda command
- Open `~/.bash_profile` in the terminal by typing the following command.
```shell
vim ~/.bash_profile
```
- Add conda as an environment variable in `~/.bash_profile`.
```shell
# Press i first to enter edit mode
# In the first line type.
export PATH="~/opt/anaconda3/bin:$PATH"
# If you customized the installation location during installation, change ~/opt/anaconda3/bin to the bin folder in the customized installation directory
```
```shell
# The modified ~/.bash_profile file should look like this (where xxx is the username)
export PATH="~/opt/anaconda3/bin:$PATH"
# >>> conda initialize >>>
# !!! Contents within this block are managed by 'conda init' !!!
__conda_setup="$('/Users/xxx/opt/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
eval "$__conda_setup"
else
if [ -f "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" ]; then
. "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh"
else
export PATH="/Users/xxx/opt/anaconda3/bin:$PATH"
fi
fi
unset __conda_setup
# <<< conda initialize <<<
```
- When you are done, press `esc` to exit edit mode, then type `:wq!` and enter to save and exit
- Verify that the conda command is recognized.
- Enter `source ~/.bash_profile` in the terminal to update the environment variables
- Enter `conda info --envs` in the terminal again, if it shows that there is a base environment, then conda has been added to the environment variables
- Create a new conda environment
```shell
# Enter the following command at the command line to create an environment called paddle_env
# Here to speed up the download, use Tsinghua source
conda create --name paddle_env python=3.8 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
```
- This command will create an executable environment named paddle_env with python version 3.8, which will take a while depending on the network status
- The command line will then output a prompt, type y and enter to continue the installation
- <img src="../install/mac/conda_create.png" alt="conda_create" width="600" align="center"/>
- To activate the conda environment you just created, enter the following command at the command line.
```shell
# Activate the paddle_env environment
conda activate paddle_env
# View the current location of python
where python
```
<img src="../install/mac/conda_activate.png" alt="conda_actviate" width="600" align="center"/>
The above anaconda environment and python environment are installed
<a name="1.3"></a>
### 1.3 Linux
Linux users can choose to run either Anaconda or Docker. If you are familiar with Docker and need to train the PaddleOCR model, it is recommended to use the Docker environment, where the development process of PaddleOCR is run. If you are not familiar with Docker, you can also use Anaconda to run the project.
#### 1.3.1 Anaconda environment configuration
- Note: To use paddlepaddle you need to install the python environment first, here we choose the python integrated environment Anaconda toolkit
- Anaconda is a common python package manager
- After installing Anaconda, you can install the python environment, as well as numpy and other required toolkit environment
- **Download Anaconda**.
- Download at: https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D
<img src="../install/linux/anaconda_download.png" akt="anaconda download" width="800" align="center"/>
- Select the appropriate version for your operating system
- Type `uname -m` in the terminal to check the command set used by your system
- Download method 1: Download locally, then transfer the installation package to the linux server
- Download method 2: Directly use linux command line to download
```shell
# First install wget
sudo apt-get install wget # Ubuntu
sudo yum install wget # CentOS
```
```bash
# Then use wget to download from Tsinghua source
# If you want to download Anaconda3-2021.05-Linux-x86_64.sh, the download command is as follows
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.05-Linux-x86_64.sh
# If you want to download another version, you need to change the file name after the last 1 / to the version you want to download
```
- To install Anaconda.
- Type `sh Anaconda3-2021.05-Linux-x86_64.sh` at the command line
- If you downloaded a different version, replace the file name of the command with the name of the file you downloaded
- Just follow the installation instructions
- You can exit by typing q when viewing the license
- **Add conda to the environment variables**
- If you have already added conda to the environment variable path during the installation, you can skip this step
- Open `~/.bashrc` in a terminal.
```shell
# Enter the following command in the terminal.
vim ~/.bashrc
```
- Add conda as an environment variable in `~/.bashrc`.
```shell
# Press i first to enter edit mode # In the first line enter.
export PATH="~/anaconda3/bin:$PATH"
# If you customized the installation location during installation, change ~/anaconda3/bin to the bin folder in the customized installation directory
```
```shell
# The modified ~/.bash_profile file should look like this (where xxx is the username)
export PATH="~/opt/anaconda3/bin:$PATH"
# >>> conda initialize >>>
# !!! Contents within this block are managed by 'conda init' !!!
__conda_setup="$('/Users/xxx/opt/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
eval "$__conda_setup"
else
if [ -f "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" ]; then
. "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh"
else
export PATH="/Users/xxx/opt/anaconda3/bin:$PATH"
fi
fi
unset __conda_setup
# <<< conda initialize <<<
```
- When you are done, press `esc` to exit edit mode, then type `:wq!` and enter to save and exit
- Verify that the conda command is recognized.
- Enter `source ~/.bash_profile` in the terminal to update the environment variables
- Enter `conda info --envs` in the terminal again, if it shows that there is a base environment, then conda has been added to the environment variables
- Create a new conda environment
```shell
# Enter the following command at the command line to create an environment called paddle_env
# Here to speed up the download, use Tsinghua source
conda create --name paddle_env python=3.8 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
```
- This command will create an executable environment named paddle_env with python version 3.8, which will take a while depending on the network status
- The command line will then output a prompt, type y and enter to continue the installation
<img src="../install/linux/conda_create.png" alt="conda_create" width="500" align="center"/>
- To activate the conda environment you just created, enter the following command at the command line.
```shell
# Activate the paddle_env environment
conda activate paddle_env
```
The above anaconda environment and python environment are installed
#### 1.3.2 Docker environment preparation
**The first time you use this docker image, it will be downloaded automatically. Please be patient.**
```bash
# Switch to the working directory
cd /home/Projects
# You need to create a docker container for the first run, and do not need to run the current command when you run it again
# Create a docker container named ppocr and map the current directory to the /paddle directory of the container
# If using CPU, use docker instead of nvidia-docker to create docker
sudo docker run --name ppocr -v $PWD:/paddle --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda10.2-cudnn7 /bin/bash
# If using GPU, use nvidia-docker to create docker
# docker image registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda11.2-cudnn8 is recommended for CUDA11.2 + CUDNN8.
sudo nvidia-docker run --name ppocr -v $PWD:/paddle --shm-size=64G --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda10.2-cudnn7 /bin/bash
```
You can also visit [DockerHub](https://hub.docker.com/r/paddlepaddle/paddle/tags/) to get the image that fits your machine.
```
# ctrl+P+Q to exit docker, to re-enter docker using the following command:
sudo docker container exec -it ppocr /bin/bash
```
<a name="2"></a>
## 2. Install PaddlePaddle 2.0
- If you have cuda9 or cuda10 installed on your machine, please run the following command to install
```bash
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
```
- If you only have cpu on your machine, please run the following command to install
```bash
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
```
For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation.
# Reasoning based on Python prediction engine
# Inference Based on Python Prediction Engine
The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
......@@ -10,37 +10,36 @@ For more details, please refer to the document [Classification Framework](https:
Next, we first introduce how to convert a trained model into an inference model, and then we will introduce text detection, text recognition, angle class, and the concatenation of them based on inference model.
- [CONVERT TRAINING MODEL TO INFERENCE MODEL](#CONVERT)
- [Convert detection model to inference model](#Convert_detection_model)
- [Convert recognition model to inference model](#Convert_recognition_model)
- [Convert angle classification model to inference model](#Convert_angle_class_model)
- [1. Convert Training Model to Inference Model](#CONVERT)
- [1.1 Convert Detection Model to Inference Model](#Convert_detection_model)
- [1.2 Convert Recognition Model to Inference Model](#Convert_recognition_model)
- [1.3 Convert Angle Classification Model to Inference Model](#Convert_angle_class_model)
- [TEXT DETECTION MODEL INFERENCE](#DETECTION_MODEL_INFERENCE)
- [1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE](#LIGHTWEIGHT_DETECTION)
- [2. DB TEXT DETECTION MODEL INFERENCE](#DB_DETECTION)
- [3. EAST TEXT DETECTION MODEL INFERENCE](#EAST_DETECTION)
- [4. SAST TEXT DETECTION MODEL INFERENCE](#SAST_DETECTION)
- [5. Multilingual model inference](#Multilingual model inference)
- [2. Text Detection Model Inference](#DETECTION_MODEL_INFERENCE)
- [2.1 Lightweight Chinese Detection Model Inference](#LIGHTWEIGHT_DETECTION)
- [2.2 DB Text Detection Model Inference](#DB_DETECTION)
- [2.3 East Text Detection Model Inference](#EAST_DETECTION)
- [2.4 Sast Text Detection Model Inference](#SAST_DETECTION)
- [TEXT RECOGNITION MODEL INFERENCE](#RECOGNITION_MODEL_INFERENCE)
- [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_RECOGNITION)
- [2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE](#CTC-BASED_RECOGNITION)
- [3. SRN-BASED TEXT RECOGNITION MODEL INFERENCE](#SRN-BASED_RECOGNITION)
- [3. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY](#USING_CUSTOM_CHARACTERS)
- [4. MULTILINGUAL MODEL INFERENCE](MULTILINGUAL_MODEL_INFERENCE)
- [3. Text Recognition Model Inference](#RECOGNITION_MODEL_INFERENCE)
- [3.1 Lightweight Chinese Text Recognition Model Reference](#LIGHTWEIGHT_RECOGNITION)
- [3.2 CTC-Based Text Recognition Model Inference](#CTC-BASED_RECOGNITION)
- [3.3 SRN-Based Text Recognition Model Inference](#SRN-BASED_RECOGNITION)
- [3.4 Text Recognition Model Inference Using Custom Characters Dictionary](#USING_CUSTOM_CHARACTERS)
- [3.5 Multilingual Model Inference](#MULTILINGUAL_MODEL_INFERENCE)
- [ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
- [1. ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
- [4. Angle Classification Model Inference](#ANGLE_CLASS_MODEL_INFERENCE)
- [TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION](#CONCATENATION)
- [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_CHINESE_MODEL)
- [2. OTHER MODELS](#OTHER_MODELS)
- [5. Text Detection Angle Classification And Recognition Inference Concatenation](#CONCATENATION)
- [5.1 Lightweight Chinese Model](#LIGHTWEIGHT_CHINESE_MODEL)
- [5.2 Other Models](#OTHER_MODELS)
<a name="CONVERT"></a>
## CONVERT TRAINING MODEL TO INFERENCE MODEL
## 1. Convert Training Model to Inference Model
<a name="Convert_detection_model"></a>
### Convert detection model to inference model
### 1.1 Convert Detection Model to Inference Model
Download the lightweight Chinese detection model:
```
......@@ -67,7 +66,7 @@ inference/det_db/
```
<a name="Convert_recognition_model"></a>
### Convert recognition model to inference model
### 1.2 Convert Recognition Model to Inference Model
Download the lightweight Chinese recognition model:
```
......@@ -95,7 +94,7 @@ inference/det_db/
```
<a name="Convert_angle_class_model"></a>
### Convert angle classification model to inference model
### 1.3 Convert Angle Classification Model to Inference Model
Download the angle classification model:
```
......@@ -122,13 +121,13 @@ inference/det_db/
<a name="DETECTION_MODEL_INFERENCE"></a>
## TEXT DETECTION MODEL INFERENCE
## 2. Text Detection Model Inference
The following will introduce the lightweight Chinese detection model inference, DB text detection model inference and EAST text detection model inference. The default configuration is based on the inference setting of the DB text detection model.
Because EAST and DB algorithms are very different, when inference, it is necessary to **adapt the EAST text detection algorithm by passing in corresponding parameters**.
<a name="LIGHTWEIGHT_DETECTION"></a>
### 1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE
### 2.1 Lightweight Chinese Detection Model Inference
For lightweight Chinese detection model inference, you can execute the following commands:
......@@ -163,7 +162,7 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_di
```
<a name="DB_DETECTION"></a>
### 2. DB TEXT DETECTION MODEL INFERENCE
### 2.2 DB Text Detection Model Inference
First, convert the model saved in the DB text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)), you can use the following command to convert:
......@@ -184,7 +183,7 @@ The visualized text detection results are saved to the `./inference_results` fol
**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese text images.
<a name="EAST_DETECTION"></a>
### 3. EAST TEXT DETECTION MODEL INFERENCE
### 2.3 EAST TEXT DETECTION MODEL INFERENCE
First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)), you can use the following command to convert:
......@@ -205,7 +204,7 @@ The visualized text detection results are saved to the `./inference_results` fol
<a name="SAST_DETECTION"></a>
### 4. SAST TEXT DETECTION MODEL INFERENCE
### 2.4 Sast Text Detection Model Inference
#### (1). Quadrangle text detection model (ICDAR2015)
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)), you can use the following command to convert:
......@@ -243,13 +242,13 @@ The visualized text detection results are saved to the `./inference_results` fol
**Note**: SAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.
<a name="RECOGNITION_MODEL_INFERENCE"></a>
## TEXT RECOGNITION MODEL INFERENCE
## 3. Text Recognition Model Inference
The following will introduce the lightweight Chinese recognition model inference, other CTC-based and Attention-based text recognition models inference. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss. In practice, it is also found that the result of the model based on Attention loss is not as good as the one based on CTC loss. In addition, if the characters dictionary is modified during training, make sure that you use the same characters set during inferencing. Please check below for details.
<a name="LIGHTWEIGHT_RECOGNITION"></a>
### 1. LIGHTWEIGHT CHINESE TEXT RECOGNITION MODEL REFERENCE
### 3.1 Lightweight Chinese Text Recognition Model Reference
For lightweight Chinese recognition model inference, you can execute the following commands:
......@@ -269,7 +268,7 @@ Predicts of ./doc/imgs_words_en/word_10.png:('PAIN', 0.9897658)
```
<a name="CTC-BASED_RECOGNITION"></a>
### 2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE
### 3.2 CTC-Based Text Recognition Model Inference
Taking CRNN as an example, we introduce the recognition model inference based on CTC loss. Rosetta and Star-Net are used in a similar way, No need to set the recognition algorithm parameter rec_algorithm.
......@@ -282,7 +281,7 @@ python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o G
For CRNN text recognition model inference, execute the following commands:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
```
![](../imgs_words_en/word_336.png)
......@@ -292,6 +291,7 @@ After executing the command, the recognition result of the above image is as fol
```bash
Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
```
**Note**:Since the above model refers to [DTRB](https://arxiv.org/abs/1904.01906) text recognition training and evaluation process, it is different from the training of lightweight Chinese recognition model in two aspects:
- The image resolution used in training is different: the image resolution used in training the above model is [3,32,100], while during our Chinese model training, in order to ensure the recognition effect of long text, the image resolution used in training is [3, 32, 320]. The default shape parameter of the inference stage is the image resolution used in training phase, that is [3, 32, 320]. Therefore, when running inference of the above English model here, you need to set the shape of the recognition image through the parameter `rec_image_shape`.
......@@ -304,7 +304,7 @@ dict_character = list(self.character_str)
```
<a name="SRN-BASED_RECOGNITION"></a>
### 3. SRN-BASED TEXT RECOGNITION MODEL INFERENCE
### 3.3 SRN-Based Text Recognition Model Inference
The recognition model based on SRN requires additional setting of the recognition algorithm parameter
--rec_algorithm="SRN". At the same time, it is necessary to ensure that the predicted shape is consistent
......@@ -314,25 +314,26 @@ with the training, such as: --rec_image_shape="1, 64, 256"
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
--rec_model_dir="./inference/srn/" \
--rec_image_shape="1, 64, 256" \
--rec_char_type="en" \
--rec_char_dict_path="./ppocr/utils/ic15_dict.txt" \
--rec_algorithm="SRN"
```
<a name="USING_CUSTOM_CHARACTERS"></a>
### 4. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY
### 3.4 Text Recognition Model Inference Using Custom Characters Dictionary
If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`, and set `rec_char_type=ch`
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
```
<a name="MULTILINGUAL_MODEL_INFERENCE"></a>
### 5. MULTILINGAUL MODEL INFERENCE
### 3.5 Multilingual Model Inference
If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/fonts` path, such as Korean recognition:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
```
![](../imgs_words/korean/1.jpg)
......@@ -343,13 +344,7 @@ Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
```
<a name="ANGLE_CLASSIFICATION_MODEL_INFERENCE"></a>
## ANGLE CLASSIFICATION MODEL INFERENCE
The following will introduce the angle classification model inference.
<a name="ANGLE_CLASS_MODEL_INFERENCE"></a>
### 1.ANGLE CLASSIFICATION MODEL INFERENCE
## 4. Angle Classification Model Inference
For angle classification model inference, you can execute the following commands:
......@@ -371,10 +366,10 @@ After executing the command, the prediction results (classification angle and sc
```
<a name="CONCATENATION"></a>
## TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION
## 5. Text Detection Angle Classification and Recognition Inference Concatenation
<a name="LIGHTWEIGHT_CHINESE_MODEL"></a>
### 1. LIGHTWEIGHT CHINESE MODEL
### 5.1 Lightweight Chinese Model
When performing prediction, you need to specify the path of a single image or a folder of images through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `cls_model_dir` specifies the path to angle classification inference model and the parameter `rec_model_dir` specifies the path to identify the inference model. The parameter `use_angle_cls` is used to control whether to enable the angle classification model. The parameter `use_mp` specifies whether to use multi-process to infer `total_process_num` specifies process number when using multi-process. The parameter . The visualized recognition results are saved to the `./inference_results` folder by default.
......@@ -388,14 +383,14 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --de
# use multi-process
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false --use_mp=True --total_process_num=6
```
```
After executing the command, the recognition result image is as follows:
![](../imgs_results/system_res_00018069.jpg)
<a name="OTHER_MODELS"></a>
### 2. OTHER MODELS
### 5.2 Other Models
If you want to try other detection algorithms or recognition algorithms, please refer to the above text detection model inference and text recognition model inference, update the corresponding configuration and model.
......@@ -404,7 +399,7 @@ If you want to try other detection algorithms or recognition algorithms, please
The following command uses the combination of the EAST text detection and STAR-Net text recognition:
```
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
```
After executing the command, the recognition result image is as follows:
......
# Python Inference for PP-OCR Model Library
This article introduces the use of the Python inference engine for the PP-OCR model library. The content is in order of text detection, text recognition, direction classifier and the prediction method of the three in series on the CPU and GPU.
- [Text Detection Model Inference](#DETECTION_MODEL_INFERENCE)
- [Text Recognition Model Inference](#RECOGNITION_MODEL_INFERENCE)
- [1. Lightweight Chinese Recognition Model Inference](#LIGHTWEIGHT_RECOGNITION)
- [2. Multilingaul Model Inference](#MULTILINGUAL_MODEL_INFERENCE)
- [Angle Classification Model Inference](#ANGLE_CLASS_MODEL_INFERENCE)
- [Text Detection Angle Classification and Recognition Inference Concatenation](#CONCATENATION)
<a name="DETECTION_MODEL_INFERENCE"></a>
## Text Detection Model Inference
The default configuration is based on the inference setting of the DB text detection model. For lightweight Chinese detection model inference, you can execute the following commands:
```
# download DB text detection inference model
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# predict
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/"
```
The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with'det_res'. Examples of results are as follows:
![](../imgs_results/det_res_00018069.jpg)
You can use the parameters `limit_type` and `det_limit_side_len` to limit the size of the input image,
The optional parameters of `limit_type` are [`max`, `min`], and
`det_limit_size_len` is a positive integer, generally set to a multiple of 32, such as 960.
The default setting of the parameters is `limit_type='max', det_limit_side_len=960`. Indicates that the longest side of the network input image cannot exceed 960,
If this value is exceeded, the image will be resized with the same width ratio to ensure that the longest side is `det_limit_side_len`.
Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest side of the image is limited to 960.
If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
```
If you want to use the CPU for prediction, execute the command as follows
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
```
<a name="RECOGNITION_MODEL_INFERENCE"></a>
## Text Recognition Model Inference
<a name="LIGHTWEIGHT_RECOGNITION"></a>
### 1. Lightweight Chinese Recognition Model Inference
For lightweight Chinese recognition model inference, you can execute the following commands:
```
# download CRNN text recognition inference model
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_10.png" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
```
![](../imgs_words_en/word_10.png)
After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.
```bash
Predicts of ./doc/imgs_words_en/word_10.png:('PAIN', 0.9897658)
```
<a name="MULTILINGUAL_MODEL_INFERENCE"></a>
### 2. Multilingaul Model Inference
If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/fonts` path, such as Korean recognition:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
```
![](../imgs_words/korean/1.jpg)
After executing the command, the prediction result of the above figure is:
``` text
Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
```
<a name="ANGLE_CLASS_MODEL_INFERENCE"></a>
## Angle Classification Model Inference
For angle classification model inference, you can execute the following commands:
```
# download text angle class inference model:
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"
```
![](../imgs_words_en/word_10.png)
After executing the command, the prediction results (classification angle and score) of the above image will be printed on the screen.
```
Predicts of ./doc/imgs_words_en/word_10.png:['0', 0.9999995]
```
<a name="CONCATENATION"></a>
## Text Detection Angle Classification and Recognition Inference Concatenation
When performing prediction, you need to specify the path of a single image or a folder of images through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `cls_model_dir` specifies the path to angle classification inference model and the parameter `rec_model_dir` specifies the path to identify the inference model. The parameter `use_angle_cls` is used to control whether to enable the angle classification model. The parameter `use_mp` specifies whether to use multi-process to infer `total_process_num` specifies process number when using multi-process. The parameter . The visualized recognition results are saved to the `./inference_results` folder by default.
```shell
# use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
# not use use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/"
# use multi-process
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false --use_mp=True --total_process_num=6
```
After executing the command, the recognition result image is as follows:
![](../imgs_results/system_res_00018069.jpg)
# PP-OCR Model and Configuration
The chapter on PP-OCR model and configuration file mainly adds some basic concepts of OCR model and the content and role of configuration file to have a better experience in the subsequent parameter adjustment and training of the model.
This chapter contains three parts. Firstly, [PP-OCR Model Download](. /models_list_en.md) explains the concept of PP-OCR model types and provides links to download all models. Then in [Yml Configuration](. /config_en.md) details the parameters needed to fine-tune the PP-OCR models. The final [Python Inference for PP-OCR Model Library](. /inference_ppocr_en.md) is an introduction to the use of the PP-OCR model library in the first section, which can quickly utilize the rich model library models to obtain test results through the Python inference engine.
------
Let's first understand some basic concepts.
- [INTRODUCTION ABOUT OCR](#introduction-about-ocr)
* [BASIC CONCEPTS OF OCR DETECTION MODEL](#basic-concepts-of-ocr-detection-model)
* [Basic concepts of OCR recognition model](#basic-concepts-of-ocr-recognition-model)
* [PP-OCR model](#pp-ocr-model)
* [And a table of contents](#and-a-table-of-contents)
* [On the right](#on-the-right)
## 1. INTRODUCTION ABOUT OCR
This section briefly introduces the basic concepts of OCR detection model and recognition model, and introduces PaddleOCR's PP-OCR model.
OCR (Optical Character Recognition, Optical Character Recognition) is currently the general term for text recognition. It is not limited to document or book text recognition, but also includes recognizing text in natural scenes. It can also be called STR (Scene Text Recognition).
OCR text recognition generally includes two parts, text detection and text recognition. The text detection module first uses detection algorithms to detect text lines in the image. And then the recognition algorithm to identify the specific text in the text line.
### 1.1 BASIC CONCEPTS OF OCR DETECTION MODEL
Text detection can locate the text area in the image, and then usually mark the word or text line in the form of a bounding box. Traditional text detection algorithms mostly extract features manually, which are characterized by fast speed and good effect in simple scenes, but the effect will be greatly reduced when faced with natural scenes. Currently, deep learning methods are mostly used.
Text detection algorithms based on deep learning can be roughly divided into the following categories:
1. Method based on target detection. Generally, after the text box is predicted, the final text box is filtered through NMS, which is mostly four-point text box, which is not ideal for curved text scenes. Typical algorithms are methods such as EAST and Text Box.
2. Method based on text segmentation. The text line is regarded as the segmentation target, and then the external text box is constructed through the segmentation result, which can handle curved text, and the effect is not ideal for the text cross scene problem. Typical algorithms are DB, PSENet and other methods.
3. Hybrid target detection and segmentation method.
### 1.2 Basic concepts of OCR recognition model
The input of the OCR recognition algorithm is generally text lines images which has less background information, and the text information occupies the main part. The recognition algorithm can be divided into two types of algorithms:
1. CTC-based method. The text prediction module of the recognition algorithm is based on CTC, and the commonly used algorithm combination is CNN+RNN+CTC. There are also some algorithms that try to add transformer modules to the network and so on.
2. Attention-based method. The text prediction module of the recognition algorithm is based on Attention, and the commonly used algorithm combination is CNN+RNN+Attention.
### 1.3 PP-OCR model
PaddleOCR integrates many OCR algorithms, text detection algorithms include DB, EAST, SAST, etc., text recognition algorithms include CRNN, RARE, StarNet, Rosetta, SRN and other algorithms.
Among them, PaddleOCR has released the PP-OCR series model for the general OCR in Chinese and English natural scenes. The PP-OCR model is composed of the DB+CRNN algorithm. It uses massive Chinese data training and model tuning methods to have high text detection and recognition capabilities in Chinese scenes. And PaddleOCR has launched a high-precision and ultra-lightweight PP-OCRv2 model. The detection model is only 3M, and the recognition model is only 8.5M. Using [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)'s model quantification method, the detection model can be compressed to 0.8M without reducing the accuracy. The recognition is compressed to 3M, which is more suitable for mobile deployment scenarios.
# PP-OCR Model Zoo
The PP-OCR model zoo section explains some basic concepts of the OCR model and how to quickly use the models in the PP-OCR model library.
This section contains two parts. Firstly, [PP-OCR Model Download](./models_list_en.md) explains the concept of PP-OCR model types and provides links to download all models. The next [Python Inference for PP-OCR Model Zoo](./inference_ppocr_en.md) is an introduction to the use of the PP-OCR model library, which can quickly utilize the rich model library models to obtain test results through the Python inference engine.
------
Let's first understand some basic concepts.
- [Introduction about OCR](#introduction-about-ocr)
* [Basic Concepts of OCR Detection Model](#basic-concepts-of-ocr-detection-model)
* [Basic Concepts of OCR Recognition Model](#basic-concepts-of-ocr-recognition-model)
* [PP-OCR Model](#pp-ocr-model)
## 1. Introduction about OCR
This section briefly introduces the basic concepts of OCR detection model and recognition model, and introduces PaddleOCR's PP-OCR model.
OCR (Optical Character Recognition, Optical Character Recognition) is currently the general term for text recognition. It is not limited to document or book text recognition, but also includes recognizing text in natural scenes. It can also be called STR (Scene Text Recognition).
OCR text recognition generally includes two parts, text detection and text recognition. The text detection module first uses detection algorithms to detect text lines in the image. And then the recognition algorithm to identify the specific text in the text line.
### 1.1 Basic Concepts of OCR Detection Model
Text detection can locate the text area in the image, and then usually mark the word or text line in the form of a bounding box. Traditional text detection algorithms mostly extract features manually, which are characterized by fast speed and good effect in simple scenes, but the effect will be greatly reduced when faced with natural scenes. Currently, deep learning methods are mostly used.
Text detection algorithms based on deep learning can be roughly divided into the following categories:
1. Method based on target detection. Generally, after the text box is predicted, the final text box is filtered through NMS, which is mostly four-point text box, which is not ideal for curved text scenes. Typical algorithms are methods such as EAST and Text Box.
2. Method based on text segmentation. The text line is regarded as the segmentation target, and then the external text box is constructed through the segmentation result, which can handle curved text, and the effect is not ideal for the text cross scene problem. Typical algorithms are DB, PSENet and other methods.
3. Hybrid target detection and segmentation method.
### 1.2 Basic Concepts of OCR Recognition Model
The input of the OCR recognition algorithm is generally text lines images which has less background information, and the text information occupies the main part. The recognition algorithm can be divided into two types of algorithms:
1. CTC-based method. The text prediction module of the recognition algorithm is based on CTC, and the commonly used algorithm combination is CNN+RNN+CTC. There are also some algorithms that try to add transformer modules to the network and so on.
2. Attention-based method. The text prediction module of the recognition algorithm is based on Attention, and the commonly used algorithm combination is CNN+RNN+Attention.
### 1.3 PP-OCR Model
PaddleOCR integrates many OCR algorithms, text detection algorithms include DB, EAST, SAST, etc., text recognition algorithms include CRNN, RARE, StarNet, Rosetta, SRN and other algorithms.
Among them, PaddleOCR has released the PP-OCR series model for the general OCR in Chinese and English natural scenes. The PP-OCR model is composed of the DB+CRNN algorithm. It uses massive Chinese data training and model tuning methods to have high text detection and recognition capabilities in Chinese scenes. And PaddleOCR has launched a high-precision and ultra-lightweight PP-OCRv2 model. The detection model is only 3M, and the recognition model is only 8.5M. Using [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)'s model quantification method, the detection model can be compressed to 0.8M without reducing the accuracy. The recognition is compressed to 3M, which is more suitable for mobile deployment scenarios.
## OCR model list(V2.0, updated on 2021.1.20
## OCR model list(V2.1, updated on 2021.9.6
> **Note**
> 1. Compared with [models 1.1](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/models_list_en.md), which are trained with static graph programming paradigm, models 2.0 are the dynamic graph trained version and achieve close performance.
> 2. All models in this tutorial are all ppocr-series models, for more introduction of algorithms and models based on public dataset, you can refer to [algorithm overview tutorial](./algorithm_overview_en.md).
> 1. Compared with the model v2.0, the 2.1 version of the detection model has a improvement in accuracy, and the 2.1 version of the recognition model is optimized in accuracy and CPU speed.
> 2. Compared with [models 1.1](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/models_list_en.md), which are trained with static graph programming paradigm, models 2.0 are the dynamic graph trained version and achieve close performance.
> 3. All models in this tutorial are all ppocr-series models, for more introduction of algorithms and models based on public dataset, you can refer to [algorithm overview tutorial](./algorithm_overview_en.md).
- [1. Text Detection Model](#Detection)
- [2. Text Recognition Model](#Recognition)
......@@ -28,6 +29,8 @@ Relationship of the above models is as follows.
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
|ch_PP-OCRv2_det_slim|slim quantization with distillation lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_det_cml.yml](../../configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml)| 3M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar)|
|ch_PP-OCRv2_det|Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_det_cml.yml](../../configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml)|3M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)|
|ch_ppocr_mobile_slim_v2.0_det|Slim pruned lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|2.6M |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar)|
|ch_ppocr_mobile_v2.0_det|Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
|ch_ppocr_server_v2.0_det|General model, which is larger than the lightweight model, but achieved better performance|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
......@@ -40,6 +43,8 @@ Relationship of the above models is as follows.
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
|ch_PP-OCRv2_rec_slim|Slim qunatization with distillation lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)| 9M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_train.tar) |
|ch_PP-OCRv2_rec|Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)|8.5M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| 6M | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|ch_ppocr_mobile_v2.0_rec|Original lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|5.2M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|ch_ppocr_server_v2.0_rec|General model, supporting Chinese, English and number recognition|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
......@@ -58,45 +63,6 @@ Relationship of the above models is as follows.
<a name="Multilingual"></a>
#### Multilingual Recognition Model(Updating...)
**Note:** The configuration file of the new multi language model is generated by code. You can use the `--help` parameter to check which multi language are supported by current PaddleOCR.
```bash
# The code needs to run in the specified directory
cd {your/path/}PaddleOCR/configs/rec/multi_language/
python3 generate_multi_language_configs.py --help
```
Take the Italian configuration file as an example:
##### 1.Generate Italian configuration file to test the model provided
you can generate the default configuration file through the following command, and use the default language dictionary provided by paddleocr for prediction.
