det_resnet_vd.py 11.3 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import paddle
W
WenmuZhou 已提交
20
from paddle import ParamAttr
21
import paddle.nn as nn
W
WenmuZhou 已提交
22
import paddle.nn.functional as F
L
LDOUBLEV 已提交
23

z37757's avatar
z37757 已提交
24 25 26 27
from paddle.vision.ops import DeformConv2D
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Normal, Constant, XavierUniform

L
LDOUBLEV 已提交
28 29 30
__all__ = ["ResNet"]


z37757's avatar
z37757 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
class DeformableConvV2(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 lr_scale=1,
                 regularizer=None,
                 skip_quant=False,
                 dcn_bias_regularizer=L2Decay(0.),
                 dcn_bias_lr_scale=2.):
        super(DeformableConvV2, self).__init__()
        self.offset_channel = 2 * kernel_size**2 * groups
        self.mask_channel = kernel_size**2 * groups

        if bias_attr:
            # in FCOS-DCN head, specifically need learning_rate and regularizer
            dcn_bias_attr = ParamAttr(
                initializer=Constant(value=0),
                regularizer=dcn_bias_regularizer,
                learning_rate=dcn_bias_lr_scale)
        else:
            # in ResNet backbone, do not need bias
            dcn_bias_attr = False
        self.conv_dcn = DeformConv2D(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2 * dilation,
            dilation=dilation,
            deformable_groups=groups,
            weight_attr=weight_attr,
            bias_attr=dcn_bias_attr)

        if lr_scale == 1 and regularizer is None:
            offset_bias_attr = ParamAttr(initializer=Constant(0.))
        else:
            offset_bias_attr = ParamAttr(
                initializer=Constant(0.),
                learning_rate=lr_scale,
                regularizer=regularizer)
        self.conv_offset = nn.Conv2D(
            in_channels,
            groups * 3 * kernel_size**2,
            kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
            weight_attr=ParamAttr(initializer=Constant(0.0)),
            bias_attr=offset_bias_attr)
        if skip_quant:
            self.conv_offset.skip_quant = True

    def forward(self, x):
        offset_mask = self.conv_offset(x)
        offset, mask = paddle.split(
            offset_mask,
            num_or_sections=[self.offset_channel, self.mask_channel],
            axis=1)
        mask = F.sigmoid(mask)
        y = self.conv_dcn(x, offset, mask=mask)
        return y


W
WenmuZhou 已提交
100
class ConvBNLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
101 102 103 104 105 106 107
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 groups=1,
                 is_vd_mode=False,
z37757's avatar
z37757 已提交
108 109
                 act=None,
                 is_dcn=False):
W
WenmuZhou 已提交
110
        super(ConvBNLayer, self).__init__()
111 112

        self.is_vd_mode = is_vd_mode
W
WenmuZhou 已提交
113
        self._pool2d_avg = nn.AvgPool2D(
114
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
z37757's avatar
z37757 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        if not is_dcn:
            self._conv = nn.Conv2D(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=(kernel_size - 1) // 2,
                groups=groups,
                bias_attr=False)
        else:
            self._conv = DeformableConvV2(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=(kernel_size - 1) // 2,
                groups=2,  #groups,
                bias_attr=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
133
        self._batch_norm = nn.BatchNorm(out_channels, act=act)
W
WenmuZhou 已提交
134

135 136 137 138 139 140
    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y
W
WenmuZhou 已提交
141 142


143
class BottleneckBlock(nn.Layer):
z37757's avatar
z37757 已提交
144 145 146 147 148 149 150 151
    def __init__(
            self,
            in_channels,
            out_channels,
            stride,
            shortcut=True,
            if_first=False,
            is_dcn=False, ):
W
WenmuZhou 已提交
152
        super(BottleneckBlock, self).__init__()
153

W
WenmuZhou 已提交
154 155 156 157
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
158
            act='relu')
W
WenmuZhou 已提交
159 160 161 162
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
L
LDOUBLEV 已提交
163
            stride=stride,
z37757's avatar
z37757 已提交
164 165
            act='relu',
            is_dcn=is_dcn)
W
WenmuZhou 已提交
166 167 168 169
        self.conv2 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels * 4,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
170
            act=None)
L
LDOUBLEV 已提交
171

