det_fce_head.py 3.5 KB
Newer Older
z37757's avatar
z37757 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/dense_heads/fce_head.py
"""

z37757's avatar
z37757 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
from paddle import nn
from paddle import ParamAttr
import paddle.nn.functional as F
from paddle.nn.initializer import Normal
import paddle
from functools import partial


def multi_apply(func, *args, **kwargs):
    pfunc = partial(func, **kwargs) if kwargs else func
    map_results = map(pfunc, *args)
    return tuple(map(list, zip(*map_results)))


class FCEHead(nn.Layer):
    """The class for implementing FCENet head.
    FCENet(CVPR2021): Fourier Contour Embedding for Arbitrary-shaped Text
    Detection.

    [https://arxiv.org/abs/2104.10442]

    Args:
        in_channels (int): The number of input channels.
        scales (list[int]) : The scale of each layer.
        fourier_degree (int) : The maximum Fourier transform degree k.
    """

    def __init__(self, in_channels, scales, fourier_degree=5):
        super().__init__()
        assert isinstance(in_channels, int)

        self.downsample_ratio = 1.0
        self.in_channels = in_channels
        self.scales = scales
        self.fourier_degree = fourier_degree
        self.out_channels_cls = 4
        self.out_channels_reg = (2 * self.fourier_degree + 1) * 2

        self.out_conv_cls = nn.Conv2D(
            in_channels=self.in_channels,
            out_channels=self.out_channels_cls,
            kernel_size=3,
            stride=1,
            padding=1,
            groups=1,
            weight_attr=ParamAttr(
                name='cls_weights',
                initializer=Normal(
                    mean=paddle.to_tensor(0.), std=paddle.to_tensor(0.01))),
            bias_attr=True)
        self.out_conv_reg = nn.Conv2D(
            in_channels=self.in_channels,
            out_channels=self.out_channels_reg,
            kernel_size=3,
            stride=1,
            padding=1,
            groups=1,
            weight_attr=ParamAttr(
                name='reg_weights',
                initializer=Normal(
                    mean=paddle.to_tensor(0.), std=paddle.to_tensor(0.01))),
            bias_attr=True)

    def forward(self, feats, targets=None):
        cls_res, reg_res = multi_apply(self.forward_single, feats)
        level_num = len(cls_res)
        # import pdb;pdb.set_trace()
        outs = {}

        if not self.training:
            for i in range(level_num):
                tr_pred = F.softmax(cls_res[i][:, 0:2, :, :], axis=1)
                tcl_pred = F.softmax(cls_res[i][:, 2:, :, :], axis=1)
                outs['level_{}'.format(i)] = paddle.concat(
                    [tr_pred, tcl_pred, reg_res[i]], axis=1)
        else:
            preds = [[cls_res[i], reg_res[i]] for i in range(level_num)]
            outs['levels'] = preds
        return outs

    def forward_single(self, x):
        cls_predict = self.out_conv_cls(x)
        reg_predict = self.out_conv_reg(x)
        return cls_predict, reg_predict