```bash
# The code needs to run in the specified directory
cd {your/path/}PaddleOCR/configs/rec/multi_language/
# Set the required language configuration file through -l or --language parameter
# This command will write the default parameter to the configuration file.
python3 generate_multi_language_configs.py -l it
```
##### 2. Generate Italian configuration file to train your own data
If you want to train your own model, you can prepare the training set file, verification set file, dictionary file and training data path. Here we assume that the Italian training set, verification set, dictionary and training data path are:
- Training set:{your/path/}PaddleOCR/train_data/train_list.txt
- Validation set: {your/path/}PaddleOCR/train_data/val_list.txt
- Use the default dictionary provided by paddleocr:{your/path/}PaddleOCR/ppocr/utils/dict/it_dict.txt
- Training data path:{your/path/}PaddleOCR/train_data
```bash
# The code needs to run in the specified directory
cd {your/path/}PaddleOCR/configs/rec/multi_language/
# The -l or --language parameter is required
# --train modify train_list path
# --val modify eval_list path
# --data_dir modify data dir
# -o modify default parameters
# --dict Change the dictionary path. The example uses the default dictionary path, so that this parameter can be empty.
python3 generate_multi_language_configs.py -l it \
--train {path/to/train_list} \
--val {path/to/val_list} \
--data_dir {path/to/data_dir} \
-o Global.use_gpu=False
```
|model name| dict file | description|config|model size|download|
| --- | --- | --- |--- | --- | --- |
| french_mobile_v2.0_rec | ppocr/utils/dict/french_dict.txt | Lightweight model for French recognition|[rec_french_lite_train.yml](../../configs/rec/multi_language/rec_french_lite_train.yml)|2.65M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_train.tar) |
......@@ -120,12 +86,14 @@ For more supported languages, please refer to : [Multi-language model](./multi_l
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
|ch_ppocr_mobile_slim_v2.0_cls|Slim quantized model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| 2.1M | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_train.tar) |
|ch_ppocr_mobile_v2.0_cls|Original model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
|ch_ppocr_mobile_slim_v2.0_cls|Slim quantized model for text angle classification|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| 2.1M | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_train.tar) |
|ch_ppocr_mobile_v2.0_cls|Original model for text angle classification|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
<a name="Paddle-Lite"></a>
### 4. Paddle-Lite Model
|Version|Introduction|Model size|Detection model|Text Direction model|Recognition model|Paddle-Lite branch|
|---|---|---|---|---|---|---|
|V2.0|extra-lightweight chinese OCR optimized model|7.8M|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_rec_opt.nb)|v2.9|
|V2.0(slim)|extra-lightweight chinese OCR optimized model|3.3M|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_rec_slim_opt.nb)|v2.9|
|PP-OCRv2|extra-lightweight chinese OCR optimized model|11M|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer_opt.nb)|v2.9|
|PP-OCRv2(slim)|extra-lightweight chinese OCR optimized model|4.9M|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_opt.nb)|v2.9|
|V2.0|ppocr_v2.0 extra-lightweight chinese OCR optimized model|7.8M|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_rec_opt.nb)|v2.9|
|V2.0(slim)|ppovr_v2.0 extra-lightweight chinese OCR optimized model|3.3M|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_rec_slim_opt.nb)|v2.9|
......@@ -198,13 +198,13 @@ If necessary, you can read related documents:
| Language | Abbreviation | | Language | Abbreviation |
| --- | --- | --- | --- | --- |
|chinese and english|ch| |Arabic|ar|
|english|en| |Hindi|hi|
|french|fr| |Uyghur|ug|
|german|german| |Persian|fa|
|japan|japan| |Urdu|ur|
|korean|korean| | Serbian(latin) |rs_latin|
|chinese traditional |ch_tra| |Occitan |oc|
|Chinese & English|ch| |Arabic|ar|
|English|en| |Hindi|hi|
|French|fr| |Uyghur|ug|
|German|german| |Persian|fa|
|Japan|japan| |Urdu|ur|
|Korean|korean| | Serbian(latin) |rs_latin|
|Chinese Traditional |chinese_cht| |Occitan |oc|
| Italian |it| |Marathi|mr|
|Spanish |es| |Nepali|ne|
| Portuguese|pt| |Serbian(cyrillic)|rs_cyrillic|
......
# PaddleOCR Overview and Project Clone
## 1. PaddleOCR Overview
PaddleOCR contains rich text detection, text recognition and end-to-end algorithms. Combining actual testing and industrial experience, PaddleOCR chooses DB and CRNN as the basic detection and recognition models, and proposes a series of models, named PP-OCR, for industrial applications after a series of optimization strategies. The PP-OCR model is aimed at general scenarios and forms a model library according to different languages. Based on the capabilities of PP-OCR, PaddleOCR releases the PP-Structure tool library for document scene tasks, including two major tasks: layout analysis and table recognition. In order to get through the entire process of industrial landing, PaddleOCR provides large-scale data production tools and a variety of prediction deployment tools to help developers quickly turn ideas into reality.
<div align="center">
<img src="../overview_en.png">
</div>
## 2. Project Clone
### **2.1 Clone PaddleOCR repo**
```
# Recommend
git clone https://github.com/PaddlePaddle/PaddleOCR
# If you cannot pull successfully due to network problems, you can also choose to use the code hosting on the cloud:
git clone https://gitee.com/paddlepaddle/PaddleOCR
# Note: The cloud-hosting code may not be able to synchronize the update with this GitHub project in real time. There might be a delay of 3-5 days. Please give priority to the recommended method.
```
### **2.2 Install third-party libraries**
```
cd PaddleOCR
pip3 install -r requirements.txt
```
If you getting this error `OSError: [WinError 126] The specified module could not be found` when you install shapely on windows.
Please try to download Shapely whl file using [http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely](http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely).
Reference: [Solve shapely installation on windows](https://stackoverflow.com/questions/44398265/install-shapely-oserror-winerror-126-the-specified-module-could-not-be-found)
\ No newline at end of file
# Quick start of Chinese OCR model
# PaddleOCR Quick Start
## 1. Prepare for the environment
[PaddleOCR Quick Start](#paddleocr-quick-start)
Please refer to [quick installation](./installation_en.md) to configure the PaddleOCR operating environment.
+ [1. Install PaddleOCR Whl Package](#1-install-paddleocr-whl-package)
* [2. Easy-to-Use](#2-easy-to-use)
+ [2.1 Use by Command Line](#21-use-by-command-line)
- [2.1.1 English and Chinese Model](#211-english-and-chinese-model)
- [2.1.2 Multi-language Model](#212-multi-language-model)
- [2.1.3 Layout Analysis](#213-layoutAnalysis)
+ [2.2 Use by Code](#22-use-by-code)
- [2.2.1 Chinese & English Model and Multilingual Model](#221-chinese---english-model-and-multilingual-model)
- [2.2.2 Layout Analysis](#222-layoutAnalysis)
* Note: Support the use of PaddleOCR through whl package installation,pelease refer [PaddleOCR Package](./whl_en.md).
## 2.inference models
The detection and recognition models on the mobile and server sides are as follows. For more models (including multiple languages), please refer to [PP-OCR v2.0 series model list](../doc_ch/models_list.md)
<a name="1-install-paddleocr-whl-package"></a>
| Model introduction | Model name | Recommended scene | Detection model | Direction Classifier | Recognition model |
| ------------ | --------------- | ----------------|---- | ---------- | -------- |
| Ultra-lightweight Chinese OCR model (8.1M) | ch_ppocr_mobile_v2.0_xx |Mobile-side/Server-side|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
| Universal Chinese OCR model (143M) | ch_ppocr_server_v2.0_xx |Server-side |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
## 1. Install PaddleOCR Whl Package
```bash
pip install "paddleocr>=2.0.1" # Recommend to use version 2.0.1+
```
* If `wget` is not installed in the windows environment, you can copy the link to the browser to download when downloading the model, then uncompress it and place it in the corresponding directory.
- **For windows users:** If you getting this error `OSError: [WinError 126] The specified module could not be found` when you install shapely on windows. Please try to download Shapely whl file [here](http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely).
Copy the download address of the `inference model` for detection and recognition in the table above, and uncompress them.
Reference: [Solve shapely installation on windows](https://stackoverflow.com/questions/44398265/install-shapely-oserror-winerror-126-the-specified-module-could-not-be-found)
```
mkdir inference && cd inference
# Download the detection model and unzip
wget {url/of/detection/inference_model} && tar xf {name/of/detection/inference_model/package}
# Download the recognition model and unzip
wget {url/of/recognition/inference_model} && tar xf {name/of/recognition/inference_model/package}
# Download the direction classifier model and unzip
wget {url/of/classification/inference_model} && tar xf {name/of/classification/inference_model/package}
cd ..
```
- **For layout analysis users**, run the following command to install **Layout-Parser**
Take the ultra-lightweight model as an example:
```bash
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
```
<a name="2-easy-to-use"></a>
## 2. Easy-to-Use
<a name="21-use-by-command-line"></a>
### 2.1 Use by Command Line
PaddleOCR provides a series of test images, click [here](https://paddleocr.bj.bcebos.com/dygraph_v2.1/ppocr_img.zip) to download, and then switch to the corresponding directory in the terminal
```bash
cd /path/to/ppocr_img
```
mkdir inference && cd inference
# Download the detection model of the ultra-lightweight Chinese OCR model and uncompress it
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# Download the recognition model of the ultra-lightweight Chinese OCR model and uncompress it
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
# Download the angle classifier model of the ultra-lightweight Chinese OCR model and uncompress it
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
cd ..
```
After decompression, the file structure should be as follows:
If you do not use the provided test image, you can replace the following `--image_dir` parameter with the corresponding test image path
<a name="211-english-and-chinese-model"></a>
#### 2.1.1 Chinese and English Model
* Detection, direction classification and recognition: set the direction classifier parameter`--use_angle_cls true` to recognize vertical text.
```bash
paddleocr --image_dir ./imgs_en/img_12.jpg --use_angle_cls true --lang en
```
Output will be a list, each item contains bounding box, text and recognition confidence
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
......
```
* Only detection: set `--rec` to `false`
```bash
paddleocr --image_dir ./imgs_en/img_12.jpg --rec false
```
Output will be a list, each item only contains bounding box
```bash
[[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
[[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
[[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
......
```
* Only recognition: set `--det` to `false`
```bash
paddleocr --image_dir ./imgs_words_en/word_10.png --det false --lang en
```
Output will be a list, each item contains text and recognition confidence
```bash
['PAIN', 0.990372]
```
If you need to use the 2.0 model, please specify the parameter `--version PP-OCR`, paddleocr uses the 2.1 model by default(`--versioin PP-OCRv2`). More whl package usage can be found in [whl package](./whl_en.md)
<a name="212-multi-language-model"></a>
#### 2.1.2 Multi-language Model
Paddleocr currently supports 80 languages, which can be switched by modifying the `--lang` parameter.
``` bash
paddleocr --image_dir ./doc/imgs_en/254.jpg --lang=en
```
├── ch_ppocr_mobile_v2.0_cls_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
├── ch_ppocr_mobile_v2.0_det_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
├── ch_ppocr_mobile_v2.0_rec_infer
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
<div align="center">
<img src="../imgs_en/254.jpg" width="300" height="600">
<img src="../imgs_results/multi_lang/img_02.jpg" width="600" height="600">
</div>
The result is a list, each item contains a text box, text and recognition confidence
```text
[('PHO CAPITAL', 0.95723116), [[66.0, 50.0], [327.0, 44.0], [327.0, 76.0], [67.0, 82.0]]]
[('107 State Street', 0.96311164), [[72.0, 90.0], [451.0, 84.0], [452.0, 116.0], [73.0, 121.0]]]
[('Montpelier Vermont', 0.97389287), [[69.0, 132.0], [501.0, 126.0], [501.0, 158.0], [70.0, 164.0]]]
[('8022256183', 0.99810505), [[71.0, 175.0], [363.0, 170.0], [364.0, 202.0], [72.0, 207.0]]]
[('REG 07-24-201706:59 PM', 0.93537045), [[73.0, 299.0], [653.0, 281.0], [654.0, 318.0], [74.0, 336.0]]]
[('045555', 0.99346405), [[509.0, 331.0], [651.0, 325.0], [652.0, 356.0], [511.0, 362.0]]]
[('CT1', 0.9988654), [[535.0, 367.0], [654.0, 367.0], [654.0, 406.0], [535.0, 406.0]]]
......
```
## 3. Single image or image set prediction
Commonly used multilingual abbreviations include
| Language | Abbreviation | | Language | Abbreviation | | Language | Abbreviation |
| ------------------- | ------------ | ---- | -------- | ------------ | ---- | -------- | ------------ |
| Chinese & English | ch | | French | fr | | Japanese | japan |
| English | en | | German | german | | Korean | korean |
| Chinese Traditional | chinese_cht | | Italian | it | | Russian | ru |
* The following code implements text detection、angle class and recognition process. When performing prediction, you need to specify the path of a single image or image set through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `rec_model_dir` specifies the path to identify the inference model, the parameter `use_angle_cls` specifies whether to use the direction classifier, the parameter `cls_model_dir` specifies the path to identify the direction classifier model, the parameter `use_space_char` specifies whether to predict the space char. The visual results are saved to the `./inference_results` folder by default.
A list of all languages and their corresponding abbreviations can be found in [Multi-Language Model Tutorial](./multi_languages_en.md)
<a name="213-layoutAnalysis"></a>
#### 2.1.3 Layout Analysis
Layout analysis refers to the division of 5 types of areas of the document, including text, title, list, picture and table. For the first three types of regions, directly use the OCR model to complete the text detection and recognition of the corresponding regions, and save the results in txt. For the table area, after the table structuring process, the table picture is converted into an Excel file of the same table style. The picture area will be individually cropped into an image.
To use the layout analysis function of PaddleOCR, you need to specify `--type=structure`
```bash
paddleocr --image_dir=../doc/table/1.png --type=structure
```
# Predict a single image specified by image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
- **Results Format**
The returned results of PP-Structure is a list composed of a dict, an example is as follows
```shell
[
{ 'type': 'Text',
'bbox': [34, 432, 345, 462],
'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
[('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent ', 0.465441)])
}
]
```
The description of each field in dict is as follows
| Parameter | Description |
| --------- | ------------------------------------------------------------ |
| type | Type of image area |
| bbox | The coordinates of the image area in the original image, respectively [left upper x, left upper y, right bottom x, right bottom y] |
| res | OCR or table recognition result of image area。<br> Table: HTML string of the table; <br> OCR: A tuple containing the detection coordinates and recognition results of each single line of text |
- **Parameter Description:**
| Parameter | Description | Default value |
| --------------- | ------------------------------------------------------------ | -------------------------------------------- |
| output | The path where excel and recognition results are saved | ./output/table |
| table_max_len | The long side of the image is resized in table structure model | 488 |
| table_model_dir | inference model path of table structure model | None |
| table_char_type | dict path of table structure model | ../ppocr/utils/dict/table_structure_dict.txt |
<a name="22-use-by-code"></a>
### 2.2 Use by Code
<a name="221-chinese---english-model-and-multilingual-model"></a>
#### 2.2.1 Chinese & English Model and Multilingual Model
* detection, angle classification and recognition:
```python
from paddleocr import PaddleOCR,draw_ocr
# Paddleocr supports Chinese, English, French, German, Korean and Japanese.
# You can set the parameter `lang` as `ch`, `en`, `fr`, `german`, `korean`, `japan`
# to switch the language model in order.
ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to download and load model into memory
img_path = './imgs_en/img_12.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
print(line)
# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
# Predict imageset specified by image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
Output will be a list, each item contains bounding box, text and recognition confidence
# If you want to use the CPU for prediction, you need to set the use_gpu parameter to False
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True --use_gpu=False
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
......
```
- Universal Chinese OCR model
Visualization of results
Please follow the above steps to download the corresponding models and update the relevant parameters, The example is as follows.
<div align="center">
<img src="../imgs_results/whl/12_det_rec.jpg" width="800">
</div>
<a name="222-layoutAnalysis"></a>
```
# Predict a single image specified by image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_server_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_server_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
```
#### 2.2.2 Layout Analysis
```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res
* Note
- If you want to use the recognition model which does not support space char recognition, please update the source code to the latest version and add parameters `--use_space_char=False`.
- If you do not want to use direction classifier, please update the source code to the latest version and add parameters `--use_angle_cls=False`.
table_engine = PPStructure(show_log=True)
save_folder = './output/table'
img_path = './table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])
For more text detection and recognition tandem reasoning, please refer to the document tutorial
: [Inference with Python inference engine](./inference_en.md)
for line in result:
line.pop('img')
print(line)
In addition, the tutorial also provides other deployment methods for the Chinese OCR model:
- [Server-side C++ inference](../../deploy/cpp_infer/readme_en.md)
- [Service deployment](../../deploy/hubserving)
- [End-to-end deployment](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/deploy/lite)
from PIL import Image
font_path = './fonts/simfang.ttf'
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
## TEXT RECOGNITION
# Text Recognition
- [1 DATA PREPARATION](#DATA_PREPARATION)
- [1. Data Preparation](#DATA_PREPARATION)
- [1.1 Costom Dataset](#Costom_Dataset)
- [1.2 Dataset Download](#Dataset_download)
- [1.3 Dictionary](#Dictionary)
- [1.4 Add Space Category](#Add_space_category)
- [2 TRAINING](#TRAINING)
- [2. Training](#TRAINING)
- [2.1 Data Augmentation](#Data_Augmentation)
- [2.2 Training](#Training)
- [2.3 Multi-language](#Multi_language)
- [2.2 General Training](#Training)
- [2.3 Multi-language Training](#Multi_language)
- [3 EVALUATION](#EVALUATION)
- [3. Evaluation](#EVALUATION)
- [4 PREDICTION](#PREDICTION)
- [4.1 Training engine prediction](#Training_engine_prediction)
- [4. Prediction](#PREDICTION)
- [5. Convert to Inference Model](#Inference)
<a name="DATA_PREPARATION"></a>
### DATA PREPARATION
## 1. Data Preparation
PaddleOCR supports two data formats:
- `LMDB` is used to train data sets stored in lmdb format;
- `general data` is used to train data sets stored in text files:
- `LMDB` is used to train data sets stored in lmdb format(LMDBDataSet);
- `general data` is used to train data sets stored in text files(SimpleDataSet):
Please organize the dataset as follows:
......@@ -36,7 +36,7 @@ mklink /d <path/to/paddle_ocr>/train_data/dataset <path/to/dataset>
```
<a name="Costom_Dataset"></a>
#### 1.1 Costom dataset
### 1.1 Costom Dataset
If you want to use your own data for training, please refer to the following to organize your data.
......@@ -84,11 +84,14 @@ Similar to the training set, the test set also needs to be provided a folder con
```
<a name="Dataset_download"></a>
#### 1.2 Dataset download
### 1.2 Dataset Download
If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads). Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,download the lmdb format dataset required for benchmark
- ICDAR2015
If you want to reproduce the paper indicators of SRN, you need to download offline [augmented data](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA), extraction code: y3ry. The augmented data is obtained by rotation and perturbation of mjsynth and synthtext. Please unzip the data to {your_path}/PaddleOCR/train_data/data_lmdb_Release/training/path.
If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads).
Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,download the lmdb format dataset required for benchmark
If you want to reproduce the paper SAR, you need to download extra dataset [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), extraction code: 627x. Besides, icdar2013, icdar2015, cocotext, IIIT5k datasets are also used to train. For specific details, please refer to the paper SAR.
PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways:
......@@ -99,8 +102,28 @@ wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_t
wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
```
PaddleOCR also provides a data format conversion script, which can convert ICDAR official website label to a data format
supported by PaddleOCR. The data conversion tool is in `ppocr/utils/gen_label.py`, here is the training set as an example:
```
# convert the official gt to rec_gt_label.txt
python gen_label.py --mode="rec" --input_path="{path/of/origin/label}" --output_label="rec_gt_label.txt"
```
The data format is as follows, (a) is the original picture, (b) is the Ground Truth text file corresponding to each picture:
![](../datasets/icdar_rec.png)
- Multilingual dataset
The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods.
* [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA) ,Extraction code:frgi.
* [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)
<a name="Dictionary"></a>
#### 1.3 Dictionary
### 1.3 Dictionary
Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index.
......@@ -138,21 +161,31 @@ The current multi-language model is still in the demo stage and will continue to
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) and we will thank you in the Repo.
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` and set `character_type` to `ch`.
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` .
- Custom dictionary
If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.
<a name="Add_space_category"></a>
#### 1.4 Add space category
### 1.4 Add Space Category
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`.
**Note: use_space_char only takes effect when character_type=ch**
<a name="TRAINING"></a>
### 2 TRAINING
## 2.Training
<a name="Data_Augmentation"></a>
### 2.1 Data Augmentation
PaddleOCR provides a variety of data augmentation methods. All the augmentation methods are enabled by default.
The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, TIA augmentation.
Each disturbance method is selected with a 40% probability during the training process. For specific code implementation, please refer to: [rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)
<a name="Training"></a>
### 2.2 General Training
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:
......@@ -170,21 +203,15 @@ tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc
Start training:
```
# GPU training Support single card and multi-card training, specify the card number through --gpus
# GPU training Support single card and multi-card training
# Training icdar15 English data and The training log will be automatically saved as train.log under "{save_model_dir}"
#specify the single card training(Long training time, not recommended)
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
#specify the card number through --gpus
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml
```
<a name="Data_Augmentation"></a>
#### 2.1 Data Augmentation
PaddleOCR provides a variety of data augmentation methods. If you want to add disturbance during training, please set `distort: true` in the configuration file.
The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse.
Each disturbance method is selected with a 50% probability during the training process. For specific code implementation, please refer to: [img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py)
<a name="Training"></a>
#### 2.2 Training
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.
......@@ -207,6 +234,8 @@ If the evaluation set is large, the test will be time-consuming. It is recommend
| rec_mv3_tps_bilstm_att.yml | CRNN | Mobilenet_v3 | TPS | BiLSTM | att |
| rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att |
| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
| rec_mtb_nrtr.yml | NRTR | nrtr_mtb | None | transformer encoder | transformer decoder |
| rec_r31_sar.yml | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
For training Chinese data, it is recommended to use
......@@ -219,7 +248,6 @@ Global:
# Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
# Modify character type
character_type: ch
...
# Whether to recognize spaces
use_space_char: True
......@@ -277,108 +305,25 @@ Eval:
**Note that the configuration file for prediction/evaluation must be consistent with the training.**
<a name="Multi_language"></a>
#### 2.3 Multi-language
PaddleOCR currently supports 80 (except Chinese) language recognition. A multi-language configuration file template is
provided under the path `configs/rec/multi_languages`: [rec_multi_language_lite_train.yml](../../configs/rec/multi_language/rec_multi_language_lite_train.yml)
There are two ways to create the required configuration file::
1. Automatically generated by script
[generate_multi_language_configs.py](../../configs/rec/multi_language/generate_multi_language_configs.py) Can help you generate configuration files for multi-language models
- Take Italian as an example, if your data is prepared in the following format:
```
|-train_data
|- it_train.txt # train_set label
|- it_val.txt # val_set label
|- data
|- word_001.jpg
|- word_002.jpg
|- word_003.jpg
| ...
```
You can use the default parameters to generate a configuration file:
```bash
# The code needs to be run in the specified directory
cd PaddleOCR/configs/rec/multi_language/
# Set the configuration file of the language to be generated through the -l or --language parameter.
# This command will write the default parameters into the configuration file
python3 generate_multi_language_configs.py -l it
```
- If your data is placed in another location, or you want to use your own dictionary, you can generate the configuration file by specifying the relevant parameters:
```bash
# -l or --language field is required
# --train to modify the training set
# --val to modify the validation set
# --data_dir to modify the data set directory
# --dict to modify the dict path
# -o to modify the corresponding default parameters
cd PaddleOCR/configs/rec/multi_language/
python3 generate_multi_language_configs.py -l it \ # language
--train {path/of/train_label.txt} \ # path of train_label
--val {path/of/val_label.txt} \ # path of val_label
--data_dir {train_data/path} \ # root directory of training data
--dict {path/of/dict} \ # path of dict
-o Global.use_gpu=False # whether to use gpu
...
```
Italian is made up of Latin letters, so after executing the command, you will get the rec_latin_lite_train.yml.
2. Manually modify the configuration file
You can also manually modify the following fields in the template:
```
Global:
use_gpu: True
epoch_num: 500
...
character_type: it # language
character_dict_path: {path/of/dict} # path of dict
Train:
dataset:
name: SimpleDataSet
data_dir: train_data/ # root directory of training data
label_file_list: ["./train_data/train_list.txt"] # train label path
...
Eval:
dataset:
name: SimpleDataSet
data_dir: train_data/ # root directory of val data
label_file_list: ["./train_data/val_list.txt"] # val label path
...
```
### 2.3 Multi-language Training
Currently, the multi-language algorithms supported by PaddleOCR are:
| Configuration file | Algorithm name | backbone | trans | seq | pred | language | character_type |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: | :-----: |
| rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | chinese traditional | chinese_cht|
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | English(Case sensitive) | EN |
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | French | french |
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | German | german |
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Japanese | japan |
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Korean | korean |
| rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Latin | latin |
| rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | arabic | ar |
| rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | cyrillic | cyrillic |
| rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | devanagari | devanagari |
| Configuration file | Algorithm name | backbone | trans | seq | pred | language |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: |
| rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | chinese traditional |
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | English(Case sensitive) |
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | French |
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | German |
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Japanese |
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Korean |
| rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Latin |
| rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | arabic |
| rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | cyrillic |
| rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | devanagari |
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods.
* [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA),Extraction code:frgi.
* [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)
If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:
......@@ -417,7 +362,8 @@ Eval:
```
<a name="EVALUATION"></a>
### 3 EVALUATION
## 3. Evalution
The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
......@@ -427,20 +373,39 @@ python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec
```
<a name="PREDICTION"></a>
### 4 PREDICTION
## 4. Prediction
<a name="Training_engine_prediction"></a>
#### 4.1 Training engine prediction
Using the model trained by paddleocr, you can quickly get prediction through the following script.
The default prediction picture is stored in `infer_img`, and the weight is specified via `-o Global.checkpoints`:
The default prediction picture is stored in `infer_img`, and the trained weight is specified via `-o Global.checkpoints`:
According to the `save_model_dir` and `save_epoch_step` fields set in the configuration file, the following parameters will be saved:
```
output/rec/
├── best_accuracy.pdopt
├── best_accuracy.pdparams
├── best_accuracy.states
├── config.yml
├── iter_epoch_3.pdopt
├── iter_epoch_3.pdparams
├── iter_epoch_3.states
├── latest.pdopt
├── latest.pdparams
├── latest.states
└── train.log
```
Among them, best_accuracy.* is the best model on the evaluation set; iter_epoch_x.* is the model saved at intervals of `save_epoch_step`; latest.* is the model of the last epoch.
```
# Predict English results
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.jpg
```
Input image:
![](../imgs_words/en/word_1.png)
......@@ -469,3 +434,37 @@ Get the prediction result of the input image:
infer_img: doc/imgs_words/ch/word_1.jpg
result: ('韩国小馆', 0.997218)
```
<a name="Inference"></a>
## 5. Convert to Inference Model
The recognition model is converted to the inference model in the same way as the detection, as follows:
```
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.save_inference_dir Set the address where the converted model will be saved.
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn/
```
If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.
After the conversion is successful, there are three files in the model save directory:
```
inference/det_db/
├── inference.pdiparams # The parameter file of recognition inference model
├── inference.pdiparams.info # The parameter information of recognition inference model, which can be ignored
└── inference.pdmodel # The program file of recognition model
```
- Text recognition model Inference using custom characters dictionary
If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`, and set `rec_char_type=ch`
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
```
# Model Training
- [1.Yml Configuration ](#1-Yml-Configuration)
- [2. Basic Concepts](#1-basic-concepts)
* [2.1 Learning Rate](#11-learning-rate)
* [2.2 Regularization](#12-regularization)
* [2.3 Evaluation Indicators](#13-evaluation-indicators-)
- [3. Data and Vertical Scenes](#2-data-and-vertical-scenes)
* [3.1 Training Data](#21-training-data)
* [3.2 Vertical Scene](#22-vertical-scene)
* [3.3 Build Your Own Dataset](#23-build-your-own-data-set)
* [4. FAQ](#3-faq)
This article will introduce the basic concepts that need to be mastered during model training and the tuning methods during training.
At the same time, it will briefly introduce the components of the PaddleOCR model training data and how to prepare the data finetune model in the vertical scene.
<a name="1-Yml-Configuration"></a>
## 1. Yml Configuration
The PaddleOCR model uses configuration files to manage network training and evaluation parameters. In the configuration file, you can set the model, optimizer, loss function, and pre- and post-processing parameters of the model. PaddleOCR reads these parameters from the configuration file, and then builds a complete training process to complete the model training. When optimized, the configuration can be completed by modifying the parameters in the configuration file, which is simple to use and convenient to modify.
For the complete configuration file description, please refer to [Configuration File](./config_en.md)
<a name="1-basic-concepts"></a>
# 1. Basic concepts
## 2. Basic Concepts
The following parameters need to be paid attention to when tuning the model:
<a name="11-learning-rate"></a>
### 2.1 Learning Rate
The learning rate is one of the important hyperparameters for training neural networks. It represents the step length of the gradient moving to the optimal solution of the loss function in each iteration.
A variety of learning rate update strategies are provided in PaddleOCR, which can be modified through configuration files, for example:
```
Optimizer:
...
lr:
name: Piecewise
decay_epochs : [700, 800]
values : [0.001, 0.0001]
warmup_epoch: 5
```
Piecewise stands for piecewise constant attenuation. Different learning rates are specified in different learning stages,
and the learning rate is the same in each stage.
warmup_epoch means that in the first 5 epochs, the learning rate will gradually increase from 0 to base_lr. For all strategies, please refer to the code [learning_rate.py](../../ppocr/optimizer/learning_rate.py).
<a name="12-regularization"></a>
## 1.2 Regularization
Regularization can effectively avoid algorithm overfitting. PaddleOCR provides L1 and L2 regularization methods.
L1 and L2 regularization are the most commonly used regularization methods.
L1 regularization adds a regularization term to the objective function to reduce the sum of absolute values of the parameters;
while in L2 regularization, the purpose of adding a regularization term is to reduce the sum of squared parameters.
The configuration method is as follows:
```
Optimizer:
...
regularizer:
name: L2
factor: 2.0e-05
```
<a name="13-evaluation-indicators-"></a>
### 2.3 Evaluation Indicators
(1) Detection stage: First, evaluate according to the IOU of the detection frame and the labeled frame. If the IOU is greater than a certain threshold, it is judged that the detection is accurate. Here, the detection frame and the label frame are different from the general general target detection frame, and they are represented by polygons. Detection accuracy: the percentage of the correct detection frame number in all detection frames is mainly used to judge the detection index. Detection recall rate: the percentage of correct detection frames in all marked frames, which is mainly an indicator of missed detection.
(2) Recognition stage: Character recognition accuracy, that is, the ratio of correctly recognized text lines to the number of marked text lines. Only the entire line of text recognition pairs can be regarded as correct recognition.
(3) End-to-end statistics: End-to-end recall rate: accurately detect and correctly identify the proportion of text lines in all labeled text lines; End-to-end accuracy rate: accurately detect and correctly identify the number of text lines in the detected text lines The standard for accurate detection is that the IOU of the detection box and the labeled box is greater than a certain threshold, and the text in the correctly identified detection box is the same as the labeled text.
<a name="2-data-and-vertical-scenes"></a>
## 3. Data and Vertical Scenes
<a name="21-training-data"></a>
### 3.1 Training Data
The current open source models, data sets and magnitudes are as follows:
- Detection:
- English data set, ICDAR2015
- Chinese data set, LSVT street view data set training data 3w pictures
- Identification:
- English data set, MJSynth and SynthText synthetic data, the data volume is tens of millions.
- Chinese data set, LSVT street view data set crops the image according to the truth value, and performs position calibration, a total of 30w images. In addition, based on the LSVT corpus, 500w of synthesized data.