172 173 174 175 176 177
        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels * 4,
                kernel_size=1,
                stride=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
178
                is_vd_mode=False if if_first else True)
179 180 181 182 183 184 185

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
W
WenmuZhou 已提交
186

187 188 189 190
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
W
WenmuZhou 已提交
191 192
        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
W
WenmuZhou 已提交
193
        return y
L
LDOUBLEV 已提交
194 195


W
WenmuZhou 已提交
196
class BasicBlock(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
197 198 199 200 201 202 203
    def __init__(
            self,
            in_channels,
            out_channels,
            stride,
            shortcut=True,
            if_first=False, ):
W
WenmuZhou 已提交
204
        super(BasicBlock, self).__init__()
205
        self.stride = stride
W
WenmuZhou 已提交
206 207 208 209
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
L
LDOUBLEV 已提交
210
            stride=stride,
littletomatodonkey's avatar
littletomatodonkey 已提交
211
            act='relu')
W
WenmuZhou 已提交
212 213 214 215
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
littletomatodonkey's avatar
littletomatodonkey 已提交
216
            act=None)
W
WenmuZhou 已提交
217

218 219 220 221 222 223
        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
224
                is_vd_mode=False if if_first else True)
225 226 227 228 229 230

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
W
WenmuZhou 已提交
231

232 233 234 235
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
W
WenmuZhou 已提交
236 237
        y = paddle.add(x=short, y=conv1)
        y = F.relu(y)
238
        return y
W
WenmuZhou 已提交
239 240


241
class ResNet(nn.Layer):
z37757's avatar
z37757 已提交
242 243 244 245 246 247
    def __init__(self,
                 in_channels=3,
                 layers=50,
                 dcn_stage=None,
                 out_indices=None,
                 **kwargs):
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        super(ResNet, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

z37757's avatar
z37757 已提交
270 271 272 273 274 275 276
        self.dcn_stage = dcn_stage if dcn_stage is not None else [
            False, False, False, False
        ]
        self.out_indices = out_indices if out_indices is not None else [
            0, 1, 2, 3
        ]

277 278 279 280 281
        self.conv1_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=32,
            kernel_size=3,
            stride=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
282
            act='relu')
283 284 285 286 287
        self.conv1_2 = ConvBNLayer(
            in_channels=32,
            out_channels=32,
            kernel_size=3,
            stride=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
288
            act='relu')
289 290 291 292 293
        self.conv1_3 = ConvBNLayer(
            in_channels=32,
            out_channels=64,
            kernel_size=3,
            stride=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
294
            act='relu')
W
WenmuZhou 已提交
295
        self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
296 297 298 299 300 301 302

        self.stages = []
        self.out_channels = []
        if layers >= 50:
            for block in range(len(depth)):
                block_list = []
                shortcut = False
z37757's avatar
z37757 已提交
303
                is_dcn = self.dcn_stage[block]
304 305 306 307 308 309 310 311 312
                for i in range(depth[block]):
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            out_channels=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
z37757's avatar
z37757 已提交
313 314
                            if_first=block == i == 0,
                            is_dcn=is_dcn))
315 316
                    shortcut = True
                    block_list.append(bottleneck_block)
z37757's avatar
z37757 已提交
317 318
                if block in self.out_indices:
                    self.out_channels.append(num_filters[block] * 4)
319 320 321 322 323
                self.stages.append(nn.Sequential(*block_list))
        else:
            for block in range(len(depth)):
                block_list = []
                shortcut = False
z37757's avatar
z37757 已提交
324
                # is_dcn = self.dcn_stage[block]
325 326 327 328 329 330 331 332 333
                for i in range(depth[block]):
                    basic_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BasicBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            out_channels=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
littletomatodonkey's avatar
littletomatodonkey 已提交
334
                            if_first=block == i == 0))
335 336
                    shortcut = True
                    block_list.append(basic_block)
z37757's avatar
z37757 已提交
337 338
                if block in self.out_indices:
                    self.out_channels.append(num_filters[block])
339
                self.stages.append(nn.Sequential(*block_list))
W
WenmuZhou 已提交
340

341 342 343 344 345 346
    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        out = []
z37757's avatar
z37757 已提交
347
        for i, block in enumerate(self.stages):
348
            y = block(y)
z37757's avatar
z37757 已提交
349 350
            if i in self.out_indices:
                out.append(y)
351
        return out