- Small language data set, using different corpora and fonts, respectively generated 100w synthetic data set, and using ICDAR-MLT as the verification set.
Among them, the public data sets are all open source, users can search and download by themselves, or refer to [Chinese data set](./datasets.md), synthetic data is not open source, users can use open source synthesis tools to synthesize by themselves. Synthesis tools include [text_renderer](https://github.com/Sanster/text_renderer), [SynthText](https://github.com/ankush-me/SynthText), [TextRecognitionDataGenerator](https://github.com/Belval/TextRecognitionDataGenerator) etc.
<a name="22-vertical-scene"></a>
### 3.2 Vertical Scene
PaddleOCR mainly focuses on general OCR. If you have vertical requirements, you can use PaddleOCR + vertical data to train yourself;
If there is a lack of labeled data, or if you do not want to invest in research and development costs, it is recommended to directly call the open API, which covers some of the more common vertical categories.
<a name="23-build-your-own-data-set"></a>
### 3.3 Build Your Own Dataset
There are several experiences for reference when constructing the data set:
(1) The amount of data in the training set:
a. The data required for detection is relatively small. For Fine-tune based on the PaddleOCR model, 500 sheets are generally required to achieve good results.
b. Recognition is divided into English and Chinese. Generally, English scenarios require hundreds of thousands of data to achieve good results, while Chinese requires several million or more.
(2) When the amount of training data is small, you can try the following three ways to get more data:
a. Manually collect more training data, the most direct and effective way.
b. Basic image processing or transformation based on PIL and opencv. For example, the three modules of ImageFont, Image, ImageDraw in PIL write text into the background, opencv's rotating affine transformation, Gaussian filtering and so on.
c. Use data generation algorithms to synthesize data, such as algorithms such as pix2pix.
<a name="3-faq"></a>
# 3. FAQ
**Q**: How to choose a suitable network input shape when training CRNN recognition?
A: The general height is 32, the longest width is selected, there are two methods:
(1) Calculate the aspect ratio distribution of training sample images. The selection of the maximum aspect ratio considers 80% of the training samples.
(2) Count the number of texts in training samples. The selection of the longest number of characters considers the training sample that satisfies 80%. Then the aspect ratio of Chinese characters is approximately considered to be 1, and that of English is 3:1, and the longest width is estimated.
**Q**: During the recognition training, the accuracy of the training set has reached 90, but the accuracy of the verification set has been kept at 70, what should I do?
A: If the accuracy of the training set is 90 and the test set is more than 70, it should be over-fitting. There are two methods to try:
(1) Add more augmentation methods or increase the [probability] of augmented prob (https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppocr/data/imaug/rec_img_aug.py#L341), The default is 0.4.
(2) Increase the [l2 dcay value] of the system (https://github.com/PaddlePaddle/PaddleOCR/blob/a501603d54ff5513fc4fc760319472e59da25424/configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml#L47)
**Q**: When the recognition model is trained, loss can drop normally, but acc is always 0
A: It is normal for the acc to be 0 at the beginning of the recognition model training, and the indicator will come up after a longer training period.
***
Click the following links for detailed training tutorial:
- [text detection model training](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/detection.md)
- [text recognition model training](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/recognition.md)
- [text direction classification model training](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/angle_class.md)
# RECENT UPDATES
- 2021.9.7 release PaddleOCR v2.3, [PP-OCRv2](#PP-OCRv2) is proposed. The CPU inference speed of PP-OCRv2 is 220% higher than that of PP-OCR server. The F-score of PP-OCRv2 is 7% higher than that of PP-OCR mobile.
- 2021.8.3 released PaddleOCR v2.2, add a new structured documents analysis toolkit, i.e., [PP-Structure](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.2/ppstructure/README.md), support layout analysis and table recognition (One-key to export chart images to Excel files).
- 2021.4.8 release end-to-end text recognition algorithm [PGNet](https://www.aaai.org/AAAI21Papers/AAAI-2885.WangP.pdf) which is published in AAAI 2021. Find tutorial [here](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/pgnet_en.md);release multi language recognition [models](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md), support more than 80 languages recognition; especically, the performance of [English recognition model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/models_list_en.md#English) is Optimized.
- 2021.1.21 update more than 25+ multilingual recognition models [models list](./doc/doc_en/models_list_en.md), including:English, Chinese, German, French, Japanese,Spanish,Portuguese Russia Arabic and so on. Models for more languages will continue to be updated [Develop Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).
- 2020.12.15 update Data synthesis tool, i.e., [Style-Text](../../StyleText/README.md),easy to synthesize a large number of images which are similar to the target scene image.
- 2020.11.25 Update a new data annotation tool, i.e., [PPOCRLabel](../../PPOCRLabel/README.md), which is helpful to improve the labeling efficiency. Moreover, the labeling results can be used in training of the PP-OCR system directly.
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
......
# Visualization
<a name="PP-OCRv2"></a>
## PP-OCRv2
<img src="../imgs_results/PP-OCRv2/PP-OCRv2-pic001.jpg" width="800">
<img src="../imgs_results/PP-OCRv2/PP-OCRv2-pic002.jpg" width="800">
<img src="../imgs_results/PP-OCRv2/PP-OCRv2-pic003.jpg" width="800">
<a name="ppocr_server_2.0"></a>
## ch_ppocr_server_2.0
......
# paddleocr package
# Paddleocr Package
## 1 Get started quickly
### 1.1 install package
......
doc/joinus.PNG

190.7 KB | W: | H:

doc/joinus.PNG

188.2 KB | W: | H:

doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
  • 2-up
  • Swipe
  • Onion skin
doc/table/1.png

262.8 KB | W: | H:

doc/table/1.png

757.9 KB | W: | H:

doc/table/1.png
doc/table/1.png
doc/table/1.png
doc/table/1.png
  • 2-up
  • Swipe
  • Onion skin
doc/table/table.jpg

24.1 KB | W: | H:

doc/table/table.jpg

58.0 KB | W: | H:

doc/table/table.jpg
doc/table/table.jpg
doc/table/table.jpg
doc/table/table.jpg
  • 2-up
  • Swipe
  • Onion skin
......@@ -33,15 +33,47 @@ from tools.infer.utility import draw_ocr, str2bool
from ppstructure.utility import init_args, draw_structure_result
from ppstructure.predict_system import OCRSystem, save_structure_res
__all__ = ['PaddleOCR', 'PPStructure', 'draw_ocr', 'draw_structure_result', 'save_structure_res','download_with_progressbar']
__all__ = [
'PaddleOCR', 'PPStructure', 'draw_ocr', 'draw_structure_result',
'save_structure_res', 'download_with_progressbar'
]
model_urls = {
SUPPORT_DET_MODEL = ['DB']
VERSION = '2.2.1'
SUPPORT_REC_MODEL = ['CRNN']
BASE_DIR = os.path.expanduser("~/.paddleocr/")
DEFAULT_MODEL_VERSION = '2.0'
MODEL_URLS = {
'2.1': {
'det': {
'ch': {
'url':
'https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar',
},
},
'rec': {
'ch': {
'url':
'https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar',
'dict_path': './ppocr/utils/ppocr_keys_v1.txt'
}
}
},
'2.0': {
'det': {
'ch':
'ch': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar',
'en':
},
'en': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_ppocr_mobile_v2.0_det_infer.tar',
'structure': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar'
},
'structure': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar'
}
},
'rec': {
'ch': {
......@@ -115,22 +147,27 @@ model_urls = {
'dict_path': './ppocr/utils/dict/devanagari_dict.txt'
},
'structure': {
'url': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar',
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar',
'dict_path': 'ppocr/utils/dict/table_dict.txt'
}
},
'cls': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar',
'cls': {
'ch': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar',
}
},
'table': {
'url': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar',
'en': {
'url':
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar',
'dict_path': 'ppocr/utils/dict/table_structure_dict.txt'
}
}
}
}
SUPPORT_DET_MODEL = ['DB']
VERSION = '2.2'
SUPPORT_REC_MODEL = ['CRNN']
BASE_DIR = os.path.expanduser("~/.paddleocr/")
def parse_args(mMain=True):
import argparse
......@@ -140,6 +177,7 @@ def parse_args(mMain=True):
parser.add_argument("--det", type=str2bool, default=True)
parser.add_argument("--rec", type=str2bool, default=True)
parser.add_argument("--type", type=str, default='ocr')
parser.add_argument("--version", type=str, default='2.1')
for action in parser._actions:
if action.dest in ['rec_char_dict_path', 'table_char_dict_path']:
......@@ -155,19 +193,19 @@ def parse_args(mMain=True):
def parse_lang(lang):
latin_lang = [
'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga',
'hr', 'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms',
'mt', 'nl', 'no', 'oc', 'pi', 'pl', 'pt', 'ro', 'rs_latin', 'sk',
'sl', 'sq', 'sv', 'sw', 'tl', 'tr', 'uz', 'vi'
'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga', 'hr',
'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms', 'mt', 'nl',
'no', 'oc', 'pi', 'pl', 'pt', 'ro', 'rs_latin', 'sk', 'sl', 'sq', 'sv',
'sw', 'tl', 'tr', 'uz', 'vi'
]
arabic_lang = ['ar', 'fa', 'ug', 'ur']
cyrillic_lang = [
'ru', 'rs_cyrillic', 'be', 'bg', 'uk', 'mn', 'abq', 'ady', 'kbd',
'ava', 'dar', 'inh', 'che', 'lbe', 'lez', 'tab'
'ru', 'rs_cyrillic', 'be', 'bg', 'uk', 'mn', 'abq', 'ady', 'kbd', 'ava',
'dar', 'inh', 'che', 'lbe', 'lez', 'tab'
]
devanagari_lang = [
'hi', 'mr', 'ne', 'bh', 'mai', 'ang', 'bho', 'mah', 'sck', 'new',
'gom', 'sa', 'bgc'
'hi', 'mr', 'ne', 'bh', 'mai', 'ang', 'bho', 'mah', 'sck', 'new', 'gom',
'sa', 'bgc'
]
if lang in latin_lang:
lang = "latin"
......@@ -177,9 +215,9 @@ def parse_lang(lang):
lang = "cyrillic"
elif lang in devanagari_lang:
lang = "devanagari"
assert lang in model_urls[
assert lang in MODEL_URLS[DEFAULT_MODEL_VERSION][
'rec'], 'param lang must in {}, but got {}'.format(
model_urls['rec'].keys(), lang)
MODEL_URLS[DEFAULT_MODEL_VERSION]['rec'].keys(), lang)
if lang == "ch":
det_lang = "ch"
elif lang == 'structure':
......@@ -189,6 +227,35 @@ def parse_lang(lang):
return lang, det_lang
def get_model_config(version, model_type, lang):
if version not in MODEL_URLS:
logger.warning('version {} not in {}, use version {} instead'.format(
version, MODEL_URLS.keys(), DEFAULT_MODEL_VERSION))
version = DEFAULT_MODEL_VERSION
if model_type not in MODEL_URLS[version]:
if model_type in MODEL_URLS[DEFAULT_MODEL_VERSION]:
logger.warning(
'version {} not support {} models, use version {} instead'.
format(version, model_type, DEFAULT_MODEL_VERSION))
version = DEFAULT_MODEL_VERSION
else:
logger.error('{} models is not support, we only support {}'.format(
model_type, MODEL_URLS[DEFAULT_MODEL_VERSION].keys()))
sys.exit(-1)
if lang not in MODEL_URLS[version][model_type]:
if lang in MODEL_URLS[DEFAULT_MODEL_VERSION][model_type]:
logger.warning('lang {} is not support in {}, use {} instead'.
format(lang, version, DEFAULT_MODEL_VERSION))
version = DEFAULT_MODEL_VERSION
else:
logger.error(
'lang {} is not support, we only support {} for {} models'.
format(lang, MODEL_URLS[DEFAULT_MODEL_VERSION][model_type].keys(
), model_type))
sys.exit(-1)
return MODEL_URLS[version][model_type][lang]
class PaddleOCR(predict_system.TextSystem):
def __init__(self, **kwargs):
"""
......@@ -204,15 +271,21 @@ class PaddleOCR(predict_system.TextSystem):
lang, det_lang = parse_lang(params.lang)
# init model dir
params.det_model_dir, det_url = confirm_model_dir_url(params.det_model_dir,
det_model_config = get_model_config(params.version, 'det', det_lang)
params.det_model_dir, det_url = confirm_model_dir_url(
params.det_model_dir,
os.path.join(BASE_DIR, VERSION, 'ocr', 'det', det_lang),
model_urls['det'][det_lang])
params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir,
det_model_config['url'])
rec_model_config = get_model_config(params.version, 'rec', lang)
params.rec_model_dir, rec_url = confirm_model_dir_url(
params.rec_model_dir,
os.path.join(BASE_DIR, VERSION, 'ocr', 'rec', lang),
model_urls['rec'][lang]['url'])
params.cls_model_dir, cls_url = confirm_model_dir_url(params.cls_model_dir,
rec_model_config['url'])
cls_model_config = get_model_config(params.version, 'cls', 'ch')
params.cls_model_dir, cls_url = confirm_model_dir_url(
params.cls_model_dir,
os.path.join(BASE_DIR, VERSION, 'ocr', 'cls'),
model_urls['cls'])
cls_model_config['url'])
# download model
maybe_download(params.det_model_dir, det_url)
maybe_download(params.rec_model_dir, rec_url)
......@@ -226,7 +299,8 @@ class PaddleOCR(predict_system.TextSystem):
sys.exit(0)
if params.rec_char_dict_path is None:
params.rec_char_dict_path = str(Path(__file__).parent / model_urls['rec'][lang]['dict_path'])
params.rec_char_dict_path = str(
Path(__file__).parent / rec_model_config['dict_path'])
print(params)
# init det_model and rec_model
......@@ -293,24 +367,32 @@ class PPStructure(OCRSystem):
lang, det_lang = parse_lang(params.lang)
# init model dir
params.det_model_dir, det_url = confirm_model_dir_url(params.det_model_dir,
det_model_config = get_model_config(params.version, 'det', det_lang)
params.det_model_dir, det_url = confirm_model_dir_url(
params.det_model_dir,
os.path.join(BASE_DIR, VERSION, 'ocr', 'det', det_lang),
model_urls['det'][det_lang])
params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir,
det_model_config['url'])
rec_model_config = get_model_config(params.version, 'rec', lang)
params.rec_model_dir, rec_url = confirm_model_dir_url(
params.rec_model_dir,
os.path.join(BASE_DIR, VERSION, 'ocr', 'rec', lang),
model_urls['rec'][lang]['url'])
params.table_model_dir, table_url = confirm_model_dir_url(params.table_model_dir,
rec_model_config['url'])
table_model_config = get_model_config(params.version, 'table', 'en')
params.table_model_dir, table_url = confirm_model_dir_url(
params.table_model_dir,
os.path.join(BASE_DIR, VERSION, 'ocr', 'table'),
model_urls['table']['url'])
table_model_config['url'])
# download model
maybe_download(params.det_model_dir, det_url)
maybe_download(params.rec_model_dir, rec_url)
maybe_download(params.table_model_dir, table_url)
if params.rec_char_dict_path is None:
params.rec_char_dict_path = str(Path(__file__).parent / model_urls['rec'][lang]['dict_path'])
params.rec_char_dict_path = str(
Path(__file__).parent / rec_model_config['dict_path'])
if params.table_char_dict_path is None:
params.table_char_dict_path = str(Path(__file__).parent / model_urls['table']['dict_path'])
params.table_char_dict_path = str(
Path(__file__).parent / table_model_config['dict_path'])
print(params)
super().__init__(params)
......@@ -374,4 +456,3 @@ def main():
for item in result:
item.pop('img')
logger.info(item)
......@@ -49,14 +49,12 @@ def term_mp(sig_num, frame):
os.killpg(pgid, signal.SIGKILL)
signal.signal(signal.SIGINT, term_mp)
signal.signal(signal.SIGTERM, term_mp)
def build_dataloader(config, mode, device, logger, seed=None):
config = copy.deepcopy(config)
support_dict = ['SimpleDataSet', 'LMDBDataSet', 'PGDataSet', 'PubTabDataSet']
support_dict = [
'SimpleDataSet', 'LMDBDataSet', 'PGDataSet', 'PubTabDataSet'
]
module_name = config[mode]['dataset']['name']
assert module_name in support_dict, Exception(
'DataSet only support {}'.format(support_dict))
......@@ -96,4 +94,8 @@ def build_dataloader(config, mode, device, logger, seed=None):
return_list=True,
use_shared_memory=use_shared_memory)
# support exit using ctrl+c
signal.signal(signal.SIGINT, term_mp)
signal.signal(signal.SIGTERM, term_mp)
return data_loader
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.vision.transforms import ColorJitter as pp_ColorJitter
__all__ = ['ColorJitter']
class ColorJitter(object):
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0,**kwargs):
self.aug = pp_ColorJitter(brightness, contrast, saturation, hue)
def __call__(self, data):
image = data['image']
image = self.aug(image)
data['image'] = image
return data
......@@ -19,11 +19,13 @@ from __future__ import unicode_literals
from .iaa_augment import IaaAugment
from .make_border_map import MakeBorderMap
from .make_shrink_map import MakeShrinkMap
from .random_crop_data import EastRandomCropData, PSERandomCrop
from .random_crop_data import EastRandomCropData, RandomCropImgMask
from .make_pse_gt import MakePseGt
from .rec_img_aug import RecAug, RecResizeImg, ClsResizeImg, SRNRecResizeImg
from .rec_img_aug import RecAug, RecResizeImg, ClsResizeImg, SRNRecResizeImg, NRTRRecResizeImg, SARRecResizeImg
from .randaugment import RandAugment
from .copy_paste import CopyPaste
from .ColorJitter import ColorJitter
from .operators import *
from .label_ops import *
......
......@@ -21,6 +21,8 @@ import numpy as np
import string
import json
from ppocr.utils.logging import get_logger
class ClsLabelEncode(object):
def __init__(self, label_list, **kwargs):
......@@ -92,31 +94,23 @@ class BaseRecLabelEncode(object):
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False):
support_character_type = [
'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
'EN', 'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs',
'oc', 'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi',
'mr', 'ne', 'latin', 'arabic', 'cyrillic', 'devanagari'
]
assert character_type in support_character_type, "Only {} are supported now but get {}".format(
support_character_type, character_type)
self.max_text_len = max_text_length
self.beg_str = "sos"
self.end_str = "eos"
if character_type == "en":
self.lower = False
if character_dict_path is None:
logger = get_logger()
logger.warning(
"The character_dict_path is None, model can only recognize number and lower letters"
)
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
elif character_type == "EN_symbol":
# same with ASTER setting (use 94 char).
self.character_str = string.printable[:-6]
dict_character = list(self.character_str)
elif character_type in support_character_type:
self.lower = True
else:
self.character_str = ""
assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
character_type)
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
......@@ -125,7 +119,6 @@ class BaseRecLabelEncode(object):
if use_space_char:
self.character_str += " "
dict_character = list(self.character_str)
self.character_type = character_type
dict_character = self.add_special_char(dict_character)
self.dict = {}
for i, char in enumerate(dict_character):
......@@ -147,7 +140,7 @@ class BaseRecLabelEncode(object):
"""
if len(text) == 0 or len(text) > self.max_text_len:
return None
if self.character_type == "en":
if self.lower:
text = text.lower()
text_list = []
for char in text:
......@@ -161,18 +154,47 @@ class BaseRecLabelEncode(object):
return text_list
class NRTRLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(NRTRLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len - 1:
return None
data['length'] = np.array(len(text))
text.insert(0, 2)
text.append(3)
text = text + [0] * (self.max_text_len - len(text))
data['label'] = np.array(text)
return data
def add_special_char(self, dict_character):
dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
return dict_character
class CTCLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False,
**kwargs):
super(CTCLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
super(CTCLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
def __call__(self, data):
text = data['label']
......@@ -182,6 +204,11 @@ class CTCLabelEncode(BaseRecLabelEncode):
data['length'] = np.array(len(text))
text = text + [0] * (self.max_text_len - len(text))
data['label'] = np.array(text)
label = [0] * len(self.character)
for x in text:
label[x] += 1
data['label_ace'] = np.array(label)
return data
def add_special_char(self, dict_character):
......@@ -193,12 +220,10 @@ class E2ELabelEncodeTest(BaseRecLabelEncode):
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='EN',
use_space_char=False,
**kwargs):
super(E2ELabelEncodeTest,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
super(E2ELabelEncodeTest, self).__init__(
max_text_length, character_dict_path, use_space_char)
def __call__(self, data):
import json
......@@ -267,12 +292,10 @@ class AttnLabelEncode(BaseRecLabelEncode):
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False,
**kwargs):
super(AttnLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
super(AttnLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
def add_special_char(self, dict_character):
self.beg_str = "sos"
......@@ -309,18 +332,46 @@ class AttnLabelEncode(BaseRecLabelEncode):
return idx
class SEEDLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(SEEDLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
def add_special_char(self, dict_character):
self.end_str = "eos"
dict_character = dict_character + [self.end_str]
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len:
return None
data['length'] = np.array(len(text)) + 1 # conclude eos
text = text + [len(self.character) - 1] * (self.max_text_len - len(text)
)
data['label'] = np.array(text)
return data
class SRNLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length=25,
character_dict_path=None,
character_type='en',
use_space_char=False,
**kwargs):
super(SRNLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
super(SRNLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
def add_special_char(self, dict_character):
dict_character = dict_character + [self.beg_str, self.end_str]
......@@ -388,7 +439,6 @@ class TableLabelEncode(object):
substr = lines[0].decode('utf-8').strip("\r\n").split("\t")
character_num = int(substr[0])
elem_num = int(substr[1])
for cno in range(1, 1 + character_num):
character = lines[cno].decode('utf-8').strip("\r\n")
list_character.append(character)
......@@ -521,3 +571,47 @@ class TableLabelEncode(object):
assert False, "Unsupport type %s in char_or_elem" \
% char_or_elem
return idx
class SARLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(SARLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
def add_special_char(self, dict_character):
beg_end_str = "<BOS/EOS>"
unknown_str = "<UKN>"
padding_str = "<PAD>"
dict_character = dict_character + [unknown_str]
self.unknown_idx = len(dict_character) - 1
dict_character = dict_character + [beg_end_str]
self.start_idx = len(dict_character) - 1
self.end_idx = len(dict_character) - 1
dict_character = dict_character + [padding_str]
self.padding_idx = len(dict_character) - 1
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len - 1:
return None
data['length'] = np.array(len(text))
target = [self.start_idx] + text + [self.end_idx]
padded_text = [self.padding_idx for _ in range(self.max_text_len)]
padded_text[:len(target)] = target
data['label'] = np.array(padded_text)
return data
def get_ignored_tokens(self):
return [self.padding_idx]
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import cv2
import numpy as np
import pyclipper
from shapely.geometry import Polygon
__all__ = ['MakePseGt']
class MakePseGt(object):
r'''
Making binary mask from detection data with ICDAR format.
Typically following the process of class `MakeICDARData`.
'''
def __init__(self, kernel_num=7, size=640, min_shrink_ratio=0.4, **kwargs):
self.kernel_num = kernel_num
self.min_shrink_ratio = min_shrink_ratio
self.size = size
def __call__(self, data):
image = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
h, w, _ = image.shape
short_edge = min(h, w)
if short_edge < self.size:
# keep short_size >= self.size
scale = self.size / short_edge
image = cv2.resize(image, dsize=None, fx=scale, fy=scale)
text_polys *= scale
gt_kernels = []
for i in range(1,self.kernel_num+1):
# s1->sn, from big to small
rate = 1.0 - (1.0 - self.min_shrink_ratio) / (self.kernel_num - 1) * i
text_kernel, ignore_tags = self.generate_kernel(image.shape[0:2], rate, text_polys, ignore_tags)
gt_kernels.append(text_kernel)
training_mask = np.ones(image.shape[0:2], dtype='uint8')
for i in range(text_polys.shape[0]):
if ignore_tags[i]:
cv2.fillPoly(training_mask, text_polys[i].astype(np.int32)[np.newaxis, :, :], 0)
gt_kernels = np.array(gt_kernels)
gt_kernels[gt_kernels > 0] = 1
data['image'] = image
data['polys'] = text_polys
data['gt_kernels'] = gt_kernels[0:]
data['gt_text'] = gt_kernels[0]
data['mask'] = training_mask.astype('float32')
return data
def generate_kernel(self, img_size, shrink_ratio, text_polys, ignore_tags=None):
h, w = img_size
text_kernel = np.zeros((h, w), dtype=np.float32)
for i, poly in enumerate(text_polys):
polygon = Polygon(poly)
distance = polygon.area * (1 - shrink_ratio * shrink_ratio) / (polygon.length + 1e-6)
subject = [tuple(l) for l in poly]
pco = pyclipper.PyclipperOffset()
pco.AddPath(subject, pyclipper.JT_ROUND,
pyclipper.ET_CLOSEDPOLYGON)
shrinked = np.array(pco.Execute(-distance))
if len(shrinked) == 0 or shrinked.size == 0:
if ignore_tags is not None:
ignore_tags[i] = True
continue
try:
shrinked = np.array(shrinked[0]).reshape(-1, 2)
except:
if ignore_tags is not None:
ignore_tags[i] = True
continue
cv2.fillPoly(text_kernel, [shrinked.astype(np.int32)], i + 1)
return text_kernel, ignore_tags
......@@ -23,6 +23,7 @@ import sys
import six
import cv2
import numpy as np
import fasttext
class DecodeImage(object):
......@@ -57,6 +58,39 @@ class DecodeImage(object):
return data
class NRTRDecodeImage(object):
""" decode image """
def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
self.img_mode = img_mode
self.channel_first = channel_first
def __call__(self, data):
img = data['image']
if six.PY2:
assert type(img) is str and len(
img) > 0, "invalid input 'img' in DecodeImage"
else:
assert type(img) is bytes and len(
img) > 0, "invalid input 'img' in DecodeImage"
img = np.frombuffer(img, dtype='uint8')
img = cv2.imdecode(img, 1)
if img is None:
return None
if self.img_mode == 'GRAY':
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif self.img_mode == 'RGB':
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
img = img[:, :, ::-1]
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if self.channel_first:
img = img.transpose((2, 0, 1))
data['image'] = img
return data
class NormalizeImage(object):
""" normalize image such as substract mean, divide std
"""
......@@ -101,6 +135,17 @@ class ToCHWImage(object):
return data
class Fasttext(object):
def __init__(self, path="None", **kwargs):
self.fast_model = fasttext.load_model(path)
def __call__(self, data):
label = data['label']
fast_label = self.fast_model[label]
data['fast_label'] = fast_label
return data
class KeepKeys(object):
def __init__(self, keep_keys, **kwargs):
self.keep_keys = keep_keys
......@@ -112,6 +157,34 @@ class KeepKeys(object):
return data_list
class Resize(object):
def __init__(self, size=(640, 640), **kwargs):
self.size = size
def resize_image(self, img):
resize_h, resize_w = self.size
ori_h, ori_w = img.shape[:2] # (h, w, c)
ratio_h = float(resize_h) / ori_h
ratio_w = float(resize_w) / ori_w
img = cv2.resize(img, (int(resize_w), int(resize_h)))
return img, [ratio_h, ratio_w]
def __call__(self, data):
img = data['image']
text_polys = data['polys']
img_resize, [ratio_h, ratio_w] = self.resize_image(img)
new_boxes = []
for box in text_polys:
new_box = []
for cord in box:
new_box.append([cord[0] * ratio_w, cord[1] * ratio_h])
new_boxes.append(new_box)
data['image'] = img_resize
data['polys'] = np.array(new_boxes, dtype=np.float32)
return data
class DetResizeForTest(object):
def __init__(self, **kwargs):
super(DetResizeForTest, self).__init__()
......@@ -183,7 +256,7 @@ class DetResizeForTest(object):
else:
ratio = 1.
elif self.limit_type == 'resize_long':
ratio = float(limit_side_len) / max(h,w)
ratio = float(limit_side_len) / max(h, w)
else:
raise Exception('not support limit type, image ')
resize_h = int(h * ratio)
......
......@@ -164,47 +164,55 @@ class EastRandomCropData(object):
return data
class PSERandomCrop(object):
def __init__(self, size, **kwargs):
class RandomCropImgMask(object):
def __init__(self, size, main_key, crop_keys, p=3 / 8, **kwargs):
self.size = size
self.main_key = main_key
self.crop_keys = crop_keys
self.p = p
def __call__(self, data):
imgs = data['imgs']
image = data['image']
h, w = imgs[0].shape[0:2]
h, w = image.shape[0:2]
th, tw = self.size
if w == tw and h == th:
return imgs
return data
# label中存在文本实例,并且按照概率进行裁剪,使用threshold_label_map控制
if np.max(imgs[2]) > 0 and random.random() > 3 / 8:
# 文本实例的左上角点
tl = np.min(np.where(imgs[2] > 0), axis=1) - self.size
mask = data[self.main_key]
if np.max(mask) > 0 and random.random() > self.p:
# make sure to crop the text region
tl = np.min(np.where(mask > 0), axis=1) - (th, tw)
tl[tl < 0] = 0
# 文本实例的右下角点
br = np.max(np.where(imgs[2] > 0), axis=1) - self.size
br = np.max(np.where(mask > 0), axis=1) - (th, tw)
br[br < 0] = 0
# 保证选到右下角点时,有足够的距离进行crop
br[0] = min(br[0], h - th)
br[1] = min(br[1], w - tw)
for _ in range(50000):
i = random.randint(tl[0], br[0])
j = random.randint(tl[1], br[1])
# 保证shrink_label_map有文本
if imgs[1][i:i + th, j:j + tw].sum() <= 0:
continue
i = random.randint(tl[0], br[0]) if tl[0] < br[0] else 0
j = random.randint(tl[1], br[1]) if tl[1] < br[1] else 0
else:
break
else:
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
i = random.randint(0, h - th) if h - th > 0 else 0
j = random.randint(0, w - tw) if w - tw > 0 else 0
# return i, j, th, tw
for idx in range(len(imgs)):
if len(imgs[idx].shape) == 3:
imgs[idx] = imgs[idx][i:i + th, j:j + tw, :]
for k in data:
if k in self.crop_keys:
if len(data[k].shape) == 3:
if np.argmin(data[k].shape) == 0:
img = data[k][:, i:i + th, j:j + tw]
if img.shape[1] != img.shape[2]:
a = 1
elif np.argmin(data[k].shape) == 2:
img = data[k][i:i + th, j:j + tw, :]
if img.shape[1] != img.shape[0]:
a = 1
else:
img = data[k]
else:
imgs[idx] = imgs[idx][i:i + th, j:j + tw]
data['imgs'] = imgs
img = data[k][i:i + th, j:j + tw]
if img.shape[0] != img.shape[1]:
a = 1
data[k] = img
return data
......@@ -16,7 +16,7 @@ import math
import cv2
import numpy as np
import random
from PIL import Image
from .text_image_aug import tia_perspective, tia_stretch, tia_distort
......@@ -43,22 +43,64 @@ class ClsResizeImg(object):
return data
class NRTRRecResizeImg(object):
def __init__(self, image_shape, resize_type, padding=False, **kwargs):
self.image_shape = image_shape
self.resize_type = resize_type
self.padding = padding
def __call__(self, data):
img = data['image']
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
image_shape = self.image_shape
if self.padding:
imgC, imgH, imgW = image_shape
# todo: change to 0 and modified image shape
h = img.shape[0]
w = img.shape[1]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
norm_img = np.expand_dims(resized_image, -1)
norm_img = norm_img.transpose((2, 0, 1))
resized_image = norm_img.astype(np.float32) / 128. - 1.
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
data['image'] = padding_im
return data
if self.resize_type == 'PIL':
image_pil = Image.fromarray(np.uint8(img))
img = image_pil.resize(self.image_shape, Image.ANTIALIAS)
img = np.array(img)
if self.resize_type == 'OpenCV':
img = cv2.resize(img, self.image_shape)
norm_img = np.expand_dims(img, -1)
norm_img = norm_img.transpose((2, 0, 1))
data['image'] = norm_img.astype(np.float32) / 128. - 1.
return data
class RecResizeImg(object):
def __init__(self,
image_shape,
infer_mode=False,
character_type='ch',
character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
padding=True,
**kwargs):
self.image_shape = image_shape
self.infer_mode = infer_mode
self.character_type = character_type
self.character_dict_path = character_dict_path
self.padding = padding
def __call__(self, data):
img = data['image']
if self.infer_mode and self.character_type == "ch":
if self.infer_mode and self.character_dict_path is not None:
norm_img = resize_norm_img_chinese(img, self.image_shape)
else:
norm_img = resize_norm_img(img, self.image_shape)
norm_img = resize_norm_img(img, self.image_shape, self.padding)
data['image'] = norm_img
return data
......@@ -83,10 +125,66 @@ class SRNRecResizeImg(object):
return data
def resize_norm_img(img, image_shape):
class SARRecResizeImg(object):
def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
self.image_shape = image_shape
self.width_downsample_ratio = width_downsample_ratio
def __call__(self, data):
img = data['image']
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
img, self.image_shape, self.width_downsample_ratio)
data['image'] = norm_img
data['resized_shape'] = resize_shape
data['pad_shape'] = pad_shape
data['valid_ratio'] = valid_ratio
return data
def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
imgC, imgH, imgW_min, imgW_max = image_shape
h = img.shape[0]
w = img.shape[1]
valid_ratio = 1.0
# make sure new_width is an integral multiple of width_divisor.
width_divisor = int(1 / width_downsample_ratio)
# resize
ratio = w / float(h)
resize_w = math.ceil(imgH * ratio)
if resize_w % width_divisor != 0:
resize_w = round(resize_w / width_divisor) * width_divisor
if imgW_min is not None:
resize_w = max(imgW_min, resize_w)
if imgW_max is not None:
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
resize_w = min(imgW_max, resize_w)
resized_image = cv2.resize(img, (resize_w, imgH))
resized_image = resized_image.astype('float32')
# norm
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
resize_shape = resized_image.shape
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
padding_im[:, :, 0:resize_w] = resized_image
pad_shape = padding_im.shape
return padding_im, resize_shape, pad_shape, valid_ratio
def resize_norm_img(img, image_shape, padding=True):
imgC, imgH, imgW = image_shape
h = img.shape[0]
w = img.shape[1]
if not padding:
resized_image = cv2.resize(
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
resized_w = imgW
else:
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
......
......@@ -15,7 +15,6 @@ import numpy as np
import os
import random
from paddle.io import Dataset
from .imaug import transform, create_operators
......
......@@ -20,11 +20,15 @@ import paddle.nn as nn
from .det_db_loss import DBLoss
from .det_east_loss import EASTLoss
from .det_sast_loss import SASTLoss
from .det_pse_loss import PSELoss
# rec loss
from .rec_ctc_loss import CTCLoss
from .rec_att_loss import AttentionLoss
from .rec_srn_loss import SRNLoss
from .rec_nrtr_loss import NRTRLoss
from .rec_sar_loss import SARLoss
from .rec_aster_loss import AsterLoss
# cls loss
from .cls_loss import ClsLoss
......@@ -41,10 +45,12 @@ from .combined_loss import CombinedLoss
# table loss
from .table_att_loss import TableAttentionLoss
def build_loss(config):
support_dict = [
'DBLoss', 'EASTLoss', 'SASTLoss', 'CTCLoss', 'ClsLoss', 'AttentionLoss',
'SRNLoss', 'PGLoss', 'CombinedLoss', 'TableAttentionLoss'
'DBLoss', 'PSELoss', 'EASTLoss', 'SASTLoss', 'CTCLoss', 'ClsLoss',
'AttentionLoss', 'SRNLoss', 'PGLoss', 'CombinedLoss', 'NRTRLoss',
'TableAttentionLoss', 'SARLoss', 'AsterLoss'
]
config = copy.deepcopy(config)
module_name = config.pop('name')
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
class ACELoss(nn.Layer):
def __init__(self, **kwargs):
super().__init__()
self.loss_func = nn.CrossEntropyLoss(
weight=None,
ignore_index=0,
reduction='none',
soft_label=True,
axis=-1)
def __call__(self, predicts, batch):
if isinstance(predicts, (list, tuple)):
predicts = predicts[-1]
B, N = predicts.shape[:2]
div = paddle.to_tensor([N]).astype('float32')
predicts = nn.functional.softmax(predicts, axis=-1)
aggregation_preds = paddle.sum(predicts, axis=1)
aggregation_preds = paddle.divide(aggregation_preds, div)
length = batch[2].astype("float32")
batch = batch[3].astype("float32")
batch[:, 0] = paddle.subtract(div, length)
batch = paddle.divide(batch, div)
loss = self.loss_func(aggregation_preds, batch)
return {"loss_ace": loss}
......@@ -56,31 +56,34 @@ class CELoss(nn.Layer):
class KLJSLoss(object):
def __init__(self, mode='kl'):
assert mode in ['kl', 'js', 'KL', 'JS'], "mode can only be one of ['kl', 'js', 'KL', 'JS']"
assert mode in ['kl', 'js', 'KL', 'JS'
], "mode can only be one of ['kl', 'js', 'KL', 'JS']"
self.mode = mode
def __call__(self, p1, p2, reduction="mean"):
loss = paddle.multiply(p2, paddle.log( (p2+1e-5)/(p1+1e-5) + 1e-5))
loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5))
if self.mode.lower() == "js":
loss += paddle.multiply(p1, paddle.log((p1+1e-5)/(p2+1e-5) + 1e-5))
loss += paddle.multiply(
p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5))
loss *= 0.5
if reduction == "mean":
loss = paddle.mean(loss, axis=[1,2])
elif reduction=="none" or reduction is None:
loss = paddle.mean(loss, axis=[1, 2])
elif reduction == "none" or reduction is None:
return loss
else:
loss = paddle.sum(loss, axis=[1,2])
loss = paddle.sum(loss, axis=[1, 2])
return loss
class DMLLoss(nn.Layer):
"""
DMLLoss
"""
def __init__(self, act=None):
def __init__(self, act=None, use_log=False):
super().__init__()
if act is not None:
assert act in ["softmax", "sigmoid"]
......@@ -91,19 +94,23 @@ class DMLLoss(nn.Layer):
else:
self.act = None
self.use_log = use_log
self.jskl_loss = KLJSLoss(mode="js")
def forward(self, out1, out2):
if self.act is not None:
out1 = self.act(out1)
out2 = self.act(out2)
if len(out1.shape) < 2:
if self.use_log:
# for recognition distillation, log is needed for feature map
log_out1 = paddle.log(out1)
log_out2 = paddle.log(out2)
loss = (F.kl_div(
log_out1, out2, reduction='batchmean') + F.kl_div(
log_out2, out1, reduction='batchmean')) / 2.0
else:
# for detection distillation log is not needed
loss = self.jskl_loss(out1, out2)
return loss
......
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import pickle
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class CenterLoss(nn.Layer):
"""
Reference: Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
"""
def __init__(self,
num_classes=6625,
feat_dim=96,
init_center=False,
center_file_path=None):
super().__init__()
self.num_classes = num_classes
self.feat_dim = feat_dim
self.centers = paddle.randn(
shape=[self.num_classes, self.feat_dim]).astype("float64")
if init_center:
assert os.path.exists(
center_file_path
), f"center path({center_file_path}) must exist when init_center is set as True."
with open(center_file_path, 'rb') as f:
char_dict = pickle.load(f)
for key in char_dict.keys():
self.centers[key] = paddle.to_tensor(char_dict[key])
def __call__(self, predicts, batch):
assert isinstance(predicts, (list, tuple))
features, predicts = predicts
feats_reshape = paddle.reshape(
features, [-1, features.shape[-1]]).astype("float64")
label = paddle.argmax(predicts, axis=2)
label = paddle.reshape(label, [label.shape[0] * label.shape[1]])
batch_size = feats_reshape.shape[0]
#calc l2 distance between feats and centers
square_feat = paddle.sum(paddle.square(feats_reshape),
axis=1,
keepdim=True)
square_feat = paddle.expand(square_feat, [batch_size, self.num_classes])
square_center = paddle.sum(paddle.square(self.centers),
axis=1,
keepdim=True)
square_center = paddle.expand(
square_center, [self.num_classes, batch_size]).astype("float64")
square_center = paddle.transpose(square_center, [1, 0])
distmat = paddle.add(square_feat, square_center)
feat_dot_center = paddle.matmul(feats_reshape,
paddle.transpose(self.centers, [1, 0]))
distmat = distmat - 2.0 * feat_dot_center
#generate the mask
classes = paddle.arange(self.num_classes).astype("int64")
label = paddle.expand(
paddle.unsqueeze(label, 1), (batch_size, self.num_classes))
mask = paddle.equal(
paddle.expand(classes, [batch_size, self.num_classes]),
label).astype("float64")
dist = paddle.multiply(distmat, mask)
loss = paddle.sum(paddle.clip(dist, min=1e-12, max=1e+12)) / batch_size
return {'loss_center': loss}
......@@ -15,6 +15,10 @@
import paddle
import paddle.nn as nn
from .rec_ctc_loss import CTCLoss
from .center_loss import CenterLoss
from .ace_loss import ACELoss
from .distillation_loss import DistillationCTCLoss
from .distillation_loss import DistillationDMLLoss
from .distillation_loss import DistillationDistanceLoss, DistillationDBLoss, DistillationDilaDBLoss
......@@ -49,11 +53,15 @@ class CombinedLoss(nn.Layer):
loss = loss_func(input, batch, **kargs)
if isinstance(loss, paddle.Tensor):
loss = {"loss_{}_{}".format(str(loss), idx): loss}
weight = self.loss_weight[idx]
for key in loss.keys():
if key == "loss":
loss_all += loss[key] * weight
loss = {key: loss[key] * weight for key in loss}
if "loss" in loss:
loss_all += loss["loss"]
else:
loss_dict["{}_{}".format(key, idx)] = loss[key]
loss_all += paddle.add_n(list(loss.values()))
loss_dict.update(loss)
loss_dict["loss"] = loss_all
return loss_dict
......@@ -75,12 +75,6 @@ class BalanceLoss(nn.Layer):
mask (variable): masked maps.
return: (variable) balanced loss
"""
# if self.main_loss_type in ['DiceLoss']:
# # For the loss that returns to scalar value, perform ohem on the mask
# mask = ohem_batch(pred, gt, mask, self.negative_ratio)
# loss = self.loss(pred, gt, mask)
# return loss
positive = gt * mask
negative = (1 - gt) * mask
......@@ -154,52 +148,3 @@ class BCELoss(nn.Layer):
def forward(self, input, label, mask=None, weight=None, name=None):
loss = F.binary_cross_entropy(input, label, reduction=self.reduction)
return loss
\ No newline at end of file
def ohem_single(score, gt_text, training_mask, ohem_ratio):
pos_num = (int)(np.sum(gt_text > 0.5)) - (
int)(np.sum((gt_text > 0.5) & (training_mask <= 0.5)))
if pos_num == 0:
# selected_mask = gt_text.copy() * 0 # may be not good
selected_mask = training_mask
selected_mask = selected_mask.reshape(
1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
neg_num = (int)(np.sum(gt_text <= 0.5))
neg_num = (int)(min(pos_num * ohem_ratio, neg_num))
if neg_num == 0:
selected_mask = training_mask
selected_mask = selected_mask.reshape(
1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
neg_score = score[gt_text <= 0.5]
# 将负样本得分从高到低排序
neg_score_sorted = np.sort(-neg_score)
threshold = -neg_score_sorted[neg_num - 1]
# 选出 得分高的 负样本 和正样本 的 mask
selected_mask = ((score >= threshold) |
(gt_text > 0.5)) & (training_mask > 0.5)
selected_mask = selected_mask.reshape(
1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
def ohem_batch(scores, gt_texts, training_masks, ohem_ratio):
scores = scores.numpy()
gt_texts = gt_texts.numpy()
training_masks = training_masks.numpy()
selected_masks = []
for i in range(scores.shape[0]):
selected_masks.append(
ohem_single(scores[i, :, :], gt_texts[i, :, :], training_masks[
i, :, :], ohem_ratio))
selected_masks = np.concatenate(selected_masks, 0)
selected_masks = paddle.to_tensor(selected_masks)
return selected_masks
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import nn
from paddle.nn import functional as F
import numpy as np
from ppocr.utils.iou import iou
class PSELoss(nn.Layer):
def __init__(self,
alpha,
ohem_ratio=3,
kernel_sample_mask='pred',
reduction='sum',
eps=1e-6,
**kwargs):
"""Implement PSE Loss.
"""
super(PSELoss, self).__init__()
assert reduction in ['sum', 'mean', 'none']
self.alpha = alpha
self.ohem_ratio = ohem_ratio
self.kernel_sample_mask = kernel_sample_mask
self.reduction = reduction
self.eps = eps
def forward(self, outputs, labels):
predicts = outputs['maps']
predicts = F.interpolate(predicts, scale_factor=4)
texts = predicts[:, 0, :, :]
kernels = predicts[:, 1:, :, :]
gt_texts, gt_kernels, training_masks = labels[1:]
# text loss
selected_masks = self.ohem_batch(texts, gt_texts, training_masks)
loss_text = self.dice_loss(texts, gt_texts, selected_masks)
iou_text = iou((texts > 0).astype('int64'),
gt_texts,
training_masks,
reduce=False)
losses = dict(loss_text=loss_text, iou_text=iou_text)
# kernel loss
loss_kernels = []
if self.kernel_sample_mask == 'gt':
selected_masks = gt_texts * training_masks
elif self.kernel_sample_mask == 'pred':
selected_masks = (
F.sigmoid(texts) > 0.5).astype('float32') * training_masks
for i in range(kernels.shape[1]):
kernel_i = kernels[:, i, :, :]
gt_kernel_i = gt_kernels[:, i, :, :]
loss_kernel_i = self.dice_loss(kernel_i, gt_kernel_i,
selected_masks)
loss_kernels.append(loss_kernel_i)
loss_kernels = paddle.mean(paddle.stack(loss_kernels, axis=1), axis=1)
iou_kernel = iou((kernels[:, -1, :, :] > 0).astype('int64'),
gt_kernels[:, -1, :, :],
training_masks * gt_texts,
reduce=False)
losses.update(dict(loss_kernels=loss_kernels, iou_kernel=iou_kernel))
loss = self.alpha * loss_text + (1 - self.alpha) * loss_kernels
losses['loss'] = loss
if self.reduction == 'sum':
losses = {x: paddle.sum(v) for x, v in losses.items()}
elif self.reduction == 'mean':
losses = {x: paddle.mean(v) for x, v in losses.items()}
return losses
def dice_loss(self, input, target, mask):
input = F.sigmoid(input)
input = input.reshape([input.shape[0], -1])
target = target.reshape([target.shape[0], -1])
mask = mask.reshape([mask.shape[0], -1])
input = input * mask
target = target * mask
a = paddle.sum(input * target, 1)
b = paddle.sum(input * input, 1) + self.eps
c = paddle.sum(target * target, 1) + self.eps
d = (2 * a) / (b + c)
return 1 - d
def ohem_single(self, score, gt_text, training_mask, ohem_ratio=3):
pos_num = int(paddle.sum((gt_text > 0.5).astype('float32'))) - int(
paddle.sum(
paddle.logical_and((gt_text > 0.5), (training_mask <= 0.5))
.astype('float32')))
if pos_num == 0:
selected_mask = training_mask
selected_mask = selected_mask.reshape(
[1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
'float32')
return selected_mask
neg_num = int(paddle.sum((gt_text <= 0.5).astype('float32')))
neg_num = int(min(pos_num * ohem_ratio, neg_num))
if neg_num == 0:
selected_mask = training_mask
selected_mask = selected_mask.view(
1, selected_mask.shape[0],
selected_mask.shape[1]).astype('float32')
return selected_mask
neg_score = paddle.masked_select(score, gt_text <= 0.5)
neg_score_sorted = paddle.sort(-neg_score)
threshold = -neg_score_sorted[neg_num - 1]
selected_mask = paddle.logical_and(
paddle.logical_or((score >= threshold), (gt_text > 0.5)),
(training_mask > 0.5))
selected_mask = selected_mask.reshape(
[1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
'float32')
return selected_mask
def ohem_batch(self, scores, gt_texts, training_masks, ohem_ratio=3):
selected_masks = []
for i in range(scores.shape[0]):
selected_masks.append(
self.ohem_single(scores[i, :, :], gt_texts[i, :, :],
training_masks[i, :, :], ohem_ratio))
selected_masks = paddle.concat(selected_masks, 0).astype('float32')
return selected_masks
......@@ -44,10 +44,11 @@ class DistillationDMLLoss(DMLLoss):
def __init__(self,
model_name_pairs=[],
act=None,
use_log=False,
key=None,
maps_name=None,
name="dml"):
super().__init__(act=act)
super().__init__(act=act, use_log=use_log)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
......@@ -57,7 +58,8 @@ class DistillationDMLLoss(DMLLoss):
def _check_model_name_pairs(self, model_name_pairs):
if not isinstance(model_name_pairs, list):
return []
elif isinstance(model_name_pairs[0], list) and isinstance(model_name_pairs[0][0], str):
elif isinstance(model_name_pairs[0], list) and isinstance(
model_name_pairs[0][0], str):
return model_name_pairs
else:
return [model_name_pairs]
......@@ -110,10 +112,10 @@ class DistillationDMLLoss(DMLLoss):
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}_{}_{}".format(key, pair[
0], pair[1], map_name, idx)] = loss[key]
0], pair[1], self.maps_name, idx)] = loss[key]
else:
loss_dict["{}_{}_{}".format(self.name, self.maps_name[_c],
idx)] = loss
loss_dict["{}_{}_{}".format(self.name, self.maps_name[
_c], idx)] = loss
loss_dict = _sum_loss(loss_dict)
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
class CosineEmbeddingLoss(nn.Layer):
def __init__(self, margin=0.):
super(CosineEmbeddingLoss, self).__init__()
self.margin = margin
self.epsilon = 1e-12
def forward(self, x1, x2, target):
similarity = paddle.fluid.layers.reduce_sum(
x1 * x2, dim=-1) / (paddle.norm(
x1, axis=-1) * paddle.norm(
x2, axis=-1) + self.epsilon)
one_list = paddle.full_like(target, fill_value=1)
out = paddle.fluid.layers.reduce_mean(
paddle.where(
paddle.equal(target, one_list), 1. - similarity,
paddle.maximum(
paddle.zeros_like(similarity), similarity - self.margin)))
return out
class AsterLoss(nn.Layer):
def __init__(self,
weight=None,
size_average=True,
ignore_index=-100,
sequence_normalize=False,
sample_normalize=True,
**kwargs):
super(AsterLoss, self).__init__()
self.weight = weight
self.size_average = size_average
self.ignore_index = ignore_index
self.sequence_normalize = sequence_normalize
self.sample_normalize = sample_normalize
self.loss_sem = CosineEmbeddingLoss()
self.is_cosin_loss = True
self.loss_func_rec = nn.CrossEntropyLoss(weight=None, reduction='none')
def forward(self, predicts, batch):
targets = batch[1].astype("int64")
label_lengths = batch[2].astype('int64')
sem_target = batch[3].astype('float32')
embedding_vectors = predicts['embedding_vectors']
rec_pred = predicts['rec_pred']
if not self.is_cosin_loss:
sem_loss = paddle.sum(self.loss_sem(embedding_vectors, sem_target))
else:
label_target = paddle.ones([embedding_vectors.shape[0]])
sem_loss = paddle.sum(
self.loss_sem(embedding_vectors, sem_target, label_target))
# rec loss
batch_size, def_max_length = targets.shape[0], targets.shape[1]
mask = paddle.zeros([batch_size, def_max_length])
for i in range(batch_size):
mask[i, :label_lengths[i]] = 1
mask = paddle.cast(mask, "float32")
max_length = max(label_lengths)
assert max_length == rec_pred.shape[1]
targets = targets[:, :max_length]
mask = mask[:, :max_length]
rec_pred = paddle.reshape(rec_pred, [-1, rec_pred.shape[2]])
input = nn.functional.log_softmax(rec_pred, axis=1)
targets = paddle.reshape(targets, [-1, 1])
mask = paddle.reshape(mask, [-1, 1])
output = -paddle.index_sample(input, index=targets) * mask
output = paddle.sum(output)
if self.sequence_normalize:
output = output / paddle.sum(mask)
if self.sample_normalize:
output = output / batch_size
loss = output + sem_loss * 0.1
return {'loss': loss}
......@@ -21,16 +21,24 @@ from paddle import nn
class CTCLoss(nn.Layer):
def __init__(self, **kwargs):
def __init__(self, use_focal_loss=False, **kwargs):
super(CTCLoss, self).__init__()
self.loss_func = nn.CTCLoss(blank=0, reduction='none')
self.use_focal_loss = use_focal_loss
def forward(self, predicts, batch):
if isinstance(predicts, (list, tuple)):
predicts = predicts[-1]
predicts = predicts.transpose((1, 0, 2))
N, B, _ = predicts.shape
preds_lengths = paddle.to_tensor([N] * B, dtype='int64')
labels = batch[1].astype("int32")
label_lengths = batch[2].astype('int64')
loss = self.loss_func(predicts, labels, preds_lengths, label_lengths)
loss = loss.mean() # sum
if self.use_focal_loss:
weight = paddle.exp(-loss)
weight = paddle.subtract(paddle.to_tensor([1.0]), weight)
weight = paddle.square(weight)
loss = paddle.multiply(loss, weight)
loss = loss.mean()
return {'loss': loss}
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
from .ace_loss import ACELoss
from .center_loss import CenterLoss
from .rec_ctc_loss import CTCLoss
class EnhancedCTCLoss(nn.Layer):
def __init__(self,
use_focal_loss=False,
use_ace_loss=False,
ace_loss_weight=0.1,
use_center_loss=False,
center_loss_weight=0.05,
num_classes=6625,
feat_dim=96,
init_center=False,
center_file_path=None,
**kwargs):
super(EnhancedCTCLoss, self).__init__()
self.ctc_loss_func = CTCLoss(use_focal_loss=use_focal_loss)
self.use_ace_loss = False
if use_ace_loss:
self.use_ace_loss = use_ace_loss
self.ace_loss_func = ACELoss()
self.ace_loss_weight = ace_loss_weight
self.use_center_loss = False
if use_center_loss:
self.use_center_loss = use_center_loss
self.center_loss_func = CenterLoss(
num_classes=num_classes,
feat_dim=feat_dim,
init_center=init_center,
center_file_path=center_file_path)
self.center_loss_weight = center_loss_weight
def __call__(self, predicts, batch):
loss = self.ctc_loss_func(predicts, batch)["loss"]
if self.use_center_loss:
center_loss = self.center_loss_func(
predicts, batch)["loss_center"] * self.center_loss_weight
loss = loss + center_loss
if self.use_ace_loss:
ace_loss = self.ace_loss_func(
predicts, batch)["loss_ace"] * self.ace_loss_weight
loss = loss + ace_loss
return {'enhanced_ctc_loss': loss}
import paddle
from paddle import nn
import paddle.nn.functional as F
class NRTRLoss(nn.Layer):
def __init__(self, smoothing=True, **kwargs):
super(NRTRLoss, self).__init__()
self.loss_func = nn.CrossEntropyLoss(reduction='mean', ignore_index=0)
self.smoothing = smoothing
def forward(self, pred, batch):
pred = pred.reshape([-1, pred.shape[2]])
max_len = batch[2].max()
tgt = batch[1][:, 1:2 + max_len]
tgt = tgt.reshape([-1])
if self.smoothing:
eps = 0.1
n_class = pred.shape[1]
one_hot = F.one_hot(tgt, pred.shape[1])
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = F.log_softmax(pred, axis=1)
non_pad_mask = paddle.not_equal(
tgt, paddle.zeros(
tgt.shape, dtype='int64'))
loss = -(one_hot * log_prb).sum(axis=1)
loss = loss.masked_select(non_pad_mask).mean()
else:
loss = self.loss_func(pred, tgt)
return {'loss': loss}
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
class SARLoss(nn.Layer):
def __init__(self, **kwargs):
super(SARLoss, self).__init__()
self.loss_func = paddle.nn.loss.CrossEntropyLoss(
reduction="mean", ignore_index=92)
def forward(self, predicts, batch):
predict = predicts[:, :
-1, :] # ignore last index of outputs to be in same seq_len with targets
label = batch[1].astype(
"int64")[:, 1:] # ignore first index of target in loss calculation
batch_size, num_steps, num_classes = predict.shape[0], predict.shape[
1], predict.shape[2]
assert len(label.shape) == len(list(predict.shape)) - 1, \
"The target's shape and inputs's shape is [N, d] and [N, num_steps]"
inputs = paddle.reshape(predict, [-1, num_classes])
targets = paddle.reshape(label, [-1])
loss = self.loss_func(inputs, targets)
return {'loss': loss}
......@@ -169,21 +169,10 @@ class DetectionIoUEvaluator(object):
numGlobalCareDet += numDetCare
perSampleMetrics = {
'precision': precision,
'recall': recall,
'hmean': hmean,
'pairs': pairs,
'iouMat': [] if len(detPols) > 100 else iouMat.tolist(),
'gtPolPoints': gtPolPoints,
'detPolPoints': detPolPoints,
'gtCare': numGtCare,
'detCare': numDetCare,
'gtDontCare': gtDontCarePolsNum,
'detDontCare': detDontCarePolsNum,
'detMatched': detMatched,
'evaluationLog': evaluationLog
}
return perSampleMetrics
def combine_results(self, results):
......
......@@ -13,13 +13,20 @@
# limitations under the License.
import Levenshtein
import string
class RecMetric(object):
def __init__(self, main_indicator='acc', **kwargs):
def __init__(self, main_indicator='acc', is_filter=False, **kwargs):
self.main_indicator = main_indicator
self.is_filter = is_filter
self.reset()
def _normalize_text(self, text):
text = ''.join(
filter(lambda x: x in (string.digits + string.ascii_letters), text))
return text.lower()
def __call__(self, pred_label, *args, **kwargs):
preds, labels = pred_label
correct_num = 0
......@@ -28,6 +35,9 @@ class RecMetric(object):
for (pred, pred_conf), (target, _) in zip(preds, labels):
pred = pred.replace(" ", "")
target = target.replace(" ", "")
if self.is_filter:
pred = self._normalize_text(pred)
target = self._normalize_text(target)
norm_edit_dis += Levenshtein.distance(pred, target) / max(
len(pred), len(target), 1)
if pred == target:
......
......@@ -14,7 +14,6 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import nn
from ppocr.modeling.transforms import build_transform
from ppocr.modeling.backbones import build_backbone
......
......@@ -26,8 +26,12 @@ def build_backbone(config, model_type):
from .rec_resnet_vd import ResNet
from .rec_resnet_fpn import ResNetFPN
from .rec_mv1_enhance import MobileNetV1Enhance
from .rec_nrtr_mtb import MTB
from .rec_resnet_31 import ResNet31
from .rec_resnet_aster import ResNet_ASTER
support_dict = [
"MobileNetV1Enhance", "MobileNetV3", "ResNet", "ResNetFPN"
'MobileNetV1Enhance', 'MobileNetV3', 'ResNet', 'ResNetFPN', 'MTB',
"ResNet31", "ResNet_ASTER"
]
elif model_type == "e2e":
from .e2e_resnet_vd_pg import ResNet
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -16,26 +16,17 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import KaimingNormal
import math
import numpy as np
import paddle
from paddle import ParamAttr, reshape, transpose, concat, split
from paddle import ParamAttr, reshape, transpose
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import KaimingNormal
import math
from paddle.nn.functional import hardswish, hardsigmoid
from paddle.regularizer import L2Decay
from paddle.nn.functional import hardswish, hardsigmoid
class ConvBNLayer(nn.Layer):
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle import nn
import paddle
class MTB(nn.Layer):
def __init__(self, cnn_num, in_channels):
super(MTB, self).__init__()
self.block = nn.Sequential()
self.out_channels = in_channels
self.cnn_num = cnn_num
if self.cnn_num == 2:
for i in range(self.cnn_num):
self.block.add_sublayer(
'conv_{}'.format(i),
nn.Conv2D(
in_channels=in_channels
if i == 0 else 32 * (2**(i - 1)),
out_channels=32 * (2**i),
kernel_size=3,
stride=2,
padding=1))
self.block.add_sublayer('relu_{}'.format(i), nn.ReLU())
self.block.add_sublayer('bn_{}'.format(i),
nn.BatchNorm2D(32 * (2**i)))
def forward(self, images):
x = self.block(images)
if self.cnn_num == 2:
# (b, w, h, c)
x = paddle.transpose(x, [0, 3, 2, 1])
x_shape = paddle.shape(x)
x = paddle.reshape(
x, [x_shape[0], x_shape[1], x_shape[2] * x_shape[3]])
return x
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
__all__ = ["ResNet31"]
def conv3x3(in_channel, out_channel, stride=1):
return nn.Conv2D(
in_channel,
out_channel,
kernel_size=3,
stride=stride,
padding=1,
bias_attr=False
)
class BasicBlock(nn.Layer):
expansion = 1
def __init__(self, in_channels, channels, stride=1, downsample=False):
super().__init__()
self.conv1 = conv3x3(in_channels, channels, stride)
self.bn1 = nn.BatchNorm2D(channels)
self.relu = nn.ReLU()
self.conv2 = conv3x3(channels, channels)
self.bn2 = nn.BatchNorm2D(channels)
self.downsample = downsample
if downsample:
self.downsample = nn.Sequential(
nn.Conv2D(in_channels, channels * self.expansion, 1, stride, bias_attr=False),
nn.BatchNorm2D(channels * self.expansion),
)
else:
self.downsample = nn.Sequential()
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet31(nn.Layer):
'''
Args:
in_channels (int): Number of channels of input image tensor.
layers (list[int]): List of BasicBlock number for each stage.
channels (list[int]): List of out_channels of Conv2d layer.
out_indices (None | Sequence[int]): Indices of output stages.
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
'''
def __init__(self,
in_channels=3,
layers=[1, 2, 5, 3],
channels=[64, 128, 256, 256, 512, 512, 512],
out_indices=None,
last_stage_pool=False):
super(ResNet31, self).__init__()
assert isinstance(in_channels, int)
assert isinstance(last_stage_pool, bool)
self.out_indices = out_indices
self.last_stage_pool = last_stage_pool
# conv 1 (Conv Conv)
self.conv1_1 = nn.Conv2D(in_channels, channels[0], kernel_size=3, stride=1, padding=1)
self.bn1_1 = nn.BatchNorm2D(channels[0])
self.relu1_1 = nn.ReLU()
self.conv1_2 = nn.Conv2D(channels[0], channels[1], kernel_size=3, stride=1, padding=1)
self.bn1_2 = nn.BatchNorm2D(channels[1])
self.relu1_2 = nn.ReLU()
# conv 2 (Max-pooling, Residual block, Conv)
self.pool2 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.block2 = self._make_layer(channels[1], channels[2], layers[0])
self.conv2 = nn.Conv2D(channels[2], channels[2], kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2D(channels[2])
self.relu2 = nn.ReLU()
# conv 3 (Max-pooling, Residual block, Conv)
self.pool3 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.block3 = self._make_layer(channels[2], channels[3], layers[1])
self.conv3 = nn.Conv2D(channels[3], channels[3], kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2D(channels[3])
self.relu3 = nn.ReLU()
# conv 4 (Max-pooling, Residual block, Conv)
self.pool4 = nn.MaxPool2D(kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
self.block4 = self._make_layer(channels[3], channels[4], layers[2])
self.conv4 = nn.Conv2D(channels[4], channels[4], kernel_size=3, stride=1, padding=1)
self.bn4 = nn.BatchNorm2D(channels[4])
self.relu4 = nn.ReLU()
# conv 5 ((Max-pooling), Residual block, Conv)
self.pool5 = None
if self.last_stage_pool:
self.pool5 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.block5 = self._make_layer(channels[4], channels[5], layers[3])
self.conv5 = nn.Conv2D(channels[5], channels[5], kernel_size=3, stride=1, padding=1)
self.bn5 = nn.BatchNorm2D(channels[5])
self.relu5 = nn.ReLU()
self.out_channels = channels[-1]
def _make_layer(self, input_channels, output_channels, blocks):
layers = []
for _ in range(blocks):
downsample = None
if input_channels != output_channels:
downsample = nn.Sequential(
nn.Conv2D(
input_channels,
output_channels,
kernel_size=1,
stride=1,
bias_attr=False),
nn.BatchNorm2D(output_channels),
)
layers.append(BasicBlock(input_channels, output_channels, downsample=downsample))
input_channels = output_channels
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1_1(x)
x = self.bn1_1(x)
x = self.relu1_1(x)
x = self.conv1_2(x)
x = self.bn1_2(x)
x = self.relu1_2(x)
outs = []
for i in range(4):
layer_index = i + 2
pool_layer = getattr(self, f'pool{layer_index}')
block_layer = getattr(self, f'block{layer_index}')
conv_layer = getattr(self, f'conv{layer_index}')
bn_layer = getattr(self, f'bn{layer_index}')
relu_layer = getattr(self, f'relu{layer_index}')
if pool_layer is not None:
x = pool_layer(x)
x = block_layer(x)
x = conv_layer(x)
x = bn_layer(x)
x= relu_layer(x)
outs.append(x)
if self.out_indices is not None:
return tuple([outs[i] for i in self.out_indices])
return x
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import sys
import math
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2D(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias_attr=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2D(
in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)
def get_sinusoid_encoding(n_position, feat_dim, wave_length=10000):
# [n_position]
positions = paddle.arange(0, n_position)
# [feat_dim]
dim_range = paddle.arange(0, feat_dim)
dim_range = paddle.pow(wave_length, 2 * (dim_range // 2) / feat_dim)
# [n_position, feat_dim]
angles = paddle.unsqueeze(
positions, axis=1) / paddle.unsqueeze(
dim_range, axis=0)
angles = paddle.cast(angles, "float32")
angles[:, 0::2] = paddle.sin(angles[:, 0::2])
angles[:, 1::2] = paddle.cos(angles[:, 1::2])
return angles
class AsterBlock(nn.Layer):
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(AsterBlock, self).__init__()
self.conv1 = conv1x1(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2D(planes)
self.relu = nn.ReLU()
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2D(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet_ASTER(nn.Layer):
"""For aster or crnn"""
def __init__(self, with_lstm=True, n_group=1, in_channels=3):
super(ResNet_ASTER, self).__init__()
self.with_lstm = with_lstm
self.n_group = n_group
self.layer0 = nn.Sequential(
nn.Conv2D(
in_channels,
32,
kernel_size=(3, 3),
stride=1,
padding=1,
bias_attr=False),
nn.BatchNorm2D(32),
nn.ReLU())
self.inplanes = 32
self.layer1 = self._make_layer(32, 3, [2, 2]) # [16, 50]
self.layer2 = self._make_layer(64, 4, [2, 2]) # [8, 25]
self.layer3 = self._make_layer(128, 6, [2, 1]) # [4, 25]
self.layer4 = self._make_layer(256, 6, [2, 1]) # [2, 25]
self.layer5 = self._make_layer(512, 3, [2, 1]) # [1, 25]
if with_lstm:
self.rnn = nn.LSTM(512, 256, direction="bidirect", num_layers=2)
self.out_channels = 2 * 256
else:
self.out_channels = 512
def _make_layer(self, planes, blocks, stride):
downsample = None
if stride != [1, 1] or self.inplanes != planes:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes, stride), nn.BatchNorm2D(planes))
layers = []
layers.append(AsterBlock(self.inplanes, planes, stride, downsample))
self.inplanes = planes
for _ in range(1, blocks):
layers.append(AsterBlock(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x0 = self.layer0(x)
x1 = self.layer1(x0)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
x5 = self.layer5(x4)
cnn_feat = x5.squeeze(2) # [N, c, w]
cnn_feat = paddle.transpose(cnn_feat, perm=[0, 2, 1])
if self.with_lstm:
rnn_feat, _ = self.rnn(cnn_feat)
return rnn_feat
else:
return cnn_feat
......@@ -20,18 +20,24 @@ def build_head(config):
from .det_db_head import DBHead
from .det_east_head import EASTHead
from .det_sast_head import SASTHead
from .det_pse_head import PSEHead
from .e2e_pg_head import PGHead
# rec head
from .rec_ctc_head import CTCHead
from .rec_att_head import AttentionHead
from .rec_srn_head import SRNHead
from .rec_nrtr_head import Transformer
from .rec_sar_head import SARHead
from .rec_aster_head import AsterHead
# cls head
from .cls_head import ClsHead
support_dict = [
'DBHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead', 'AttentionHead',
'SRNHead', 'PGHead', 'TableAttentionHead']
'DBHead', 'PSEHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead',
'AttentionHead', 'SRNHead', 'PGHead', 'Transformer',
'TableAttentionHead', 'SARHead', 'AsterHead'
]
#table head
from .table_att_head import TableAttentionHead
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle import nn
class PSEHead(nn.Layer):
def __init__(self,
in_channels,
hidden_dim=256,
out_channels=7,
**kwargs):
super(PSEHead, self).__init__()
self.conv1 = nn.Conv2D(in_channels, hidden_dim, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2D(hidden_dim)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2D(hidden_dim, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x, **kwargs):
out = self.conv1(x)
out = self.relu1(self.bn1(out))
out = self.conv2(out)
return {'maps': out}
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle.nn import Linear
from paddle.nn.initializer import XavierUniform as xavier_uniform_
from paddle.nn.initializer import Constant as constant_
from paddle.nn.initializer import XavierNormal as xavier_normal_
zeros_ = constant_(value=0.)
ones_ = constant_(value=1.)
class MultiheadAttention(nn.Layer):
"""Allows the model to jointly attend to information
from different representation subspaces.
See reference: Attention Is All You Need
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
Args:
embed_dim: total dimension of the model
num_heads: parallel attention layers, or heads
"""
def __init__(self,
embed_dim,
num_heads,
dropout=0.,
bias=True,
add_bias_kv=False,
add_zero_attn=False):
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim**-0.5
self.out_proj = Linear(embed_dim, embed_dim, bias_attr=bias)
self._reset_parameters()
self.conv1 = paddle.nn.Conv2D(
in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
self.conv2 = paddle.nn.Conv2D(
in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
self.conv3 = paddle.nn.Conv2D(
in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
def _reset_parameters(self):
xavier_uniform_(self.out_proj.weight)
def forward(self,
query,
key,
value,
key_padding_mask=None,
incremental_state=None,
attn_mask=None):
"""
Inputs of forward function
query: [target length, batch size, embed dim]
key: [sequence length, batch size, embed dim]
value: [sequence length, batch size, embed dim]
key_padding_mask: if True, mask padding based on batch size
incremental_state: if provided, previous time steps are cashed
need_weights: output attn_output_weights
static_kv: key and value are static
Outputs of forward function
attn_output: [target length, batch size, embed dim]
attn_output_weights: [batch size, target length, sequence length]
"""
q_shape = paddle.shape(query)
src_shape = paddle.shape(key)
q = self._in_proj_q(query)
k = self._in_proj_k(key)
v = self._in_proj_v(value)
q *= self.scaling
q = paddle.transpose(
paddle.reshape(
q, [q_shape[0], q_shape[1], self.num_heads, self.head_dim]),
[1, 2, 0, 3])
k = paddle.transpose(
paddle.reshape(
k, [src_shape[0], q_shape[1], self.num_heads, self.head_dim]),
[1, 2, 0, 3])
v = paddle.transpose(
paddle.reshape(
v, [src_shape[0], q_shape[1], self.num_heads, self.head_dim]),
[1, 2, 0, 3])
if key_padding_mask is not None:
assert key_padding_mask.shape[0] == q_shape[1]
assert key_padding_mask.shape[1] == src_shape[0]
attn_output_weights = paddle.matmul(q,
paddle.transpose(k, [0, 1, 3, 2]))
if attn_mask is not None:
attn_mask = paddle.unsqueeze(paddle.unsqueeze(attn_mask, 0), 0)
attn_output_weights += attn_mask
if key_padding_mask is not None:
attn_output_weights = paddle.reshape(
attn_output_weights,
[q_shape[1], self.num_heads, q_shape[0], src_shape[0]])
key = paddle.unsqueeze(paddle.unsqueeze(key_padding_mask, 1), 2)
key = paddle.cast(key, 'float32')
y = paddle.full(
shape=paddle.shape(key), dtype='float32', fill_value='-inf')
y = paddle.where(key == 0., key, y)
attn_output_weights += y
attn_output_weights = F.softmax(
attn_output_weights.astype('float32'),
axis=-1,
dtype=paddle.float32 if attn_output_weights.dtype == paddle.float16
else attn_output_weights.dtype)
attn_output_weights = F.dropout(
attn_output_weights, p=self.dropout, training=self.training)
attn_output = paddle.matmul(attn_output_weights, v)
attn_output = paddle.reshape(
paddle.transpose(attn_output, [2, 0, 1, 3]),
[q_shape[0], q_shape[1], self.embed_dim])
attn_output = self.out_proj(attn_output)
return attn_output
def _in_proj_q(self, query):
query = paddle.transpose(query, [1, 2, 0])
query = paddle.unsqueeze(query, axis=2)
res = self.conv1(query)
res = paddle.squeeze(res, axis=2)
res = paddle.transpose(res, [2, 0, 1])
return res
def _in_proj_k(self, key):
key = paddle.transpose(key, [1, 2, 0])
key = paddle.unsqueeze(key, axis=2)
res = self.conv2(key)
res = paddle.squeeze(res, axis=2)
res = paddle.transpose(res, [2, 0, 1])
return res
def _in_proj_v(self, value):
value = paddle.transpose(value, [1, 2, 0]) #(1, 2, 0)
value = paddle.unsqueeze(value, axis=2)
res = self.conv3(value)
res = paddle.squeeze(res, axis=2)
res = paddle.transpose(res, [2, 0, 1])
return res
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import paddle
from paddle import nn
from paddle.nn import functional as F
class AsterHead(nn.Layer):
def __init__(self,
in_channels,
out_channels,
sDim,
attDim,
max_len_labels,
time_step=25,
beam_width=5,
**kwargs):
super(AsterHead, self).__init__()
self.num_classes = out_channels
self.in_planes = in_channels
self.sDim = sDim
self.attDim = attDim
self.max_len_labels = max_len_labels
self.decoder = AttentionRecognitionHead(in_channels, out_channels, sDim,
attDim, max_len_labels)
self.time_step = time_step
self.embeder = Embedding(self.time_step, in_channels)
self.beam_width = beam_width
self.eos = self.num_classes - 1
def forward(self, x, targets=None, embed=None):
return_dict = {}
embedding_vectors = self.embeder(x)
if self.training:
rec_targets, rec_lengths, _ = targets
rec_pred = self.decoder([x, rec_targets, rec_lengths],
embedding_vectors)
return_dict['rec_pred'] = rec_pred
return_dict['embedding_vectors'] = embedding_vectors
else:
rec_pred, rec_pred_scores = self.decoder.beam_search(
x, self.beam_width, self.eos, embedding_vectors)
return_dict['rec_pred'] = rec_pred
return_dict['rec_pred_scores'] = rec_pred_scores
return_dict['embedding_vectors'] = embedding_vectors
return return_dict
class Embedding(nn.Layer):
def __init__(self, in_timestep, in_planes, mid_dim=4096, embed_dim=300):
super(Embedding, self).__init__()
self.in_timestep = in_timestep
self.in_planes = in_planes
self.embed_dim = embed_dim
self.mid_dim = mid_dim
self.eEmbed = nn.Linear(
in_timestep * in_planes,
self.embed_dim) # Embed encoder output to a word-embedding like
def forward(self, x):
x = paddle.reshape(x, [paddle.shape(x)[0], -1])
x = self.eEmbed(x)
return x
class AttentionRecognitionHead(nn.Layer):
"""
input: [b x 16 x 64 x in_planes]
output: probability sequence: [b x T x num_classes]
"""
def __init__(self, in_channels, out_channels, sDim, attDim, max_len_labels):
super(AttentionRecognitionHead, self).__init__()
self.num_classes = out_channels # this is the output classes. So it includes the <EOS>.
self.in_planes = in_channels
self.sDim = sDim
self.attDim = attDim
self.max_len_labels = max_len_labels
self.decoder = DecoderUnit(
sDim=sDim, xDim=in_channels, yDim=self.num_classes, attDim=attDim)
def forward(self, x, embed):
x, targets, lengths = x
batch_size = paddle.shape(x)[0]
# Decoder
state = self.decoder.get_initial_state(embed)
outputs = []
for i in range(max(lengths)):
if i == 0:
y_prev = paddle.full(
shape=[batch_size], fill_value=self.num_classes)
else:
y_prev = targets[:, i - 1]
output, state = self.decoder(x, state, y_prev)
outputs.append(output)
outputs = paddle.concat([_.unsqueeze(1) for _ in outputs], 1)
return outputs
# inference stage.
def sample(self, x):
x, _, _ = x
batch_size = x.size(0)
# Decoder
state = paddle.zeros([1, batch_size, self.sDim])
predicted_ids, predicted_scores = [], []
for i in range(self.max_len_labels):
if i == 0:
y_prev = paddle.full(
shape=[batch_size], fill_value=self.num_classes)
else:
y_prev = predicted
output, state = self.decoder(x, state, y_prev)
output = F.softmax(output, axis=1)
score, predicted = output.max(1)
predicted_ids.append(predicted.unsqueeze(1))
predicted_scores.append(score.unsqueeze(1))
predicted_ids = paddle.concat([predicted_ids, 1])
predicted_scores = paddle.concat([predicted_scores, 1])
# return predicted_ids.squeeze(), predicted_scores.squeeze()
return predicted_ids, predicted_scores
def beam_search(self, x, beam_width, eos, embed):
def _inflate(tensor, times, dim):
repeat_dims = [1] * tensor.dim()
repeat_dims[dim] = times
output = paddle.tile(tensor, repeat_dims)
return output
# https://github.com/IBM/pytorch-seq2seq/blob/fede87655ddce6c94b38886089e05321dc9802af/seq2seq/models/TopKDecoder.py
batch_size, l, d = x.shape
x = paddle.tile(
paddle.transpose(
x.unsqueeze(1), perm=[1, 0, 2, 3]), [beam_width, 1, 1, 1])
inflated_encoder_feats = paddle.reshape(
paddle.transpose(
x, perm=[1, 0, 2, 3]), [-1, l, d])
# Initialize the decoder
state = self.decoder.get_initial_state(embed, tile_times=beam_width)
pos_index = paddle.reshape(
paddle.arange(batch_size) * beam_width, shape=[-1, 1])
# Initialize the scores
sequence_scores = paddle.full(
shape=[batch_size * beam_width, 1], fill_value=-float('Inf'))
index = [i * beam_width for i in range(0, batch_size)]
sequence_scores[index] = 0.0
# Initialize the input vector
y_prev = paddle.full(
shape=[batch_size * beam_width], fill_value=self.num_classes)
# Store decisions for backtracking
stored_scores = list()
stored_predecessors = list()
stored_emitted_symbols = list()
for i in range(self.max_len_labels):
output, state = self.decoder(inflated_encoder_feats, state, y_prev)
state = paddle.unsqueeze(state, axis=0)
log_softmax_output = paddle.nn.functional.log_softmax(
output, axis=1)
sequence_scores = _inflate(sequence_scores, self.num_classes, 1)
sequence_scores += log_softmax_output
scores, candidates = paddle.topk(
paddle.reshape(sequence_scores, [batch_size, -1]),
beam_width,
axis=1)
# Reshape input = (bk, 1) and sequence_scores = (bk, 1)
y_prev = paddle.reshape(
candidates % self.num_classes, shape=[batch_size * beam_width])
sequence_scores = paddle.reshape(
scores, shape=[batch_size * beam_width, 1])
# Update fields for next timestep
pos_index = paddle.expand_as(pos_index, candidates)
predecessors = paddle.cast(
candidates / self.num_classes + pos_index, dtype='int64')
predecessors = paddle.reshape(
predecessors, shape=[batch_size * beam_width, 1])
state = paddle.index_select(
state, index=predecessors.squeeze(), axis=1)
# Update sequence socres and erase scores for <eos> symbol so that they aren't expanded
stored_scores.append(sequence_scores.clone())
y_prev = paddle.reshape(y_prev, shape=[-1, 1])
eos_prev = paddle.full_like(y_prev, fill_value=eos)
mask = eos_prev == y_prev
mask = paddle.nonzero(mask)
if mask.dim() > 0:
sequence_scores = sequence_scores.numpy()
mask = mask.numpy()
sequence_scores[mask] = -float('inf')
sequence_scores = paddle.to_tensor(sequence_scores)
# Cache results for backtracking
stored_predecessors.append(predecessors)
y_prev = paddle.squeeze(y_prev)
stored_emitted_symbols.append(y_prev)
# Do backtracking to return the optimal values
#====== backtrak ======#
# Initialize return variables given different types
p = list()
l = [[self.max_len_labels] * beam_width for _ in range(batch_size)
] # Placeholder for lengths of top-k sequences
# the last step output of the beams are not sorted
# thus they are sorted here
sorted_score, sorted_idx = paddle.topk(
paddle.reshape(
stored_scores[-1], shape=[batch_size, beam_width]),
beam_width)
# initialize the sequence scores with the sorted last step beam scores
s = sorted_score.clone()
batch_eos_found = [0] * batch_size # the number of EOS found
# in the backward loop below for each batch
t = self.max_len_labels - 1
# initialize the back pointer with the sorted order of the last step beams.
# add pos_index for indexing variable with b*k as the first dimension.
t_predecessors = paddle.reshape(
sorted_idx + pos_index.expand_as(sorted_idx),
shape=[batch_size * beam_width])
while t >= 0:
# Re-order the variables with the back pointer
current_symbol = paddle.index_select(
stored_emitted_symbols[t], index=t_predecessors, axis=0)
t_predecessors = paddle.index_select(
stored_predecessors[t].squeeze(), index=t_predecessors, axis=0)
eos_indices = stored_emitted_symbols[t] == eos
eos_indices = paddle.nonzero(eos_indices)
if eos_indices.dim() > 0:
for i in range(eos_indices.shape[0] - 1, -1, -1):
# Indices of the EOS symbol for both variables
# with b*k as the first dimension, and b, k for
# the first two dimensions
idx = eos_indices[i]
b_idx = int(idx[0] / beam_width)
# The indices of the replacing position
# according to the replacement strategy noted above
res_k_idx = beam_width - (batch_eos_found[b_idx] %
beam_width) - 1
batch_eos_found[b_idx] += 1
res_idx = b_idx * beam_width + res_k_idx
# Replace the old information in return variables
# with the new ended sequence information
t_predecessors[res_idx] = stored_predecessors[t][idx[0]]
current_symbol[res_idx] = stored_emitted_symbols[t][idx[0]]
s[b_idx, res_k_idx] = stored_scores[t][idx[0], 0]
l[b_idx][res_k_idx] = t + 1
# record the back tracked results
p.append(current_symbol)
t -= 1
# Sort and re-order again as the added ended sequences may change
# the order (very unlikely)
s, re_sorted_idx = s.topk(beam_width)
for b_idx in range(batch_size):
l[b_idx] = [
l[b_idx][k_idx.item()] for k_idx in re_sorted_idx[b_idx, :]
]
re_sorted_idx = paddle.reshape(
re_sorted_idx + pos_index.expand_as(re_sorted_idx),
[batch_size * beam_width])
# Reverse the sequences and re-order at the same time
# It is reversed because the backtracking happens in reverse time order
p = [
paddle.reshape(
paddle.index_select(step, re_sorted_idx, 0),
shape=[batch_size, beam_width, -1]) for step in reversed(p)
]
p = paddle.concat(p, -1)[:, 0, :]
return p, paddle.ones_like(p)
class AttentionUnit(nn.Layer):
def __init__(self, sDim, xDim, attDim):
super(AttentionUnit, self).__init__()
self.sDim = sDim
self.xDim = xDim
self.attDim = attDim
self.sEmbed = nn.Linear(sDim, attDim)
self.xEmbed = nn.Linear(xDim, attDim)
self.wEmbed = nn.Linear(attDim, 1)
def forward(self, x, sPrev):
batch_size, T, _ = x.shape # [b x T x xDim]
x = paddle.reshape(x, [-1, self.xDim]) # [(b x T) x xDim]
xProj = self.xEmbed(x) # [(b x T) x attDim]
xProj = paddle.reshape(xProj, [batch_size, T, -1]) # [b x T x attDim]
sPrev = sPrev.squeeze(0)
sProj = self.sEmbed(sPrev) # [b x attDim]
sProj = paddle.unsqueeze(sProj, 1) # [b x 1 x attDim]
sProj = paddle.expand(sProj,
[batch_size, T, self.attDim]) # [b x T x attDim]
sumTanh = paddle.tanh(sProj + xProj)
sumTanh = paddle.reshape(sumTanh, [-1, self.attDim])
vProj = self.wEmbed(sumTanh) # [(b x T) x 1]
vProj = paddle.reshape(vProj, [batch_size, T])
alpha = F.softmax(
vProj, axis=1) # attention weights for each sample in the minibatch
return alpha
class DecoderUnit(nn.Layer):
def __init__(self, sDim, xDim, yDim, attDim):
super(DecoderUnit, self).__init__()
self.sDim = sDim
self.xDim = xDim
self.yDim = yDim
self.attDim = attDim
self.emdDim = attDim
self.attention_unit = AttentionUnit(sDim, xDim, attDim)
self.tgt_embedding = nn.Embedding(
yDim + 1, self.emdDim, weight_attr=nn.initializer.Normal(
std=0.01)) # the last is used for <BOS>
self.gru = nn.GRUCell(input_size=xDim + self.emdDim, hidden_size=sDim)
self.fc = nn.Linear(
sDim,
yDim,
weight_attr=nn.initializer.Normal(std=0.01),
bias_attr=nn.initializer.Constant(value=0))
self.embed_fc = nn.Linear(300, self.sDim)
def get_initial_state(self, embed, tile_times=1):
assert embed.shape[1] == 300
state = self.embed_fc(embed) # N * sDim
if tile_times != 1:
state = state.unsqueeze(1)
trans_state = paddle.transpose(state, perm=[1, 0, 2])
state = paddle.tile(trans_state, repeat_times=[tile_times, 1, 1])
trans_state = paddle.transpose(state, perm=[1, 0, 2])
state = paddle.reshape(trans_state, shape=[-1, self.sDim])
state = state.unsqueeze(0) # 1 * N * sDim
return state
def forward(self, x, sPrev, yPrev):
# x: feature sequence from the image decoder.
batch_size, T, _ = x.shape
alpha = self.attention_unit(x, sPrev)
context = paddle.squeeze(paddle.matmul(alpha.unsqueeze(1), x), axis=1)
yPrev = paddle.cast(yPrev, dtype="int64")
yProj = self.tgt_embedding(yPrev)
concat_context = paddle.concat([yProj, context], 1)
concat_context = paddle.squeeze(concat_context, 1)
sPrev = paddle.squeeze(sPrev, 0)
output, state = self.gru(concat_context, sPrev)
output = paddle.squeeze(output, axis=1)
output = self.fc(output)
return output, state
\ No newline at end of file
......@@ -38,6 +38,7 @@ class CTCHead(nn.Layer):
out_channels,
fc_decay=0.0004,
mid_channels=None,
return_feats=False,
**kwargs):
super(CTCHead, self).__init__()
if mid_channels is None:
......@@ -66,14 +67,22 @@ class CTCHead(nn.Layer):
bias_attr=bias_attr2)
self.out_channels = out_channels
self.mid_channels = mid_channels
self.return_feats = return_feats
def forward(self, x, targets=None):
if self.mid_channels is None:
predicts = self.fc(x)
else:
predicts = self.fc1(x)
predicts = self.fc2(predicts)
x = self.fc1(x)
predicts = self.fc2(x)
if self.return_feats:
result = (x, predicts)
else:
result = predicts
if not self.training:
predicts = F.softmax(predicts, axis=2)
return predicts
result = predicts
return result
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import copy
from paddle import nn
import paddle.nn.functional as F
from paddle.nn import LayerList
from paddle.nn.initializer import XavierNormal as xavier_uniform_
from paddle.nn import Dropout, Linear, LayerNorm, Conv2D
import numpy as np
from ppocr.modeling.heads.multiheadAttention import MultiheadAttention
from paddle.nn.initializer import Constant as constant_
from paddle.nn.initializer import XavierNormal as xavier_normal_
zeros_ = constant_(value=0.)
ones_ = constant_(value=1.)
class Transformer(nn.Layer):
"""A transformer model. User is able to modify the attributes as needed. The architechture
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 6000-6010.
Args:
d_model: the number of expected features in the encoder/decoder inputs (default=512).
nhead: the number of heads in the multiheadattention models (default=8).
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
custom_encoder: custom encoder (default=None).
custom_decoder: custom decoder (default=None).
"""
def __init__(self,
d_model=512,
nhead=8,
num_encoder_layers=6,
beam_size=0,
num_decoder_layers=6,
dim_feedforward=1024,
attention_dropout_rate=0.0,
residual_dropout_rate=0.1,
custom_encoder=None,
custom_decoder=None,
in_channels=0,
out_channels=0,
scale_embedding=True):
super(Transformer, self).__init__()
self.out_channels = out_channels + 1
self.embedding = Embeddings(
d_model=d_model,
vocab=self.out_channels,
padding_idx=0,
scale_embedding=scale_embedding)
self.positional_encoding = PositionalEncoding(
dropout=residual_dropout_rate,
dim=d_model, )
if custom_encoder is not None:
self.encoder = custom_encoder
else:
if num_encoder_layers > 0:
encoder_layer = TransformerEncoderLayer(
d_model, nhead, dim_feedforward, attention_dropout_rate,
residual_dropout_rate)
self.encoder = TransformerEncoder(encoder_layer,
num_encoder_layers)
else:
self.encoder = None
if custom_decoder is not None:
self.decoder = custom_decoder
else:
decoder_layer = TransformerDecoderLayer(
d_model, nhead, dim_feedforward, attention_dropout_rate,
residual_dropout_rate)
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers)
self._reset_parameters()
self.beam_size = beam_size
self.d_model = d_model
self.nhead = nhead
self.tgt_word_prj = nn.Linear(
d_model, self.out_channels, bias_attr=False)
w0 = np.random.normal(0.0, d_model**-0.5,
(d_model, self.out_channels)).astype(np.float32)
self.tgt_word_prj.weight.set_value(w0)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Conv2D):
xavier_normal_(m.weight)
if m.bias is not None:
zeros_(m.bias)
def forward_train(self, src, tgt):
tgt = tgt[:, :-1]
tgt_key_padding_mask = self.generate_padding_mask(tgt)
tgt = self.embedding(tgt).transpose([1, 0, 2])
tgt = self.positional_encoding(tgt)
tgt_mask = self.generate_square_subsequent_mask(tgt.shape[0])
if self.encoder is not None:
src = self.positional_encoding(src.transpose([1, 0, 2]))
memory = self.encoder(src)
else:
memory = src.squeeze(2).transpose([2, 0, 1])
output = self.decoder(
tgt,
memory,
tgt_mask=tgt_mask,
memory_mask=None,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=None)
output = output.transpose([1, 0, 2])
logit = self.tgt_word_prj(output)
return logit
def forward(self, src, targets=None):
"""Take in and process masked source/target sequences.
Args:
src: the sequence to the encoder (required).
tgt: the sequence to the decoder (required).
Shape:
- src: :math:`(S, N, E)`.
- tgt: :math:`(T, N, E)`.
Examples:
>>> output = transformer_model(src, tgt)
"""
if self.training:
max_len = targets[1].max()
tgt = targets[0][:, :2 + max_len]
return self.forward_train(src, tgt)
else:
if self.beam_size > 0:
return self.forward_beam(src)
else:
return self.forward_test(src)
def forward_test(self, src):
bs = paddle.shape(src)[0]
if self.encoder is not None:
src = self.positional_encoding(paddle.transpose(src, [1, 0, 2]))
memory = self.encoder(src)
else:
memory = paddle.transpose(paddle.squeeze(src, 2), [2, 0, 1])
dec_seq = paddle.full((bs, 1), 2, dtype=paddle.int64)
dec_prob = paddle.full((bs, 1), 1., dtype=paddle.float32)
for len_dec_seq in range(1, 25):
dec_seq_embed = paddle.transpose(self.embedding(dec_seq), [1, 0, 2])
dec_seq_embed = self.positional_encoding(dec_seq_embed)
tgt_mask = self.generate_square_subsequent_mask(
paddle.shape(dec_seq_embed)[0])
output = self.decoder(
dec_seq_embed,
memory,
tgt_mask=tgt_mask,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None)
dec_output = paddle.transpose(output, [1, 0, 2])
dec_output = dec_output[:, -1, :]
word_prob = F.softmax(self.tgt_word_prj(dec_output), axis=1)
preds_idx = paddle.argmax(word_prob, axis=1)
if paddle.equal_all(
preds_idx,
paddle.full(
paddle.shape(preds_idx), 3, dtype='int64')):
break
preds_prob = paddle.max(word_prob, axis=1)
dec_seq = paddle.concat(
[dec_seq, paddle.reshape(preds_idx, [-1, 1])], axis=1)
dec_prob = paddle.concat(
[dec_prob, paddle.reshape(preds_prob, [-1, 1])], axis=1)
return [dec_seq, dec_prob]
def forward_beam(self, images):
''' Translation work in one batch '''
def get_inst_idx_to_tensor_position_map(inst_idx_list):
''' Indicate the position of an instance in a tensor. '''
return {
inst_idx: tensor_position
for tensor_position, inst_idx in enumerate(inst_idx_list)
}
def collect_active_part(beamed_tensor, curr_active_inst_idx,
n_prev_active_inst, n_bm):
''' Collect tensor parts associated to active instances. '''
beamed_tensor_shape = paddle.shape(beamed_tensor)
n_curr_active_inst = len(curr_active_inst_idx)
new_shape = (n_curr_active_inst * n_bm, beamed_tensor_shape[1],
beamed_tensor_shape[2])
beamed_tensor = beamed_tensor.reshape([n_prev_active_inst, -1])
beamed_tensor = beamed_tensor.index_select(
curr_active_inst_idx, axis=0)
beamed_tensor = beamed_tensor.reshape(new_shape)
return beamed_tensor
def collate_active_info(src_enc, inst_idx_to_position_map,
active_inst_idx_list):
# Sentences which are still active are collected,
# so the decoder will not run on completed sentences.
n_prev_active_inst = len(inst_idx_to_position_map)
active_inst_idx = [
inst_idx_to_position_map[k] for k in active_inst_idx_list
]
active_inst_idx = paddle.to_tensor(active_inst_idx, dtype='int64')
active_src_enc = collect_active_part(
src_enc.transpose([1, 0, 2]), active_inst_idx,
n_prev_active_inst, n_bm).transpose([1, 0, 2])
active_inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(
active_inst_idx_list)
return active_src_enc, active_inst_idx_to_position_map
def beam_decode_step(inst_dec_beams, len_dec_seq, enc_output,
inst_idx_to_position_map, n_bm,
memory_key_padding_mask):
''' Decode and update beam status, and then return active beam idx '''
def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq):
dec_partial_seq = [
b.get_current_state() for b in inst_dec_beams if not b.done
]
dec_partial_seq = paddle.stack(dec_partial_seq)
dec_partial_seq = dec_partial_seq.reshape([-1, len_dec_seq])
return dec_partial_seq
def predict_word(dec_seq, enc_output, n_active_inst, n_bm,
memory_key_padding_mask):
dec_seq = paddle.transpose(self.embedding(dec_seq), [1, 0, 2])
dec_seq = self.positional_encoding(dec_seq)
tgt_mask = self.generate_square_subsequent_mask(
paddle.shape(dec_seq)[0])
dec_output = self.decoder(
dec_seq,
enc_output,
tgt_mask=tgt_mask,
tgt_key_padding_mask=None,
memory_key_padding_mask=memory_key_padding_mask, )
dec_output = paddle.transpose(dec_output, [1, 0, 2])
dec_output = dec_output[:,
-1, :] # Pick the last step: (bh * bm) * d_h
word_prob = F.softmax(self.tgt_word_prj(dec_output), axis=1)
word_prob = paddle.reshape(word_prob, [n_active_inst, n_bm, -1])
return word_prob
def collect_active_inst_idx_list(inst_beams, word_prob,
inst_idx_to_position_map):
active_inst_idx_list = []
for inst_idx, inst_position in inst_idx_to_position_map.items():
is_inst_complete = inst_beams[inst_idx].advance(word_prob[
inst_position])
if not is_inst_complete:
active_inst_idx_list += [inst_idx]
return active_inst_idx_list
n_active_inst = len(inst_idx_to_position_map)
dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq)
word_prob = predict_word(dec_seq, enc_output, n_active_inst, n_bm,
None)
# Update the beam with predicted word prob information and collect incomplete instances
active_inst_idx_list = collect_active_inst_idx_list(
inst_dec_beams, word_prob, inst_idx_to_position_map)
return active_inst_idx_list
def collect_hypothesis_and_scores(inst_dec_beams, n_best):
all_hyp, all_scores = [], []
for inst_idx in range(len(inst_dec_beams)):
scores, tail_idxs = inst_dec_beams[inst_idx].sort_scores()
all_scores += [scores[:n_best]]
hyps = [
inst_dec_beams[inst_idx].get_hypothesis(i)
for i in tail_idxs[:n_best]
]
all_hyp += [hyps]
return all_hyp, all_scores
with paddle.no_grad():
#-- Encode
if self.encoder is not None:
src = self.positional_encoding(images.transpose([1, 0, 2]))
src_enc = self.encoder(src)
else:
src_enc = images.squeeze(2).transpose([0, 2, 1])
n_bm = self.beam_size
src_shape = paddle.shape(src_enc)
inst_dec_beams = [Beam(n_bm) for _ in range(1)]
active_inst_idx_list = list(range(1))
# Repeat data for beam search
src_enc = paddle.tile(src_enc, [1, n_bm, 1])
inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(
active_inst_idx_list)
# Decode
for len_dec_seq in range(1, 25):
src_enc_copy = src_enc.clone()
active_inst_idx_list = beam_decode_step(
inst_dec_beams, len_dec_seq, src_enc_copy,
inst_idx_to_position_map, n_bm, None)
if not active_inst_idx_list:
break # all instances have finished their path to <EOS>
src_enc, inst_idx_to_position_map = collate_active_info(
src_enc_copy, inst_idx_to_position_map,
active_inst_idx_list)
batch_hyp, batch_scores = collect_hypothesis_and_scores(inst_dec_beams,
1)
result_hyp = []
hyp_scores = []
for bs_hyp, score in zip(batch_hyp, batch_scores):
l = len(bs_hyp[0])
bs_hyp_pad = bs_hyp[0] + [3] * (25 - l)
result_hyp.append(bs_hyp_pad)
score = float(score) / l
hyp_score = [score for _ in range(25)]
hyp_scores.append(hyp_score)
return [
paddle.to_tensor(
np.array(result_hyp), dtype=paddle.int64),
paddle.to_tensor(hyp_scores)
]
def generate_square_subsequent_mask(self, sz):
"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
Unmasked positions are filled with float(0.0).
"""
mask = paddle.zeros([sz, sz], dtype='float32')
mask_inf = paddle.triu(
paddle.full(
shape=[sz, sz], dtype='float32', fill_value='-inf'),
diagonal=1)
mask = mask + mask_inf
return mask
def generate_padding_mask(self, x):
padding_mask = paddle.equal(x, paddle.to_tensor(0, dtype=x.dtype))
return padding_mask
def _reset_parameters(self):
"""Initiate parameters in the transformer model."""
for p in self.parameters():
if p.dim() > 1:
xavier_uniform_(p)
class TransformerEncoder(nn.Layer):
"""TransformerEncoder is a stack of N encoder layers
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
"""
def __init__(self, encoder_layer, num_layers):
super(TransformerEncoder, self).__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
def forward(self, src):
"""Pass the input through the endocder layers in turn.
Args:
src: the sequnce to the encoder (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
"""
output = src
for i in range(self.num_layers):
output = self.layers[i](output,
src_mask=None,
src_key_padding_mask=None)
return output
class TransformerDecoder(nn.Layer):
"""TransformerDecoder is a stack of N decoder layers
Args:
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
num_layers: the number of sub-decoder-layers in the decoder (required).
norm: the layer normalization component (optional).
"""
def __init__(self, decoder_layer, num_layers):
super(TransformerDecoder, self).__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
def forward(self,
tgt,
memory,
tgt_mask=None,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None):
"""Pass the inputs (and mask) through the decoder layer in turn.
Args:
tgt: the sequence to the decoder (required).
memory: the sequnce from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
"""
output = tgt
for i in range(self.num_layers):
output = self.layers[i](
output,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask)
return output
class TransformerEncoderLayer(nn.Layer):
"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
"""
def __init__(self,
d_model,
nhead,
dim_feedforward=2048,
attention_dropout_rate=0.0,
residual_dropout_rate=0.1):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiheadAttention(
d_model, nhead, dropout=attention_dropout_rate)
self.conv1 = Conv2D(
in_channels=d_model,
out_channels=dim_feedforward,
kernel_size=(1, 1))
self.conv2 = Conv2D(
in_channels=dim_feedforward,
out_channels=d_model,
kernel_size=(1, 1))
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.dropout1 = Dropout(residual_dropout_rate)
self.dropout2 = Dropout(residual_dropout_rate)
def forward(self, src, src_mask=None, src_key_padding_mask=None):
"""Pass the input through the endocder layer.
Args:
src: the sequnce to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
"""
src2 = self.self_attn(
src,
src,
src,
attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)
src = src + self.dropout1(src2)
src = self.norm1(src)
src = paddle.transpose(src, [1, 2, 0])
src = paddle.unsqueeze(src, 2)
src2 = self.conv2(F.relu(self.conv1(src)))
src2 = paddle.squeeze(src2, 2)
src2 = paddle.transpose(src2, [2, 0, 1])
src = paddle.squeeze(src, 2)
src = paddle.transpose(src, [2, 0, 1])
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
class TransformerDecoderLayer(nn.Layer):
"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
This standard decoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
"""
def __init__(self,
d_model,
nhead,
dim_feedforward=2048,
attention_dropout_rate=0.0,
residual_dropout_rate=0.1):
super(TransformerDecoderLayer, self).__init__()
self.self_attn = MultiheadAttention(
d_model, nhead, dropout=attention_dropout_rate)
self.multihead_attn = MultiheadAttention(
d_model, nhead, dropout=attention_dropout_rate)
self.conv1 = Conv2D(
in_channels=d_model,
out_channels=dim_feedforward,
kernel_size=(1, 1))
self.conv2 = Conv2D(
in_channels=dim_feedforward,
out_channels=d_model,
kernel_size=(1, 1))
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.norm3 = LayerNorm(d_model)
self.dropout1 = Dropout(residual_dropout_rate)
self.dropout2 = Dropout(residual_dropout_rate)
self.dropout3 = Dropout(residual_dropout_rate)
def forward(self,
tgt,
memory,
tgt_mask=None,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None):
"""Pass the inputs (and mask) through the decoder layer.
Args:
tgt: the sequence to the decoder layer (required).
memory: the sequnce from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
"""
tgt2 = self.self_attn(
tgt,
tgt,
tgt,
attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(
tgt,
memory,
memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
# default
tgt = paddle.transpose(tgt, [1, 2, 0])
tgt = paddle.unsqueeze(tgt, 2)
tgt2 = self.conv2(F.relu(self.conv1(tgt)))
tgt2 = paddle.squeeze(tgt2, 2)
tgt2 = paddle.transpose(tgt2, [2, 0, 1])
tgt = paddle.squeeze(tgt, 2)
tgt = paddle.transpose(tgt, [2, 0, 1])
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
def _get_clones(module, N):
return LayerList([copy.deepcopy(module) for i in range(N)])
class PositionalEncoding(nn.Layer):
"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def __init__(self, dropout, dim, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = paddle.zeros([max_len, dim])
position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
div_term = paddle.exp(
paddle.arange(0, dim, 2).astype('float32') *
(-math.log(10000.0) / dim))
pe[:, 0::2] = paddle.sin(position * div_term)
pe[:, 1::2] = paddle.cos(position * div_term)
pe = paddle.unsqueeze(pe, 0)
pe = paddle.transpose(pe, [1, 0, 2])
self.register_buffer('pe', pe)
def forward(self, x):
"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
x = x + self.pe[:paddle.shape(x)[0], :]
return self.dropout(x)
class PositionalEncoding_2d(nn.Layer):
"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def __init__(self, dropout, dim, max_len=5000):
super(PositionalEncoding_2d, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = paddle.zeros([max_len, dim])
position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
div_term = paddle.exp(
paddle.arange(0, dim, 2).astype('float32') *
(-math.log(10000.0) / dim))
pe[:, 0::2] = paddle.sin(position * div_term)
pe[:, 1::2] = paddle.cos(position * div_term)
pe = paddle.transpose(paddle.unsqueeze(pe, 0), [1, 0, 2])
self.register_buffer('pe', pe)
self.avg_pool_1 = nn.AdaptiveAvgPool2D((1, 1))
self.linear1 = nn.Linear(dim, dim)
self.linear1.weight.data.fill_(1.)
self.avg_pool_2 = nn.AdaptiveAvgPool2D((1, 1))
self.linear2 = nn.Linear(dim, dim)
self.linear2.weight.data.fill_(1.)
def forward(self, x):
"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
w_pe = self.pe[:paddle.shape(x)[-1], :]
w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0)
w_pe = w_pe * w1
w_pe = paddle.transpose(w_pe, [1, 2, 0])
w_pe = paddle.unsqueeze(w_pe, 2)
h_pe = self.pe[:paddle.shape(x).shape[-2], :]
w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0)
h_pe = h_pe * w2
h_pe = paddle.transpose(h_pe, [1, 2, 0])
h_pe = paddle.unsqueeze(h_pe, 3)
x = x + w_pe + h_pe
x = paddle.transpose(
paddle.reshape(x,
[x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]),
[2, 0, 1])
return self.dropout(x)
class Embeddings(nn.Layer):
def __init__(self, d_model, vocab, padding_idx, scale_embedding):
super(Embeddings, self).__init__()
self.embedding = nn.Embedding(vocab, d_model, padding_idx=padding_idx)
w0 = np.random.normal(0.0, d_model**-0.5,
(vocab, d_model)).astype(np.float32)
self.embedding.weight.set_value(w0)
self.d_model = d_model
self.scale_embedding = scale_embedding
def forward(self, x):
if self.scale_embedding:
x = self.embedding(x)
return x * math.sqrt(self.d_model)
return self.embedding(x)
class Beam():
''' Beam search '''
def __init__(self, size, device=False):
self.size = size
self._done = False
# The score for each translation on the beam.
self.scores = paddle.zeros((size, ), dtype=paddle.float32)
self.all_scores = []
# The backpointers at each time-step.
self.prev_ks = []
# The outputs at each time-step.
self.next_ys = [paddle.full((size, ), 0, dtype=paddle.int64)]
self.next_ys[0][0] = 2
def get_current_state(self):
"Get the outputs for the current timestep."
return self.get_tentative_hypothesis()
def get_current_origin(self):
"Get the backpointers for the current timestep."
return self.prev_ks[-1]
@property
def done(self):
return self._done
def advance(self, word_prob):
"Update beam status and check if finished or not."
num_words = word_prob.shape[1]
# Sum the previous scores.
if len(self.prev_ks) > 0:
beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob)
else:
beam_lk = word_prob[0]
flat_beam_lk = beam_lk.reshape([-1])
best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True,
True) # 1st sort
self.all_scores.append(self.scores)
self.scores = best_scores
# bestScoresId is flattened as a (beam x word) array,
# so we need to calculate which word and beam each score came from
prev_k = best_scores_id // num_words
self.prev_ks.append(prev_k)
self.next_ys.append(best_scores_id - prev_k * num_words)
# End condition is when top-of-beam is EOS.
if self.next_ys[-1][0] == 3:
self._done = True
self.all_scores.append(self.scores)
return self._done
def sort_scores(self):
"Sort the scores."
return self.scores, paddle.to_tensor(
[i for i in range(int(self.scores.shape[0]))], dtype='int32')
def get_the_best_score_and_idx(self):
"Get the score of the best in the beam."
scores, ids = self.sort_scores()
return scores[1], ids[1]
def get_tentative_hypothesis(self):
"Get the decoded sequence for the current timestep."
if len(self.next_ys) == 1:
dec_seq = self.next_ys[0].unsqueeze(1)
else:
_, keys = self.sort_scores()
hyps = [self.get_hypothesis(k) for k in keys]
hyps = [[2] + h for h in hyps]
dec_seq = paddle.to_tensor(hyps, dtype='int64')
return dec_seq
def get_hypothesis(self, k):
""" Walk back to construct the full hypothesis. """
hyp = []
for j in range(len(self.prev_ks) - 1, -1, -1):
hyp.append(self.next_ys[j + 1][k])
k = self.prev_ks[j][k]
return list(map(lambda x: x.item(), hyp[::-1]))
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
class SAREncoder(nn.Layer):
"""
Args:
enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
enc_drop_rnn (float): Dropout probability of RNN layer in encoder.
enc_gru (bool): If True, use GRU, else LSTM in encoder.
d_model (int): Dim of channels from backbone.
d_enc (int): Dim of encoder RNN layer.
mask (bool): If True, mask padding in RNN sequence.
"""
def __init__(self,
enc_bi_rnn=False,
enc_drop_rnn=0.1,
enc_gru=False,
d_model=512,
d_enc=512,
mask=True,
**kwargs):
super().__init__()
assert isinstance(enc_bi_rnn, bool)
assert isinstance(enc_drop_rnn, (int, float))
assert 0 <= enc_drop_rnn < 1.0
assert isinstance(enc_gru, bool)
assert isinstance(d_model, int)
assert isinstance(d_enc, int)
assert isinstance(mask, bool)
self.enc_bi_rnn = enc_bi_rnn
self.enc_drop_rnn = enc_drop_rnn
self.mask = mask
# LSTM Encoder
if enc_bi_rnn:
direction = 'bidirectional'
else:
direction = 'forward'
kwargs = dict(
input_size=d_model,
hidden_size=d_enc,
num_layers=2,
time_major=False,
dropout=enc_drop_rnn,
direction=direction)
if enc_gru:
self.rnn_encoder = nn.GRU(**kwargs)
else:
self.rnn_encoder = nn.LSTM(**kwargs)
# global feature transformation
encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
self.linear = nn.Linear(encoder_rnn_out_size, encoder_rnn_out_size)
def forward(self, feat, img_metas=None):
if img_metas is not None:
assert len(img_metas[0]) == feat.shape[0]
valid_ratios = None
if img_metas is not None and self.mask:
valid_ratios = img_metas[-1]
h_feat = feat.shape[2] # bsz c h w
feat_v = F.max_pool2d(
feat, kernel_size=(h_feat, 1), stride=1, padding=0)
feat_v = feat_v.squeeze(2) # bsz * C * W
feat_v = paddle.transpose(feat_v, perm=[0, 2, 1]) # bsz * W * C
holistic_feat = self.rnn_encoder(feat_v)[0] # bsz * T * C
if valid_ratios is not None:
valid_hf = []
T = holistic_feat.shape[1]
for i, valid_ratio in enumerate(valid_ratios):
valid_step = min(T, math.ceil(T * valid_ratio)) - 1
valid_hf.append(holistic_feat[i, valid_step, :])
valid_hf = paddle.stack(valid_hf, axis=0)
else:
valid_hf = holistic_feat[:, -1, :] # bsz * C
holistic_feat = self.linear(valid_hf) # bsz * C
return holistic_feat
class BaseDecoder(nn.Layer):
def __init__(self, **kwargs):
super().__init__()
def forward_train(self, feat, out_enc, targets, img_metas):
raise NotImplementedError
def forward_test(self, feat, out_enc, img_metas):
raise NotImplementedError
def forward(self,
feat,
out_enc,
label=None,
img_metas=None,
train_mode=True):
self.train_mode = train_mode
if train_mode:
return self.forward_train(feat, out_enc, label, img_metas)
return self.forward_test(feat, out_enc, img_metas)
class ParallelSARDecoder(BaseDecoder):
"""
Args:
out_channels (int): Output class number.
enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
dec_bi_rnn (bool): If True, use bidirectional RNN in decoder.
dec_drop_rnn (float): Dropout of RNN layer in decoder.
dec_gru (bool): If True, use GRU, else LSTM in decoder.
d_model (int): Dim of channels from backbone.
d_enc (int): Dim of encoder RNN layer.
d_k (int): Dim of channels of attention module.
pred_dropout (float): Dropout probability of prediction layer.
max_seq_len (int): Maximum sequence length for decoding.
mask (bool): If True, mask padding in feature map.
start_idx (int): Index of start token.
padding_idx (int): Index of padding token.
pred_concat (bool): If True, concat glimpse feature from
attention with holistic feature and hidden state.
"""
def __init__(
self,
out_channels, # 90 + unknown + start + padding
enc_bi_rnn=False,
dec_bi_rnn=False,
dec_drop_rnn=0.0,
dec_gru=False,
d_model=512,
d_enc=512,
d_k=64,
pred_dropout=0.1,
max_text_length=30,
mask=True,
pred_concat=True,
**kwargs):
super().__init__()
self.num_classes = out_channels
self.enc_bi_rnn = enc_bi_rnn
self.d_k = d_k
self.start_idx = out_channels - 2
self.padding_idx = out_channels - 1
self.max_seq_len = max_text_length
self.mask = mask
self.pred_concat = pred_concat
encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)
# 2D attention layer
self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k)
self.conv3x3_1 = nn.Conv2D(
d_model, d_k, kernel_size=3, stride=1, padding=1)
self.conv1x1_2 = nn.Linear(d_k, 1)
# Decoder RNN layer
if dec_bi_rnn:
direction = 'bidirectional'
else:
direction = 'forward'
kwargs = dict(
input_size=encoder_rnn_out_size,
hidden_size=encoder_rnn_out_size,
num_layers=2,
time_major=False,
dropout=dec_drop_rnn,
direction=direction)
if dec_gru:
self.rnn_decoder = nn.GRU(**kwargs)
else:
self.rnn_decoder = nn.LSTM(**kwargs)
# Decoder input embedding
self.embedding = nn.Embedding(
self.num_classes,
encoder_rnn_out_size,
padding_idx=self.padding_idx)
# Prediction layer
self.pred_dropout = nn.Dropout(pred_dropout)
pred_num_classes = self.num_classes - 1
if pred_concat:
fc_in_channel = decoder_rnn_out_size + d_model + d_enc
else:
fc_in_channel = d_model
self.prediction = nn.Linear(fc_in_channel, pred_num_classes)
def _2d_attention(self,
decoder_input,
feat,
holistic_feat,
valid_ratios=None):
y = self.rnn_decoder(decoder_input)[0]
# y: bsz * (seq_len + 1) * hidden_size
attn_query = self.conv1x1_1(y) # bsz * (seq_len + 1) * attn_size
bsz, seq_len, attn_size = attn_query.shape
attn_query = paddle.unsqueeze(attn_query, axis=[3, 4])
# (bsz, seq_len + 1, attn_size, 1, 1)
attn_key = self.conv3x3_1(feat)
# bsz * attn_size * h * w
attn_key = attn_key.unsqueeze(1)
# bsz * 1 * attn_size * h * w
attn_weight = paddle.tanh(paddle.add(attn_key, attn_query))
# bsz * (seq_len + 1) * attn_size * h * w
attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 3, 4, 2])
# bsz * (seq_len + 1) * h * w * attn_size
attn_weight = self.conv1x1_2(attn_weight)
# bsz * (seq_len + 1) * h * w * 1
bsz, T, h, w, c = attn_weight.shape
assert c == 1
if valid_ratios is not None:
# cal mask of attention weight
for i, valid_ratio in enumerate(valid_ratios):
valid_width = min(w, math.ceil(w * valid_ratio))
if valid_width < w:
attn_weight[i, :, :, valid_width:, :] = float('-inf')
attn_weight = paddle.reshape(attn_weight, [bsz, T, -1])
attn_weight = F.softmax(attn_weight, axis=-1)
attn_weight = paddle.reshape(attn_weight, [bsz, T, h, w, c])
attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 4, 2, 3])
# attn_weight: bsz * T * c * h * w
# feat: bsz * c * h * w
attn_feat = paddle.sum(paddle.multiply(feat.unsqueeze(1), attn_weight),
(3, 4),
keepdim=False)
# bsz * (seq_len + 1) * C
# Linear transformation
if self.pred_concat:
hf_c = holistic_feat.shape[-1]
holistic_feat = paddle.expand(
holistic_feat, shape=[bsz, seq_len, hf_c])
y = self.prediction(paddle.concat((y, attn_feat, holistic_feat), 2))
else:
y = self.prediction(attn_feat)
# bsz * (seq_len + 1) * num_classes
if self.train_mode:
y = self.pred_dropout(y)
return y
def forward_train(self, feat, out_enc, label, img_metas):
'''
img_metas: [label, valid_ratio]
'''
if img_metas is not None:
assert len(img_metas[0]) == feat.shape[0]
valid_ratios = None
if img_metas is not None and self.mask:
valid_ratios = img_metas[-1]
label = label.cuda()
lab_embedding = self.embedding(label)
# bsz * seq_len * emb_dim
out_enc = out_enc.unsqueeze(1)
# bsz * 1 * emb_dim
in_dec = paddle.concat((out_enc, lab_embedding), axis=1)
# bsz * (seq_len + 1) * C
out_dec = self._2d_attention(
in_dec, feat, out_enc, valid_ratios=valid_ratios)
# bsz * (seq_len + 1) * num_classes
return out_dec[:, 1:, :] # bsz * seq_len * num_classes
def forward_test(self, feat, out_enc, img_metas):
if img_metas is not None:
assert len(img_metas[0]) == feat.shape[0]
valid_ratios = None
if img_metas is not None and self.mask:
valid_ratios = img_metas[-1]
seq_len = self.max_seq_len
bsz = feat.shape[0]
start_token = paddle.full(
(bsz, ), fill_value=self.start_idx, dtype='int64')
# bsz
start_token = self.embedding(start_token)
# bsz * emb_dim
emb_dim = start_token.shape[1]
start_token = start_token.unsqueeze(1)
start_token = paddle.expand(start_token, shape=[bsz, seq_len, emb_dim])
# bsz * seq_len * emb_dim
out_enc = out_enc.unsqueeze(1)
# bsz * 1 * emb_dim
decoder_input = paddle.concat((out_enc, start_token), axis=1)
# bsz * (seq_len + 1) * emb_dim
outputs = []
for i in range(1, seq_len + 1):
decoder_output = self._2d_attention(
decoder_input, feat, out_enc, valid_ratios=valid_ratios)
char_output = decoder_output[:, i, :] # bsz * num_classes
char_output = F.softmax(char_output, -1)
outputs.append(char_output)
max_idx = paddle.argmax(char_output, axis=1, keepdim=False)
char_embedding = self.embedding(max_idx) # bsz * emb_dim
if i < seq_len:
decoder_input[:, i + 1, :] = char_embedding
outputs = paddle.stack(outputs, 1) # bsz * seq_len * num_classes
return outputs
class SARHead(nn.Layer):
def __init__(self,
out_channels,
enc_bi_rnn=False,
enc_drop_rnn=0.1,
enc_gru=False,
dec_bi_rnn=False,
dec_drop_rnn=0.0,
dec_gru=False,
d_k=512,
pred_dropout=0.1,
max_text_length=30,
pred_concat=True,
**kwargs):
super(SARHead, self).__init__()
# encoder module
self.encoder = SAREncoder(
enc_bi_rnn=enc_bi_rnn, enc_drop_rnn=enc_drop_rnn, enc_gru=enc_gru)
# decoder module
self.decoder = ParallelSARDecoder(
out_channels=out_channels,
enc_bi_rnn=enc_bi_rnn,
dec_bi_rnn=dec_bi_rnn,
dec_drop_rnn=dec_drop_rnn,
dec_gru=dec_gru,
d_k=d_k,
pred_dropout=pred_dropout,
max_text_length=max_text_length,
pred_concat=pred_concat)
def forward(self, feat, targets=None):
'''
img_metas: [label, valid_ratio]
'''
holistic_feat = self.encoder(feat, targets) # bsz c
if self.training:
label = targets[0] # label
label = paddle.to_tensor(label, dtype='int64')
final_out = self.decoder(
feat, holistic_feat, label, img_metas=targets)
if not self.training:
final_out = self.decoder(
feat,
holistic_feat,
label=None,
img_metas=targets,
train_mode=False)
# (bsz, seq_len, num_classes)
return final_out
......@@ -22,7 +22,8 @@ def build_neck(config):
from .rnn import SequenceEncoder
from .pg_fpn import PGFPN
from .table_fpn import TableFPN
support_dict = ['DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN', 'TableFPN']
from .fpn import FPN
support_dict = ['FPN','DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN', 'TableFPN']
module_name = config.pop('name')
assert module_name in support_dict, Exception('neck only support {}'.format(
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn as nn
import paddle
import math
import paddle.nn.functional as F
class Conv_BN_ReLU(nn.Layer):
def __init__(self, in_planes, out_planes, kernel_size=1, stride=1, padding=0):
super(Conv_BN_ReLU, self).__init__()
self.conv = nn.Conv2D(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
bias_attr=False)
self.bn = nn.BatchNorm2D(out_planes, momentum=0.1)
self.relu = nn.ReLU()
for m in self.sublayers():
if isinstance(m, nn.Conv2D):
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', default_initializer=paddle.nn.initializer.Normal(0, math.sqrt(2. / n)))
elif isinstance(m, nn.BatchNorm2D):
m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', default_initializer=paddle.nn.initializer.Constant(1.0))
m.bias = paddle.create_parameter(shape=m.bias.shape, dtype='float32', default_initializer=paddle.nn.initializer.Constant(0.0))
def forward(self, x):
return self.relu(self.bn(self.conv(x)))
class FPN(nn.Layer):
def __init__(self, in_channels, out_channels):
super(FPN, self).__init__()
# Top layer
self.toplayer_ = Conv_BN_ReLU(in_channels[3], out_channels, kernel_size=1, stride=1, padding=0)
# Lateral layers
self.latlayer1_ = Conv_BN_ReLU(in_channels[2], out_channels, kernel_size=1, stride=1, padding=0)
self.latlayer2_ = Conv_BN_ReLU(in_channels[1], out_channels, kernel_size=1, stride=1, padding=0)
self.latlayer3_ = Conv_BN_ReLU(in_channels[0], out_channels, kernel_size=1, stride=1, padding=0)
# Smooth layers
self.smooth1_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.smooth2_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.smooth3_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.out_channels = out_channels * 4
for m in self.sublayers():
if isinstance(m, nn.Conv2D):
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32',
default_initializer=paddle.nn.initializer.Normal(0,
math.sqrt(2. / n)))
elif isinstance(m, nn.BatchNorm2D):
m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32',
default_initializer=paddle.nn.initializer.Constant(1.0))
m.bias = paddle.create_parameter(shape=m.bias.shape, dtype='float32',
default_initializer=paddle.nn.initializer.Constant(0.0))
def _upsample(self, x, scale=1):
return F.upsample(x, scale_factor=scale, mode='bilinear')
def _upsample_add(self, x, y, scale=1):
return F.upsample(x, scale_factor=scale, mode='bilinear') + y
def forward(self, x):
f2, f3, f4, f5 = x
p5 = self.toplayer_(f5)
f4 = self.latlayer1_(f4)
p4 = self._upsample_add(p5, f4,2)
p4 = self.smooth1_(p4)
f3 = self.latlayer2_(f3)
p3 = self._upsample_add(p4, f3,2)
p3 = self.smooth2_(p3)
f2 = self.latlayer3_(f2)
p2 = self._upsample_add(p3, f2,2)
p2 = self.smooth3_(p2)
p3 = self._upsample(p3, 2)
p4 = self._upsample(p4, 4)
p5 = self._upsample(p5, 8)
fuse = paddle.concat([p2, p3, p4, p5], axis=1)
return fuse
\ No newline at end of file
......@@ -51,7 +51,7 @@ class EncoderWithFC(nn.Layer):
super(EncoderWithFC, self).__init__()
self.out_channels = hidden_size
weight_attr, bias_attr = get_para_bias_attr(
l2_decay=0.00001, k=in_channels, name='reduce_encoder_fea')
l2_decay=0.00001, k=in_channels)
self.fc = nn.Linear(
in_channels,
hidden_size,
......
......@@ -17,8 +17,9 @@ __all__ = ['build_transform']
def build_transform(config):
from .tps import TPS
from .stn import STN_ON
support_dict = ['TPS']
support_dict = ['TPS', 'STN_ON']
module_name = config.pop('name')
assert module_name in support_dict, Exception(
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np
from .tps_spatial_transformer import TPSSpatialTransformer
def conv3x3_block(in_channels, out_channels, stride=1):
n = 3 * 3 * out_channels
w = math.sqrt(2. / n)
conv_layer = nn.Conv2D(
in_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1,
weight_attr=nn.initializer.Normal(
mean=0.0, std=w),
bias_attr=nn.initializer.Constant(0))
block = nn.Sequential(conv_layer, nn.BatchNorm2D(out_channels), nn.ReLU())
return block
class STN(nn.Layer):
def __init__(self, in_channels, num_ctrlpoints, activation='none'):
super(STN, self).__init__()
self.in_channels = in_channels
self.num_ctrlpoints = num_ctrlpoints
self.activation = activation
self.stn_convnet = nn.Sequential(
conv3x3_block(in_channels, 32), #32x64
nn.MaxPool2D(
kernel_size=2, stride=2),
conv3x3_block(32, 64), #16x32
nn.MaxPool2D(
kernel_size=2, stride=2),
conv3x3_block(64, 128), # 8*16
nn.MaxPool2D(
kernel_size=2, stride=2),
conv3x3_block(128, 256), # 4*8
nn.MaxPool2D(
kernel_size=2, stride=2),
conv3x3_block(256, 256), # 2*4,
nn.MaxPool2D(
kernel_size=2, stride=2),
conv3x3_block(256, 256)) # 1*2
self.stn_fc1 = nn.Sequential(
nn.Linear(
2 * 256,
512,
weight_attr=nn.initializer.Normal(0, 0.001),
bias_attr=nn.initializer.Constant(0)),
nn.BatchNorm1D(512),
nn.ReLU())
fc2_bias = self.init_stn()
self.stn_fc2 = nn.Linear(
512,
num_ctrlpoints * 2,
weight_attr=nn.initializer.Constant(0.0),
bias_attr=nn.initializer.Assign(fc2_bias))
def init_stn(self):
margin = 0.01
sampling_num_per_side = int(self.num_ctrlpoints / 2)
ctrl_pts_x = np.linspace(margin, 1. - margin, sampling_num_per_side)
ctrl_pts_y_top = np.ones(sampling_num_per_side) * margin
ctrl_pts_y_bottom = np.ones(sampling_num_per_side) * (1 - margin)
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
ctrl_points = np.concatenate(
[ctrl_pts_top, ctrl_pts_bottom], axis=0).astype(np.float32)
if self.activation == 'none':
pass
elif self.activation == 'sigmoid':
ctrl_points = -np.log(1. / ctrl_points - 1.)
ctrl_points = paddle.to_tensor(ctrl_points)
fc2_bias = paddle.reshape(
ctrl_points, shape=[ctrl_points.shape[0] * ctrl_points.shape[1]])
return fc2_bias
def forward(self, x):
x = self.stn_convnet(x)
batch_size, _, h, w = x.shape
x = paddle.reshape(x, shape=(batch_size, -1))
img_feat = self.stn_fc1(x)
x = self.stn_fc2(0.1 * img_feat)
if self.activation == 'sigmoid':
x = F.sigmoid(x)
x = paddle.reshape(x, shape=[-1, self.num_ctrlpoints, 2])
return img_feat, x
class STN_ON(nn.Layer):
def __init__(self, in_channels, tps_inputsize, tps_outputsize,
num_control_points, tps_margins, stn_activation):
super(STN_ON, self).__init__()
self.tps = TPSSpatialTransformer(
output_image_size=tuple(tps_outputsize),
num_control_points=num_control_points,
margins=tuple(tps_margins))
self.stn_head = STN(in_channels=in_channels,
num_ctrlpoints=num_control_points,
activation=stn_activation)
self.tps_inputsize = tps_inputsize
self.out_channels = in_channels
def forward(self, image):
stn_input = paddle.nn.functional.interpolate(
image, self.tps_inputsize, mode="bilinear", align_corners=True)
stn_img_feat, ctrl_points = self.stn_head(stn_input)
x, _ = self.tps(image, ctrl_points)
return x
......@@ -231,7 +231,8 @@ class GridGenerator(nn.Layer):
""" Return inv_delta_C which is needed to calculate T """
F = self.F
hat_eye = paddle.eye(F, dtype='float64') # F x F
hat_C = paddle.norm(C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye
hat_C = paddle.norm(
C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye
hat_C = (hat_C**2) * paddle.log(hat_C)
delta_C = paddle.concat( # F+3 x F+3
[
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np
import itertools
def grid_sample(input, grid, canvas=None):
input.stop_gradient = False
output = F.grid_sample(input, grid)
if canvas is None:
return output
else:
input_mask = paddle.ones(shape=input.shape)
output_mask = F.grid_sample(input_mask, grid)
padded_output = output * output_mask + canvas * (1 - output_mask)
return padded_output
# phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
def compute_partial_repr(input_points, control_points):
N = input_points.shape[0]
M = control_points.shape[0]
pairwise_diff = paddle.reshape(
input_points, shape=[N, 1, 2]) - paddle.reshape(
control_points, shape=[1, M, 2])
# original implementation, very slow
# pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
pairwise_diff_square = pairwise_diff * pairwise_diff
pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :,
1]
repr_matrix = 0.5 * pairwise_dist * paddle.log(pairwise_dist)
# fix numerical error for 0 * log(0), substitute all nan with 0
mask = repr_matrix != repr_matrix
repr_matrix[mask] = 0
return repr_matrix
# output_ctrl_pts are specified, according to our task.
def build_output_control_points(num_control_points, margins):
margin_x, margin_y = margins
num_ctrl_pts_per_side = num_control_points // 2
ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
output_ctrl_pts_arr = np.concatenate(
[ctrl_pts_top, ctrl_pts_bottom], axis=0)
output_ctrl_pts = paddle.to_tensor(output_ctrl_pts_arr)
return output_ctrl_pts
class TPSSpatialTransformer(nn.Layer):
def __init__(self,
output_image_size=None,
num_control_points=None,
margins=None):
super(TPSSpatialTransformer, self).__init__()
self.output_image_size = output_image_size
self.num_control_points = num_control_points
self.margins = margins
self.target_height, self.target_width = output_image_size
target_control_points = build_output_control_points(num_control_points,
margins)
N = num_control_points
# create padded kernel matrix
forward_kernel = paddle.zeros(shape=[N + 3, N + 3])
target_control_partial_repr = compute_partial_repr(
target_control_points, target_control_points)
target_control_partial_repr = paddle.cast(target_control_partial_repr,
forward_kernel.dtype)
forward_kernel[:N, :N] = target_control_partial_repr
forward_kernel[:N, -3] = 1
forward_kernel[-3, :N] = 1
target_control_points = paddle.cast(target_control_points,
forward_kernel.dtype)
forward_kernel[:N, -2:] = target_control_points
forward_kernel[-2:, :N] = paddle.transpose(
target_control_points, perm=[1, 0])
# compute inverse matrix
inverse_kernel = paddle.inverse(forward_kernel)
# create target cordinate matrix
HW = self.target_height * self.target_width
target_coordinate = list(
itertools.product(
range(self.target_height), range(self.target_width)))
target_coordinate = paddle.to_tensor(target_coordinate) # HW x 2
Y, X = paddle.split(
target_coordinate, target_coordinate.shape[1], axis=1)
Y = Y / (self.target_height - 1)
X = X / (self.target_width - 1)
target_coordinate = paddle.concat(
[X, Y], axis=1) # convert from (y, x) to (x, y)
target_coordinate_partial_repr = compute_partial_repr(
target_coordinate, target_control_points)
target_coordinate_repr = paddle.concat(
[
target_coordinate_partial_repr, paddle.ones(shape=[HW, 1]),
target_coordinate
],
axis=1)
# register precomputed matrices
self.inverse_kernel = inverse_kernel
self.padding_matrix = paddle.zeros(shape=[3, 2])
self.target_coordinate_repr = target_coordinate_repr
self.target_control_points = target_control_points
def forward(self, input, source_control_points):
assert source_control_points.ndimension() == 3
assert source_control_points.shape[1] == self.num_control_points
assert source_control_points.shape[2] == 2
batch_size = paddle.shape(source_control_points)[0]
self.padding_matrix = paddle.expand(
self.padding_matrix, shape=[batch_size, 3, 2])
Y = paddle.concat([source_control_points, self.padding_matrix], 1)
mapping_matrix = paddle.matmul(self.inverse_kernel, Y)
source_coordinate = paddle.matmul(self.target_coordinate_repr,
mapping_matrix)
grid = paddle.reshape(
source_coordinate,
shape=[-1, self.target_height, self.target_width, 2])
grid = paddle.clip(grid, 0,
1) # the source_control_points may be out of [0, 1].
# the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
grid = 2.0 * grid - 1.0
output_maps = grid_sample(input, grid, canvas=None)
return output_maps, source_coordinate
......@@ -127,3 +127,34 @@ class RMSProp(object):
grad_clip=self.grad_clip,
parameters=parameters)
return opt
class Adadelta(object):
def __init__(self,
learning_rate=0.001,
epsilon=1e-08,
rho=0.95,
parameter_list=None,
weight_decay=None,
grad_clip=None,
name=None,
**kwargs):
self.learning_rate = learning_rate
self.epsilon = epsilon
self.rho = rho
self.parameter_list = parameter_list
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.grad_clip = grad_clip
self.name = name
def __call__(self, parameters):
opt = optim.Adadelta(
learning_rate=self.learning_rate,
epsilon=self.epsilon,
rho=self.rho,
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
name=self.name,
parameters=parameters)
return opt
......@@ -18,6 +18,7 @@ from __future__ import print_function
from __future__ import unicode_literals
import copy
import platform
__all__ = ['build_post_process']
......@@ -25,17 +26,22 @@ from .db_postprocess import DBPostProcess, DistillationDBPostProcess
from .east_postprocess import EASTPostProcess
from .sast_postprocess import SASTPostProcess
from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode, DistillationCTCLabelDecode, \
TableLabelDecode
TableLabelDecode, NRTRLabelDecode, SARLabelDecode , SEEDLabelDecode
from .cls_postprocess import ClsPostProcess
from .pg_postprocess import PGPostProcess
if platform.system() != "Windows":
# pse is not support in Windows
from .pse_postprocess import PSEPostProcess
def build_post_process(config, global_config=None):
support_dict = [
'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode',
'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode', 'PGPostProcess',
'DistillationCTCLabelDecode', 'TableLabelDecode',
'DistillationDBPostProcess'
'DBPostProcess', 'PSEPostProcess', 'EASTPostProcess', 'SASTPostProcess',
'CTCLabelDecode', 'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode',
'PGPostProcess', 'DistillationCTCLabelDecode', 'TableLabelDecode',
'DistillationDBPostProcess', 'NRTRLabelDecode', 'SARLabelDecode',
'SEEDLabelDecode'
]
config = copy.deepcopy(config)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .pse_postprocess import PSEPostProcess
\ No newline at end of file
## 编译
code from https://github.com/whai362/pan_pp.pytorch
```python
python3 setup.py build_ext --inplace
```
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import subprocess
python_path = sys.executable
if subprocess.call('cd ppocr/postprocess/pse_postprocess/pse;{} setup.py build_ext --inplace;cd -'.format(python_path), shell=True) != 0:
raise RuntimeError('Cannot compile pse: {}'.format(os.path.dirname(os.path.realpath(__file__))))
from .pse import pse
\ No newline at end of file
import numpy as np
import cv2
cimport numpy as np
cimport cython
cimport libcpp
cimport libcpp.pair
cimport libcpp.queue
from libcpp.pair cimport *
from libcpp.queue cimport *
@cython.boundscheck(False)
@cython.wraparound(False)
cdef np.ndarray[np.int32_t, ndim=2] _pse(np.ndarray[np.uint8_t, ndim=3] kernels,
np.ndarray[np.int32_t, ndim=2] label,
int kernel_num,
int label_num,
float min_area=0):
cdef np.ndarray[np.int32_t, ndim=2] pred
pred = np.zeros((label.shape[0], label.shape[1]), dtype=np.int32)
for label_idx in range(1, label_num):
if np.sum(label == label_idx) < min_area:
label[label == label_idx] = 0
cdef libcpp.queue.queue[libcpp.pair.pair[np.int16_t,np.int16_t]] que = \
queue[libcpp.pair.pair[np.int16_t,np.int16_t]]()
cdef libcpp.queue.queue[libcpp.pair.pair[np.int16_t,np.int16_t]] nxt_que = \
queue[libcpp.pair.pair[np.int16_t,np.int16_t]]()
cdef np.int16_t* dx = [-1, 1, 0, 0]
cdef np.int16_t* dy = [0, 0, -1, 1]
cdef np.int16_t tmpx, tmpy
points = np.array(np.where(label > 0)).transpose((1, 0))
for point_idx in range(points.shape[0]):
tmpx, tmpy = points[point_idx, 0], points[point_idx, 1]
que.push(pair[np.int16_t,np.int16_t](tmpx, tmpy))
pred[tmpx, tmpy] = label[tmpx, tmpy]
cdef libcpp.pair.pair[np.int16_t,np.int16_t] cur
cdef int cur_label
for kernel_idx in range(kernel_num - 1, -1, -1):
while not que.empty():
cur = que.front()
que.pop()
cur_label = pred[cur.first, cur.second]
is_edge = True
for j in range(4):
tmpx = cur.first + dx[j]
tmpy = cur.second + dy[j]
if tmpx < 0 or tmpx >= label.shape[0] or tmpy < 0 or tmpy >= label.shape[1]:
continue
if kernels[kernel_idx, tmpx, tmpy] == 0 or pred[tmpx, tmpy] > 0:
continue
que.push(pair[np.int16_t,np.int16_t](tmpx, tmpy))
pred[tmpx, tmpy] = cur_label
is_edge = False
if is_edge:
nxt_que.push(cur)
que, nxt_que = nxt_que, que
return pred
def pse(kernels, min_area):
kernel_num = kernels.shape[0]
label_num, label = cv2.connectedComponents(kernels[-1], connectivity=4)
return _pse(kernels[:-1], label, kernel_num, label_num, min_area)
\ No newline at end of file
from distutils.core import setup, Extension
from Cython.Build import cythonize
import numpy
setup(ext_modules=cythonize(Extension(
'pse',
sources=['pse.pyx'],
language='c++',
include_dirs=[numpy.get_include()],
library_dirs=[],
libraries=[],
extra_compile_args=['-O3'],
extra_link_args=[]
)))
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import cv2
import paddle
from paddle.nn import functional as F
from ppocr.postprocess.pse_postprocess.pse import pse
class PSEPostProcess(object):
"""
The post process for PSE.
"""
def __init__(self,
thresh=0.5,
box_thresh=0.85,
min_area=16,
box_type='box',
scale=4,
**kwargs):
assert box_type in ['box', 'poly'], 'Only box and poly is supported'
self.thresh = thresh
self.box_thresh = box_thresh
self.min_area = min_area
self.box_type = box_type
self.scale = scale
def __call__(self, outs_dict, shape_list):
pred = outs_dict['maps']
if not isinstance(pred, paddle.Tensor):
pred = paddle.to_tensor(pred)
pred = F.interpolate(pred, scale_factor=4 // self.scale, mode='bilinear')
score = F.sigmoid(pred[:, 0, :, :])
kernels = (pred > self.thresh).astype('float32')
text_mask = kernels[:, 0, :, :]
kernels[:, 0:, :, :] = kernels[:, 0:, :, :] * text_mask
score = score.numpy()
kernels = kernels.numpy().astype(np.uint8)
boxes_batch = []
for batch_index in range(pred.shape[0]):
boxes, scores = self.boxes_from_bitmap(score[batch_index], kernels[batch_index], shape_list[batch_index])
boxes_batch.append({'points': boxes, 'scores': scores})
return boxes_batch
def boxes_from_bitmap(self, score, kernels, shape):
label = pse(kernels, self.min_area)
return self.generate_box(score, label, shape)
def generate_box(self, score, label, shape):
src_h, src_w, ratio_h, ratio_w = shape
label_num = np.max(label) + 1
boxes = []
scores = []
for i in range(1, label_num):
ind = label == i
points = np.array(np.where(ind)).transpose((1, 0))[:, ::-1]
if points.shape[0] < self.min_area:
label[ind] = 0
continue
score_i = np.mean(score[ind])
if score_i < self.box_thresh:
label[ind] = 0
continue
if self.box_type == 'box':
rect = cv2.minAreaRect(points)
bbox = cv2.boxPoints(rect)
elif self.box_type == 'poly':
box_height = np.max(points[:, 1]) + 10
box_width = np.max(points[:, 0]) + 10
mask = np.zeros((box_height, box_width), np.uint8)
mask[points[:, 1], points[:, 0]] = 255
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
bbox = np.squeeze(contours[0], 1)
else:
raise NotImplementedError
bbox[:, 0] = np.clip(
np.round(bbox[:, 0] / ratio_w), 0, src_w)
bbox[:, 1] = np.clip(
np.round(bbox[:, 1] / ratio_h), 0, src_h)
boxes.append(bbox)
scores.append(score_i)
return boxes, scores
......@@ -15,38 +15,21 @@ import numpy as np
import string
import paddle
from paddle.nn import functional as F
import re
class BaseRecLabelDecode(object):
""" Convert between text-label and text-index """
def __init__(self,
character_dict_path=None,
character_type='ch',
use_space_char=False):
support_character_type = [
'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',
'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',
'ne', 'EN', 'latin', 'arabic', 'cyrillic', 'devanagari'
]
assert character_type in support_character_type, "Only {} are supported now but get {}".format(
support_character_type, character_type)
def __init__(self, character_dict_path=None, use_space_char=False):
self.beg_str = "sos"
self.end_str = "eos"
if character_type == "en":
self.character_str = []
if character_dict_path is None:
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
elif character_type == "EN_symbol":
# same with ASTER setting (use 94 char).
self.character_str = string.printable[:-6]
dict_character = list(self.character_str)
elif character_type in support_character_type:
self.character_str = []
assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
character_type)
else:
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
......@@ -56,9 +39,6 @@ class BaseRecLabelDecode(object):
self.character_str.append(" ")
dict_character = list(self.character_str)
else:
raise NotImplementedError
self.character_type = character_type
dict_character = self.add_special_char(dict_character)
self.dict = {}
for i, char in enumerate(dict_character):
......@@ -101,15 +81,14 @@ class BaseRecLabelDecode(object):
class CTCLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self,
character_dict_path=None,
character_type='ch',
use_space_char=False,
def __init__(self, character_dict_path=None, use_space_char=False,
**kwargs):
super(CTCLabelDecode, self).__init__(character_dict_path,
character_type, use_space_char)
use_space_char)
def __call__(self, preds, label=None, *args, **kwargs):
if isinstance(preds, tuple):
preds = preds[-1]
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
preds_idx = preds.argmax(axis=2)
......@@ -133,13 +112,12 @@ class DistillationCTCLabelDecode(CTCLabelDecode):
def __init__(self,
character_dict_path=None,
character_type='ch',
use_space_char=False,
model_name=["student"],
key=None,
**kwargs):
super(DistillationCTCLabelDecode, self).__init__(
character_dict_path, character_type, use_space_char)
super(DistillationCTCLabelDecode, self).__init__(character_dict_path,
use_space_char)
if not isinstance(model_name, list):
model_name = [model_name]
self.model_name = model_name
......@@ -156,16 +134,77 @@ class DistillationCTCLabelDecode(CTCLabelDecode):
return output
class NRTRLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self, character_dict_path=None, use_space_char=True, **kwargs):
super(NRTRLabelDecode, self).__init__(character_dict_path,
use_space_char)
def __call__(self, preds, label=None, *args, **kwargs):
if len(preds) == 2:
preds_id = preds[0]
preds_prob = preds[1]
if isinstance(preds_id, paddle.Tensor):
preds_id = preds_id.numpy()
if isinstance(preds_prob, paddle.Tensor):
preds_prob = preds_prob.numpy()
if preds_id[0][0] == 2:
preds_idx = preds_id[:, 1:]
preds_prob = preds_prob[:, 1:]
else:
preds_idx = preds_id
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
if label is None:
return text
label = self.decode(label[:, 1:])
else:
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2)
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
if label is None:
return text
label = self.decode(label[:, 1:])
return text, label
def add_special_char(self, dict_character):
dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
return dict_character
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
""" convert text-index into text-label. """
result_list = []
batch_size = len(text_index)
for batch_idx in range(batch_size):
char_list = []
conf_list = []
for idx in range(len(text_index[batch_idx])):
if text_index[batch_idx][idx] == 3: # end
break
try:
char_list.append(self.character[int(text_index[batch_idx][
idx])])
except:
continue
if text_prob is not None:
conf_list.append(text_prob[batch_idx][idx])
else:
conf_list.append(1)
text = ''.join(char_list)
result_list.append((text.lower(), np.mean(conf_list)))
return result_list
class AttnLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self,
character_dict_path=None,
character_type='ch',
use_space_char=False,
def __init__(self, character_dict_path=None, use_space_char=False,
**kwargs):
super(AttnLabelDecode, self).__init__(character_dict_path,
character_type, use_space_char)
use_space_char)
def add_special_char(self, dict_character):
self.beg_str = "sos"
......@@ -239,16 +278,91 @@ class AttnLabelDecode(BaseRecLabelDecode):
return idx
class SEEDLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self, character_dict_path=None, use_space_char=False,
**kwargs):
super(SEEDLabelDecode, self).__init__(character_dict_path,
use_space_char)
def add_special_char(self, dict_character):
self.beg_str = "sos"
self.end_str = "eos"
dict_character = dict_character + [self.end_str]
return dict_character
def get_ignored_tokens(self):
end_idx = self.get_beg_end_flag_idx("eos")
return [end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "sos":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "eos":
idx = np.array(self.dict[self.end_str])
else:
assert False, "unsupport type %s in get_beg_end_flag_idx" % beg_or_end
return idx
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
""" convert text-index into text-label. """
result_list = []
[end_idx] = self.get_ignored_tokens()
batch_size = len(text_index)
for batch_idx in range(batch_size):
char_list = []
conf_list = []
for idx in range(len(text_index[batch_idx])):
if int(text_index[batch_idx][idx]) == int(end_idx):
break
if is_remove_duplicate:
# only for predict
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
batch_idx][idx]:
continue
char_list.append(self.character[int(text_index[batch_idx][
idx])])
if text_prob is not None:
conf_list.append(text_prob[batch_idx][idx])
else:
conf_list.append(1)
text = ''.join(char_list)
result_list.append((text, np.mean(conf_list)))
return result_list
def __call__(self, preds, label=None, *args, **kwargs):
"""
text = self.decode(text)
if label is None:
return text
else:
label = self.decode(label, is_remove_duplicate=False)
return text, label
"""
preds_idx = preds["rec_pred"]
if isinstance(preds_idx, paddle.Tensor):
preds_idx = preds_idx.numpy()
if "rec_pred_scores" in preds:
preds_idx = preds["rec_pred"]
preds_prob = preds["rec_pred_scores"]
else:
preds_idx = preds["rec_pred"].argmax(axis=2)
preds_prob = preds["rec_pred"].max(axis=2)
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
if label is None:
return text
label = self.decode(label, is_remove_duplicate=False)
return text, label
class SRNLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self,
character_dict_path=None,
character_type='en',
use_space_char=False,
def __init__(self, character_dict_path=None, use_space_char=False,
**kwargs):
super(SRNLabelDecode, self).__init__(character_dict_path,
character_type, use_space_char)
use_space_char)
self.max_text_length = kwargs.get('max_text_length', 25)
def __call__(self, preds, label=None, *args, **kwargs):
......@@ -324,10 +438,9 @@ class SRNLabelDecode(BaseRecLabelDecode):
class TableLabelDecode(object):
""" """
def __init__(self,
character_dict_path,
**kwargs):
list_character, list_elem = self.load_char_elem_dict(character_dict_path)
def __init__(self, character_dict_path, **kwargs):
list_character, list_elem = self.load_char_elem_dict(
character_dict_path)
list_character = self.add_special_char(list_character)
list_elem = self.add_special_char(list_elem)
self.dict_character = {}
......@@ -346,7 +459,8 @@ class TableLabelDecode(object):
list_elem = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
substr = lines[0].decode('utf-8').strip("\n").strip("\r\n").split("\t")
substr = lines[0].decode('utf-8').strip("\n").strip("\r\n").split(
"\t")
character_num = int(substr[0])
elem_num = int(substr[1])
for cno in range(1, 1 + character_num):
......@@ -366,14 +480,14 @@ class TableLabelDecode(object):
def __call__(self, preds):
structure_probs = preds['structure_probs']
loc_preds = preds['loc_preds']
if isinstance(structure_probs,paddle.Tensor):
if isinstance(structure_probs, paddle.Tensor):
structure_probs = structure_probs.numpy()
if isinstance(loc_preds,paddle.Tensor):
if isinstance(loc_preds, paddle.Tensor):
loc_preds = loc_preds.numpy()
structure_idx = structure_probs.argmax(axis=2)
structure_probs = structure_probs.max(axis=2)
structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode(structure_idx,
structure_probs, 'elem')
structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode(
structure_idx, structure_probs, 'elem')
res_html_code_list = []
res_loc_list = []
batch_num = len(structure_str)
......@@ -388,8 +502,13 @@ class TableLabelDecode(object):
res_loc = np.array(res_loc)
res_html_code_list.append(res_html_code)
res_loc_list.append(res_loc)
return {'res_html_code': res_html_code_list, 'res_loc': res_loc_list, 'res_score_list': result_score_list,
'res_elem_idx_list': result_elem_idx_list,'structure_str_list':structure_str}
return {
'res_html_code': res_html_code_list,
'res_loc': res_loc_list,
'res_score_list': result_score_list,
'res_elem_idx_list': result_elem_idx_list,
'structure_str_list': structure_str
}
def decode(self, text_index, structure_probs, char_or_elem):
"""convert text-label into text-index.
......@@ -454,3 +573,79 @@ class TableLabelDecode(object):
assert False, "Unsupport type %s in char_or_elem" \
% char_or_elem
return idx
class SARLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self, character_dict_path=None, use_space_char=False,
**kwargs):
super(SARLabelDecode, self).__init__(character_dict_path,
use_space_char)
self.rm_symbol = kwargs.get('rm_symbol', False)
def add_special_char(self, dict_character):
beg_end_str = "<BOS/EOS>"
unknown_str = "<UKN>"
padding_str = "<PAD>"
dict_character = dict_character + [unknown_str]
self.unknown_idx = len(dict_character) - 1
dict_character = dict_character + [beg_end_str]
self.start_idx = len(dict_character) - 1
self.end_idx = len(dict_character) - 1
dict_character = dict_character + [padding_str]
self.padding_idx = len(dict_character) - 1
return dict_character
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
""" convert text-index into text-label. """
result_list = []
ignored_tokens = self.get_ignored_tokens()
batch_size = len(text_index)
for batch_idx in range(batch_size):
char_list = []
conf_list = []
for idx in range(len(text_index[batch_idx])):
if text_index[batch_idx][idx] in ignored_tokens:
continue
if int(text_index[batch_idx][idx]) == int(self.end_idx):
if text_prob is None and idx == 0:
continue
else:
break
if is_remove_duplicate:
# only for predict
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
batch_idx][idx]:
continue
char_list.append(self.character[int(text_index[batch_idx][
idx])])
if text_prob is not None:
conf_list.append(text_prob[batch_idx][idx])
else:
conf_list.append(1)
text = ''.join(char_list)
if self.rm_symbol:
comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]')
text = text.lower()
text = comp.sub('', text)
result_list.append((text, np.mean(conf_list)))
return result_list
def __call__(self, preds, label=None, *args, **kwargs):
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2)
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
if label is None:
return text
label = self.decode(label, is_remove_duplicate=False)
return text, label
def get_ignored_tokens(self):
return [self.padding_idx]
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
!
"
#
$
%
&
'
(
)
*
+
,
-
.
/
:
;
<
=
>
?
@
[
\
]
^
_
`
{
|
}
~
\ No newline at end of file
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
!
"
#
$
%
&
'
(
)
*
+
,
-
.
/
:
;
<
=
>
?
@
[
\
]
_
`
~
\ No newline at end of file
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
EPS = 1e-6
def iou_single(a, b, mask, n_class):
valid = mask == 1
a = a.masked_select(valid)
b = b.masked_select(valid)
miou = []
for i in range(n_class):
if a.shape == [0] and a.shape==b.shape:
inter = paddle.to_tensor(0.0)
union = paddle.to_tensor(0.0)
else:
inter = ((a == i).logical_and(b == i)).astype('float32')
union = ((a == i).logical_or(b == i)).astype('float32')
miou.append(paddle.sum(inter) / (paddle.sum(union) + EPS))
miou = sum(miou) / len(miou)
return miou
def iou(a, b, mask, n_class=2, reduce=True):
batch_size = a.shape[0]
a = a.reshape([batch_size, -1])
b = b.reshape([batch_size, -1])
mask = mask.reshape([batch_size, -1])
iou = paddle.zeros((batch_size,), dtype='float32')
for i in range(batch_size):
iou[i] = iou_single(a[i], b[i], mask[i], n_class)
if reduce:
iou = paddle.mean(iou)
return iou
\ No newline at end of file
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import paddle
# A global variable to record the number of calling times for profiler
# functions. It is used to specify the tracing range of training steps.
_profiler_step_id = 0
# A global variable to avoid parsing from string every time.
_profiler_options = None
class ProfilerOptions(object):
'''
Use a string to initialize a ProfilerOptions.
The string should be in the format: "key1=value1;key2=value;key3=value3".
For example:
"profile_path=model.profile"
"batch_range=[50, 60]; profile_path=model.profile"
"batch_range=[50, 60]; tracer_option=OpDetail; profile_path=model.profile"
ProfilerOptions supports following key-value pair:
batch_range - a integer list, e.g. [100, 110].
state - a string, the optional values are 'CPU', 'GPU' or 'All'.
sorted_key - a string, the optional values are 'calls', 'total',
'max', 'min' or 'ave.
tracer_option - a string, the optional values are 'Default', 'OpDetail',
'AllOpDetail'.
profile_path - a string, the path to save the serialized profile data,
which can be used to generate a timeline.
exit_on_finished - a boolean.
'''
def __init__(self, options_str):
assert isinstance(options_str, str)
self._options = {
'batch_range': [10, 20],
'state': 'All',
'sorted_key': 'total',
'tracer_option': 'Default',
'profile_path': '/tmp/profile',
'exit_on_finished': True
}
self._parse_from_string(options_str)
def _parse_from_string(self, options_str):
for kv in options_str.replace(' ', '').split(';'):
key, value = kv.split('=')
if key == 'batch_range':
value_list = value.replace('[', '').replace(']', '').split(',')
value_list = list(map(int, value_list))
if len(value_list) >= 2 and value_list[0] >= 0 and value_list[
1] > value_list[0]:
self._options[key] = value_list
elif key == 'exit_on_finished':
self._options[key] = value.lower() in ("yes", "true", "t", "1")
elif key in [
'state', 'sorted_key', 'tracer_option', 'profile_path'
]:
self._options[key] = value
def __getitem__(self, name):
if self._options.get(name, None) is None:
raise ValueError(
"ProfilerOptions does not have an option named %s." % name)
return self._options[name]
def add_profiler_step(options_str=None):
'''
Enable the operator-level timing using PaddlePaddle's profiler.
The profiler uses a independent variable to count the profiler steps.
One call of this function is treated as a profiler step.
Args:
profiler_options - a string to initialize the ProfilerOptions.
Default is None, and the profiler is disabled.
'''
if options_str is None:
return
global _profiler_step_id
global _profiler_options
if _profiler_options is None:
_profiler_options = ProfilerOptions(options_str)
if _profiler_step_id == _profiler_options['batch_range'][0]:
paddle.utils.profiler.start_profiler(
_profiler_options['state'], _profiler_options['tracer_option'])
elif _profiler_step_id == _profiler_options['batch_range'][1]:
paddle.utils.profiler.stop_profiler(_profiler_options['sorted_key'],
_profiler_options['profile_path'])
if _profiler_options['exit_on_finished']:
sys.exit(0)
_profiler_step_id += 1
......@@ -116,6 +116,7 @@ def load_dygraph_params(config, model, logger, optimizer):
logger.info(f"loaded pretrained_model successful from {pm}")
return {}
def load_pretrained_params(model, path):
if path is None:
return False
......@@ -138,6 +139,7 @@ def load_pretrained_params(model, path):
print(f"load pretrain successful from {path}")
return model
def save_model(model,
optimizer,
model_path,
......
......@@ -30,13 +30,13 @@ python3 -m pip install paddlepaddle-gpu==2.1.1 -i https://mirror.baidu.com/pypi/
# CPU
python3 -m pip install paddlepaddle==2.1.1 -i https://mirror.baidu.com/pypi/simple
# For more,refer[Installation](https://www.paddlepaddle.org.cn/install/quick)。
```
For more,refer [Installation](https://www.paddlepaddle.org.cn/install/quick) .
- **(2) Install Layout-Parser**
```bash
pip3 install -U premailer paddleocr https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
```
### 2.2 Install PaddleOCR(including PP-OCR and PP-Structure)
......@@ -124,8 +124,6 @@ Most of the parameters are consistent with the paddleocr whl package, see [doc o
After running, each image will have a directory with the same name under the directory specified in the output field. Each table in the picture will be stored as an excel and figure area will be cropped and saved, the excel and image file name will be the coordinates of the table in the image.
## 4. PP-Structure Pipeline
the process is as follows
![pipeline](../doc/table/pipeline_en.jpg)
In PP-Structure, the image will be analyzed by layoutparser first. In the layout analysis, the area in the image will be classified, including **text, title, image, list and table** 5 categories. For the first 4 types of areas, directly use the PP-OCR to complete the text detection and recognition. The table area will be converted to an excel file of the same table style via Table OCR.
......@@ -180,10 +178,10 @@ OCR and table recognition model
|model name|description|model size|download|
| --- | --- | --- | --- |
|ch_ppocr_mobile_slim_v2.0_det|Slim pruned lightweight model, supporting Chinese, English, multilingual text detection|2.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) |
|en_ppocr_mobile_v2.0_table_det|Text detection of English table scenes trained on PubLayNet dataset|4.7M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) |
|en_ppocr_mobile_v2.0_table_rec|Text recognition of English table scene trained on PubLayNet dataset|6.9M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) |
|en_ppocr_mobile_v2.0_table_structure|Table structure prediction of English table scene trained on PubLayNet dataset|18.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) |
|ch_ppocr_mobile_slim_v2.0_det|Slim pruned lightweight model, supporting Chinese, English, multilingual text detection|2.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|en_ppocr_mobile_v2.0_table_det|Text detection of English table scenes trained on PubLayNet dataset|4.7M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_det_train.tar) |
|en_ppocr_mobile_v2.0_table_rec|Text recognition of English table scene trained on PubLayNet dataset|6.9M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_rec_train.tar) |
|en_ppocr_mobile_v2.0_table_structure|Table structure prediction of English table scene trained on PubLayNet dataset|18.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) |
If you need to use other models, you can download the model in [model_list](../doc/doc_en/models_list_en.md) or use your own trained model to configure it to the three fields of `det_model_dir`, `rec_model_dir`, `table_model_dir` .
......@@ -30,13 +30,13 @@ python3 -m pip install paddlepaddle-gpu==2.1.1 -i https://mirror.baidu.com/pypi/
# CPU安装
python3 -m pip install paddlepaddle==2.1.1 -i https://mirror.baidu.com/pypi/simple
# 更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
```
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
- **(2) 安装 Layout-Parser**
```bash
pip3 install -U premailer paddleocr https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
```
### 2.2 安装PaddleOCR(包含PP-OCR和PP-Structure)
......@@ -179,10 +179,10 @@ OCR和表格识别模型
|模型名称|模型简介|推理模型大小|下载地址|
| --- | --- | --- | --- |
|ch_ppocr_mobile_slim_v2.0_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) |
|en_ppocr_mobile_v2.0_table_det|PubLayNet数据集训练的英文表格场景的文字检测|4.7M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) |
|en_ppocr_mobile_v2.0_table_rec|PubLayNet数据集训练的英文表格场景的文字识别|6.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) |
|en_ppocr_mobile_v2.0_table_structure|PubLayNet数据集训练的英文表格场景的表格结构预测|18.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) |
|ch_ppocr_mobile_slim_v2.0_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|en_ppocr_mobile_v2.0_table_det|PubLayNet数据集训练的英文表格场景的文字检测|4.7M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_det_train.tar) |
|en_ppocr_mobile_v2.0_table_rec|PubLayNet数据集训练的英文表格场景的文字识别|6.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_rec_train.tar) |
|en_ppocr_mobile_v2.0_table_structure|PubLayNet数据集训练的英文表格场景的表格结构预测|18.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) |
如需要使用其他模型,可以在 [model_list](../doc/doc_ch/models_list.md) 下载模型或者使用自己训练好的模型配置到`det_model_dir`,`rec_model_dir`,`table_model_dir`三个字段即可。
......@@ -4,9 +4,9 @@
[1.1 Requirements](#Requirements)
[1.2 Install PaddleDetection](#Install PaddleDetection)
[1.2 Install PaddleDetection](#Install_PaddleDetection)
[2. Data preparation](#Data preparation)
[2. Data preparation](#Data_reparation)
[3. Configuration](#Configuration)
......@@ -16,7 +16,7 @@
[6. Deployment](#Deployment)
[6.1 Export model](#Export model)
[6.1 Export model](#Export_model)
[6.2 Inference](#Inference)
......@@ -35,7 +35,7 @@
- CUDA >= 10.1
- cuDNN >= 7.6
<a name="Install PaddleDetection"></a>
<a name="Install_PaddleDetection"></a>
### 1.2 Install PaddleDetection
......@@ -51,7 +51,7 @@ pip install -r requirements.txt
For more installation tutorials, please refer to: [Install doc](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/INSTALL_cn.md)
<a name="Data preparation"></a>
<a name="Data_preparation"></a>
## 2. Data preparation
......@@ -165,7 +165,7 @@ python tools/infer.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --infer
Use your trained model in Layout Parser
<a name="Export model"></a>
<a name="Export_model"></a>
### 6.1 Export model
......
......@@ -41,7 +41,7 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_tab
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd ..
# run
python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=ch --det_limit_side_len=736 --det_limit_type=min --output ../output/table
python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
```
Note: The above model is trained on the PubLayNet dataset and only supports English scanning scenarios. If you need to identify other scenarios, you need to train the model yourself and replace the three fields `det_model_dir`, `rec_model_dir`, `table_model_dir`.
......
# 表格识别
* [1. 表格识别 pipeline](#1)
* [2. 性能](#2)
* [3. 使用](#3)
+ [3.1 快速开始](#31)
+ [3.2 训练](#32)
+ [3.3 评估](#33)
+ [3.4 预测](#34)
<a name="1"></a>
## 1. 表格识别 pipeline
表格识别主要包含三个模型
1. 单行文本检测-DB
2. 单行文本识别-CRNN
......@@ -17,6 +27,8 @@
3. 由单行文字的坐标、识别结果和单元格的坐标一起组合出单元格的识别结果。
4. 单元格的识别结果和表格结构一起构造表格的html字符串。
<a name="2"></a>
## 2. 性能
我们在 PubTabNet<sup>[1]</sup> 评估数据集上对算法进行了评估,性能如下
......@@ -26,8 +38,9 @@
| EDD<sup>[2]</sup> | 88.3 |
| Ours | 93.32 |
<a name="3"></a>
## 3. 使用
<a name="31"></a>
### 3.1 快速开始
```python
......@@ -43,12 +56,12 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_tab
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd ..
# 执行预测
python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=ch --det_limit_side_len=736 --det_limit_type=min --output ../output/table
python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
```
运行完成后,每张图片的excel表格会保存到output字段指定的目录下
note: 上述模型是在 PubLayNet 数据集上训练的表格识别模型,仅支持英文扫描场景,如需识别其他场景需要自己训练模型后替换 `det_model_dir`,`rec_model_dir`,`table_model_dir`三个字段即可。
<a name="32"></a>
### 3.2 训练
在这一章节中,我们仅介绍表格结构模型的训练,[文字检测](../../doc/doc_ch/detection.md)[文字识别](../../doc/doc_ch/recognition.md)的模型训练请参考对应的文档。
......@@ -75,7 +88,7 @@ python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./yo
**注意**`Global.checkpoints`的优先级高于`Global.pretrain_weights`的优先级,即同时指定两个参数时,优先加载`Global.checkpoints`指定的模型,如果`Global.checkpoints`指定的模型路径有误,会加载`Global.pretrain_weights`指定的模型。
<a name="33"></a>
### 3.3 评估
表格使用 [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) 作为模型的评估指标。在进行模型评估之前,需要将pipeline中的三个模型分别导出为inference模型(我们已经提供好),还需要准备评估的gt, gt示例如下:
......@@ -100,7 +113,7 @@ python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_di
```bash
teds: 93.32
```
<a name="34"></a>
### 3.4 预测
```python
......
# 介绍
test.sh和params.txt文件配合使用,完成OCR轻量检测和识别模型从训练到预测的流程测试。
# 安装依赖
- 安装PaddlePaddle >= 2.0
- 安装PaddleOCR依赖
```
pip3 install -r ../requirements.txt
```
- 安装autolog
```
git clone https://github.com/LDOUBLEV/AutoLog
cd AutoLog
pip3 install -r requirements.txt
python3 setup.py bdist_wheel
pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl
cd ../
```
# 目录介绍
```bash
tests/
├── ocr_det_params.txt # 测试OCR检测模型的参数配置文件
├── ocr_rec_params.txt # 测试OCR识别模型的参数配置文件
└── prepare.sh # 完成test.sh运行所需要的数据和模型下载
└── test.sh # 根据
```
# 使用方法
test.sh包含四种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
- 模式1 lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
```
bash test/prepare.sh ./tests/ocr_det_params.txt 'lite_train_infer'
bash tests/test.sh ./tests/ocr_det_params.txt 'lite_train_infer'
```
- 模式2 whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
```
bash tests/prepare.sh ./tests/ocr_det_params.txt 'whole_infer'
bash tests/test.sh ./tests/ocr_det_params.txt 'whole_infer'
```
- 模式3 infer 不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
```
bash tests/prepare.sh ./tests/ocr_det_params.txt 'infer'
用法1:
bash tests/test.sh ./tests/ocr_det_params.txt 'infer'
用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
bash tests/test.sh ./tests/ocr_det_params.txt 'infer' '1'
```
模式4: whole_train_infer , CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度
```
bash tests/prepare.sh ./tests/ocr_det_params.txt 'whole_train_infer'
bash tests/test.sh ./tests/ocr_det_params.txt 'whole_train_infer'
```
......@@ -27,7 +27,7 @@ from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model, load_pretrained_params
from ppocr.utils.save_load import init_model, load_dygraph_params
from ppocr.utils.utility import print_dict
import tools.program as program
......@@ -54,13 +54,13 @@ def main():
config['Architecture']["Head"]['out_channels'] = char_num
model = build_model(config['Architecture'])
use_srn = config['Architecture']['algorithm'] == "SRN"
extra_input = config['Architecture']['algorithm'] in ["SRN", "SAR"]
if "model_type" in config['Architecture'].keys():
model_type = config['Architecture']['model_type']
else:
model_type = None
best_model_dict = init_model(config, model)
best_model_dict = load_dygraph_params(config, model, logger, None)
if len(best_model_dict):
logger.info('metric in ckpt ***************')
for k, v in best_model_dict.items():
......@@ -71,7 +71,7 @@ def main():
# start eval
metric = program.eval(model, valid_dataloader, post_process_class,
eval_class, model_type, use_srn)
eval_class, model_type, extra_input)
logger.info('metric eval ***************')
for k, v in metric.items():
logger.info('{}:{}'.format(k, v))
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import pickle
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model, load_dygraph_params
from ppocr.utils.utility import print_dict
import tools.program as program
def main():
global_config = config['Global']
# build dataloader
config['Eval']['dataset']['name'] = config['Train']['dataset']['name']
config['Eval']['dataset']['data_dir'] = config['Train']['dataset'][
'data_dir']
config['Eval']['dataset']['label_file_list'] = config['Train']['dataset'][
'label_file_list']
eval_dataloader = build_dataloader(config, 'Eval', device, logger)
# build post process
post_process_class = build_post_process(config['PostProcess'],
global_config)
# build model
# for rec algorithm
if hasattr(post_process_class, 'character'):
char_num = len(getattr(post_process_class, 'character'))
config['Architecture']["Head"]['out_channels'] = char_num
#set return_features = True
config['Architecture']["Head"]["return_feats"] = True
model = build_model(config['Architecture'])
best_model_dict = load_dygraph_params(config, model, logger, None)
if len(best_model_dict):
logger.info('metric in ckpt ***************')
for k, v in best_model_dict.items():
logger.info('{}:{}'.format(k, v))
# get features from train data
char_center = program.get_center(model, eval_dataloader, post_process_class)
#serialize to disk
with open("train_center.pkl", 'wb') as f:
pickle.dump(char_center, f)
return
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess()
main()
......@@ -49,6 +49,12 @@ def export_single_model(model, arch_config, save_path, logger):
]
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] == "SAR":
other_shape = [
paddle.static.InputSpec(
shape=[None, 3, 48, 160], dtype="float32"),
]
model = to_static(model, input_spec=other_shape)
else:
infer_shape = [3, -1, -1]
if arch_config["model_type"] == "rec":
......@@ -60,6 +66,8 @@ def export_single_model(model, arch_config, save_path, logger):
"When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training"
)
infer_shape[-1] = 100
if arch_config["algorithm"] == "NRTR":
infer_shape = [1, 32, 100]
elif arch_config["model_type"] == "table":
infer_shape = [3, 488, 488]
model = to_static(
......@@ -93,6 +101,9 @@ def main():
for key in config["Architecture"]["Models"]:
config["Architecture"]["Models"][key]["Head"][
"out_channels"] = char_num
# just one final tensor needs to to exported for inference
config["Architecture"]["Models"][key][
"return_all_feats"] = False
else: # base rec model
config["Architecture"]["Head"]["out_channels"] = char_num
model = build_model(config["Architecture"])
......
......@@ -131,14 +131,9 @@ def main(args):
img_list.append(img)
try:
img_list, cls_res, predict_time = text_classifier(img_list)
except:
except Exception as E:
logger.info(traceback.format_exc())
logger.info(
"ERROR!!!! \n"
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
"If your model has tps module: "
"TPS does not support variable shape.\n"
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
logger.info(E)
exit()
for ino in range(len(img_list)):
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
......
......@@ -30,7 +30,7 @@ from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
import json
logger = get_logger()
......@@ -89,6 +89,14 @@ class TextDetector(object):
postprocess_params["sample_pts_num"] = 2
postprocess_params["expand_scale"] = 1.0
postprocess_params["shrink_ratio_of_width"] = 0.3
elif self.det_algorithm == "PSE":
postprocess_params['name'] = 'PSEPostProcess'
postprocess_params["thresh"] = args.det_pse_thresh
postprocess_params["box_thresh"] = args.det_pse_box_thresh
postprocess_params["min_area"] = args.det_pse_min_area
postprocess_params["box_type"] = args.det_pse_box_type
postprocess_params["scale"] = args.det_pse_scale
self.det_pse_box_type = args.det_pse_box_type
else:
logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
sys.exit(0)
......@@ -209,7 +217,7 @@ class TextDetector(object):
preds['f_score'] = outputs[1]
preds['f_tco'] = outputs[2]
preds['f_tvo'] = outputs[3]
elif self.det_algorithm == 'DB':
elif self.det_algorithm in ['DB', 'PSE']:
preds['maps'] = outputs[0]
else:
raise NotImplementedError
......@@ -217,7 +225,9 @@ class TextDetector(object):
#self.predictor.try_shrink_memory()
post_result = self.postprocess_op(preds, shape_list)
dt_boxes = post_result[0]['points']
if self.det_algorithm == "SAST" and self.det_sast_polygon:
if (self.det_algorithm == "SAST" and
self.det_sast_polygon) or (self.det_algorithm == "PSE" and
self.det_pse_box_type == 'poly'):
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
else:
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
......@@ -243,6 +253,7 @@ if __name__ == "__main__":
if not os.path.exists(draw_img_save):
os.makedirs(draw_img_save)
save_results = []
for image_file in image_file_list:
img, flag = check_and_read_gif(image_file)
if not flag:
......@@ -256,8 +267,11 @@ if __name__ == "__main__":
if count > 0:
total_time += elapse
count += 1
logger.info("Predict time of {}: {}".format(image_file, elapse))
save_pred = os.path.basename(image_file) + "\t" + str(
json.dumps(np.array(dt_boxes).astype(np.int32).tolist())) + "\n"
save_results.append(save_pred)
logger.info(save_pred)
logger.info("The predict time of {}: {}".format(image_file, elapse))
src_im = utility.draw_text_det_res(dt_boxes, image_file)
img_name_pure = os.path.split(image_file)[-1]
img_path = os.path.join(draw_img_save,
......@@ -265,5 +279,8 @@ if __name__ == "__main__":
cv2.imwrite(img_path, src_im)
logger.info("The visualized image saved in {}".format(img_path))
with open(os.path.join(draw_img_save, "det_results.txt"), 'w') as f:
f.writelines(save_results)
f.close()
if args.benchmark:
text_detector.autolog.report()
......@@ -74,7 +74,7 @@ class TextE2E(object):
self.preprocess_op = create_operators(pre_process_list)
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors = utility.create_predictor(
self.predictor, self.input_tensor, self.output_tensors, _ = utility.create_predictor(
args, 'e2e', logger) # paddle.jit.load(args.det_model_dir)
# self.predictor.eval()
......
......@@ -13,7 +13,7 @@
# limitations under the License.
import os
import sys
from PIL import Image
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
......@@ -38,26 +38,34 @@ logger = get_logger()
class TextRecognizer(object):
def __init__(self, args):
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
self.character_type = args.rec_char_type
self.rec_batch_num = args.rec_batch_num
self.rec_algorithm = args.rec_algorithm
postprocess_params = {
'name': 'CTCLabelDecode',
"character_type": args.rec_char_type,
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char
}
if self.rec_algorithm == "SRN":
postprocess_params = {
'name': 'SRNLabelDecode',
"character_type": args.rec_char_type,
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char
}
elif self.rec_algorithm == "RARE":
postprocess_params = {
'name': 'AttnLabelDecode',
"character_type": args.rec_char_type,
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char
}
elif self.rec_algorithm == 'NRTR':
postprocess_params = {
'name': 'NRTRLabelDecode',
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char
}
elif self.rec_algorithm == "SAR":
postprocess_params = {
'name': 'SARLabelDecode',
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char
}
......@@ -87,8 +95,18 @@ class TextRecognizer(object):
def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
if self.rec_algorithm == 'NRTR':
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# return padding_im
image_pil = Image.fromarray(np.uint8(img))
img = image_pil.resize([100, 32], Image.ANTIALIAS)
img = np.array(img)
norm_img = np.expand_dims(img, -1)
norm_img = norm_img.transpose((2, 0, 1))
return norm_img.astype(np.float32) / 128. - 1.
assert imgC == img.shape[2]
if self.character_type == "ch":
max_wh_ratio = max(max_wh_ratio, imgW / imgH)
imgW = int((32 * max_wh_ratio))
h, w = img.shape[:2]
ratio = w / float(h)
......@@ -177,6 +195,41 @@ class TextRecognizer(object):
return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2)
def resize_norm_img_sar(self, img, image_shape,
width_downsample_ratio=0.25):
imgC, imgH, imgW_min, imgW_max = image_shape
h = img.shape[0]
w = img.shape[1]
valid_ratio = 1.0
# make sure new_width is an integral multiple of width_divisor.
width_divisor = int(1 / width_downsample_ratio)
# resize
ratio = w / float(h)
resize_w = math.ceil(imgH * ratio)
if resize_w % width_divisor != 0:
resize_w = round(resize_w / width_divisor) * width_divisor
if imgW_min is not None:
resize_w = max(imgW_min, resize_w)
if imgW_max is not None:
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
resize_w = min(imgW_max, resize_w)
resized_image = cv2.resize(img, (resize_w, imgH))
resized_image = resized_image.astype('float32')
# norm
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
resize_shape = resized_image.shape
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
padding_im[:, :, 0:resize_w] = resized_image
pad_shape = padding_im.shape
return padding_im, resize_shape, pad_shape, valid_ratio
def __call__(self, img_list):
img_num = len(img_list)
# Calculate the aspect ratio of all text bars
......@@ -199,11 +252,19 @@ class TextRecognizer(object):
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no):
if self.rec_algorithm != "SRN":
if self.rec_algorithm != "SRN" and self.rec_algorithm != "SAR":
norm_img = self.resize_norm_img(img_list[indices[ino]],
max_wh_ratio)
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
elif self.rec_algorithm == "SAR":
norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
img_list[indices[ino]], self.rec_image_shape)
norm_img = norm_img[np.newaxis, :]
valid_ratio = np.expand_dims(valid_ratio, axis=0)
valid_ratios = []
valid_ratios.append(valid_ratio)
norm_img_batch.append(norm_img)
else:
norm_img = self.process_image_srn(
img_list[indices[ino]], self.rec_image_shape, 8, 25)
......@@ -249,16 +310,37 @@ class TextRecognizer(object):
if self.benchmark:
self.autolog.times.stamp()
preds = {"predict": outputs[2]}
elif self.rec_algorithm == "SAR":
valid_ratios = np.concatenate(valid_ratios)
inputs = [
norm_img_batch,
valid_ratios,
]
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[
i])
input_tensor.copy_from_cpu(inputs[i])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = outputs[0]
else:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
if len(outputs) != 1:
preds = outputs
else:
preds = outputs[0]
rec_result = self.postprocess_op(preds)
for rno in range(len(rec_result)):
......@@ -278,7 +360,7 @@ def main(args):
if args.warmup:
img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8)
for i in range(2):
res = text_recognizer([img])
res = text_recognizer([img] * int(args.rec_batch_num))
for image_file in image_file_list:
img, flag = check_and_read_gif(image_file)
......
......@@ -173,6 +173,9 @@ def main(args):
logger.info("The predict total time is {}".format(time.time() - _st))
logger.info("\nThe predict total time is {}".format(total_time))
if args.benchmark:
text_sys.text_detector.autolog.report()
text_sys.text_recognizer.autolog.report()
if __name__ == "__main__":
......
......@@ -35,7 +35,7 @@ def init_args():
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--min_subgraph_size", type=int, default=10)
parser.add_argument("--min_subgraph_size", type=int, default=15)
parser.add_argument("--precision", type=str, default="fp32")
parser.add_argument("--gpu_mem", type=int, default=500)
......@@ -63,11 +63,17 @@ def init_args():
parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
# PSE parmas
parser.add_argument("--det_pse_thresh", type=float, default=0)
parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
parser.add_argument("--det_pse_min_area", type=float, default=16)
parser.add_argument("--det_pse_box_type", type=str, default='box')
parser.add_argument("--det_pse_scale", type=int, default=1)
# params for text recognizer
parser.add_argument("--rec_algorithm", type=str, default='CRNN')
parser.add_argument("--rec_model_dir", type=str)
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
parser.add_argument("--rec_char_type", type=str, default='ch')
parser.add_argument("--rec_batch_num", type=int, default=6)
parser.add_argument("--max_text_length", type=int, default=25)
parser.add_argument(
......@@ -236,11 +242,11 @@ def create_predictor(args, mode, logger):
max_input_shape.update(max_pact_shape)
opt_input_shape.update(opt_pact_shape)
elif mode == "rec":
min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
min_input_shape = {"x": [1, 3, 32, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
elif mode == "cls":
min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
min_input_shape = {"x": [1, 3, 48, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
else:
......@@ -261,10 +267,11 @@ def create_predictor(args, mode, logger):
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
if args.precision == "fp16":
config.enable_mkldnn_bfloat16()
# enable memory optim
config.enable_memory_optim()
#config.disable_glog_info()
config.disable_glog_info()
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
if mode == 'table':
......
......@@ -34,23 +34,21 @@ import paddle
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.save_load import init_model, load_dygraph_params
from ppocr.utils.utility import get_image_file_list
import tools.program as program
def draw_det_res(dt_boxes, config, img, img_name):
def draw_det_res(dt_boxes, config, img, img_name, save_path):
if len(dt_boxes) > 0:
import cv2
src_im = img
for box in dt_boxes:
box = box.astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
save_det_path = os.path.dirname(config['Global'][
'save_res_path']) + "/det_results/"
if not os.path.exists(save_det_path):
os.makedirs(save_det_path)
save_path = os.path.join(save_det_path, os.path.basename(img_name))
if not os.path.exists(save_path):
os.makedirs(save_path)
save_path = os.path.join(save_path, os.path.basename(img_name))
cv2.imwrite(save_path, src_im)
logger.info("The detected Image saved in {}".format(save_path))
......@@ -61,8 +59,7 @@ def main():
# build model
model = build_model(config['Architecture'])
init_model(config, model)
_ = load_dygraph_params(config, model, logger, None)
# build post process
post_process_class = build_post_process(config['PostProcess'])
......@@ -96,17 +93,41 @@ def main():
images = paddle.to_tensor(images)
preds = model(images)
post_result = post_process_class(preds, shape_list)
src_img = cv2.imread(file)
dt_boxes_json = []
# parser boxes if post_result is dict
if isinstance(post_result, dict):
det_box_json = {}
for k in post_result.keys():
boxes = post_result[k][0]['points']
dt_boxes_list = []
for box in boxes:
tmp_json = {"transcription": ""}
tmp_json['points'] = box.tolist()
dt_boxes_list.append(tmp_json)
det_box_json[k] = dt_boxes_list
save_det_path = os.path.dirname(config['Global'][
'save_res_path']) + "/det_results_{}/".format(k)
draw_det_res(boxes, config, src_img, file, save_det_path)
else:
boxes = post_result[0]['points']
# write result
dt_boxes_json = []
# write result
for box in boxes:
tmp_json = {"transcription": ""}
tmp_json['points'] = box.tolist()
dt_boxes_json.append(tmp_json)
save_det_path = os.path.dirname(config['Global'][
'save_res_path']) + "/det_results/"
draw_det_res(boxes, config, src_img, file, save_det_path)
otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n"
fout.write(otstr.encode())
src_img = cv2.imread(file)
draw_det_res(boxes, config, src_img, file)
save_det_path = os.path.dirname(config['Global'][
'save_res_path']) + "/det_results/"
draw_det_res(boxes, config, src_img, file, save_det_path)
logger.info("success!")
......
......@@ -74,6 +74,10 @@ def main():
'image', 'encoder_word_pos', 'gsrm_word_pos',
'gsrm_slf_attn_bias1', 'gsrm_slf_attn_bias2'
]
elif config['Architecture']['algorithm'] == "SAR":
op[op_name]['keep_keys'] = [
'image', 'valid_ratio'
]
else:
op[op_name]['keep_keys'] = ['image']
transforms.append(op)
......@@ -106,11 +110,16 @@ def main():
paddle.to_tensor(gsrm_slf_attn_bias1_list),
paddle.to_tensor(gsrm_slf_attn_bias2_list)
]
if config['Architecture']['algorithm'] == "SAR":
valid_ratio = np.expand_dims(batch[-1], axis=0)
img_metas = [paddle.to_tensor(valid_ratio)]
images = np.expand_dims(batch[0], axis=0)
images = paddle.to_tensor(images)
if config['Architecture']['algorithm'] == "SRN":
preds = model(images, others)
elif config['Architecture']['algorithm'] == "SAR":
preds = model(images, img_metas)
else:
preds = model(images)
post_result = post_process_class(preds)
......@@ -121,7 +130,7 @@ def main():
if len(post_result[key][0]) >= 2:
rec_info[key] = {
"label": post_result[key][0][0],
"score": post_result[key][0][1],
"score": float(post_result[key][0][1]),
}
info = json.dumps(rec_info)
else:
......
......@@ -31,6 +31,7 @@ from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
from ppocr.utils import profiler
from ppocr.data import build_dataloader
import numpy as np
......@@ -42,6 +43,13 @@ class ArgsParser(ArgumentParser):
self.add_argument("-c", "--config", help="configuration file to use")
self.add_argument(
"-o", "--opt", nargs='+', help="set configuration options")
self.add_argument(
'-p',
'--profiler_options',
type=str,
default=None,
help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
)
def parse_args(self, argv=None):
args = super(ArgsParser, self).parse_args(argv)
......@@ -158,6 +166,7 @@ def train(config,
epoch_num = config['Global']['epoch_num']
print_batch_step = config['Global']['print_batch_step']
eval_batch_step = config['Global']['eval_batch_step']
profiler_options = config['profiler_options']
global_step = 0
if 'global_step' in pre_best_model_dict:
......@@ -186,10 +195,13 @@ def train(config,
model.train()
use_srn = config['Architecture']['algorithm'] == "SRN"
extra_input = config['Architecture'][
'algorithm'] in ["SRN", "NRTR", "SAR", "SEED"]
try:
model_type = config['Architecture']['model_type']
except:
model_type = None
algorithm = config['Architecture']['algorithm']
if 'start_epoch' in best_model_dict:
start_epoch = best_model_dict['start_epoch']
......@@ -206,6 +218,7 @@ def train(config,
max_iter = len(train_dataloader) - 1 if platform.system(
) == "Windows" else len(train_dataloader)
for idx, batch in enumerate(train_dataloader):
profiler.add_profiler_step(profiler_options)
train_reader_cost += time.time() - batch_start
if idx >= max_iter:
break
......@@ -213,7 +226,7 @@ def train(config,
images = batch[0]
if use_srn:
model_average = True
if use_srn or model_type == 'table':
if model_type == 'table' or extra_input:
preds = model(images, data=batch[1:])
else:
preds = model(images)
......@@ -277,7 +290,7 @@ def train(config,
post_process_class,
eval_class,
model_type,
use_srn=use_srn)
extra_input=extra_input)
cur_metric_str = 'cur metric, {}'.format(', '.join(
['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
logger.info(cur_metric_str)
......@@ -348,8 +361,8 @@ def eval(model,
valid_dataloader,
post_process_class,
eval_class,
model_type,
use_srn=False):
model_type=None,
extra_input=False):
model.eval()
with paddle.no_grad():
total_frame = 0.0
......@@ -362,7 +375,7 @@ def eval(model,
break
images = batch[0]
start = time.time()
if use_srn or model_type == 'table':
if model_type == 'table' or extra_input:
preds = model(images, data=batch[1:])
else:
preds = model(images)
......@@ -386,10 +399,76 @@ def eval(model,
return metric
def update_center(char_center, post_result, preds):
result, label = post_result
feats, logits = preds
logits = paddle.argmax(logits, axis=-1)
feats = feats.numpy()
logits = logits.numpy()
for idx_sample in range(len(label)):
if result[idx_sample][0] == label[idx_sample][0]:
feat = feats[idx_sample]
logit = logits[idx_sample]
for idx_time in range(len(logit)):
index = logit[idx_time]
if index in char_center.keys():
char_center[index][0] = (
char_center[index][0] * char_center[index][1] +
feat[idx_time]) / (char_center[index][1] + 1)
char_center[index][1] += 1
else:
char_center[index] = [feat[idx_time], 1]
return char_center
def get_center(model, eval_dataloader, post_process_class):
pbar = tqdm(total=len(eval_dataloader), desc='get center:')
max_iter = len(eval_dataloader) - 1 if platform.system(
) == "Windows" else len(eval_dataloader)
char_center = dict()
for idx, batch in enumerate(eval_dataloader):
if idx >= max_iter:
break
images = batch[0]
start = time.time()
preds = model(images)
batch = [item.numpy() for item in batch]
# Obtain usable results from post-processing methods
total_time += time.time() - start
# Evaluate the results of the current batch
post_result = post_process_class(preds, batch[1])
#update char_center
char_center = update_center(char_center, post_result, preds)
pbar.update(1)
pbar.close()
for key in char_center.keys():
char_center[key] = char_center[key][0]
return char_center
def preprocess(is_train=False):
FLAGS = ArgsParser().parse_args()
profiler_options = FLAGS.profiler_options
config = load_config(FLAGS.config)
merge_config(FLAGS.opt)
profile_dic = {"profiler_options": FLAGS.profiler_options}
merge_config(profile_dic)
if is_train:
# save_config
save_model_dir = config['Global']['save_model_dir']
os.makedirs(save_model_dir, exist_ok=True)
with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
yaml.dump(
dict(config), f, default_flow_style=False, sort_keys=False)
log_file = '{}/train.log'.format(save_model_dir)
else:
log_file = None
logger = get_logger(name='root', log_file=log_file)
# check if set use_gpu=True in paddlepaddle cpu version
use_gpu = config['Global']['use_gpu']
......@@ -398,24 +477,20 @@ def preprocess(is_train=False):
alg = config['Architecture']['algorithm']
assert alg in [
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
'CLS', 'PGNet', 'Distillation', 'TableAttn'
'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
'SEED'
]
windows_not_support_list = ['PSE']
if platform.system() == "Windows" and alg in windows_not_support_list:
logger.warning('{} is not support in Windows now'.format(
windows_not_support_list))
sys.exit()
device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
device = paddle.set_device(device)
config['Global']['distributed'] = dist.get_world_size() != 1
if is_train:
# save_config
save_model_dir = config['Global']['save_model_dir']
os.makedirs(save_model_dir, exist_ok=True)
with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
yaml.dump(
dict(config), f, default_flow_style=False, sort_keys=False)
log_file = '{}/train.log'.format(save_model_dir)
else:
log_file = None
logger = get_logger(name='root', log_file=log_file)
if config['Global']['use_visualdl']:
from visualdl import LogWriter
save_model_dir = config['Global']['save_model_dir']
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册