README.md 10.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4
# OCR Pipeline WebService

(English|[简体中文](./README_CN.md))

L
LDOUBLEV 已提交
5
PaddleOCR provides two service deployment methods:
L
LDOUBLEV 已提交
6 7
- Based on **PaddleHub Serving**: Code path is "`./deploy/hubserving`". Please refer to the [tutorial](../../deploy/hubserving/readme_en.md)
- Based on **PaddleServing**: Code path is "`./deploy/pdserving`". Please follow this tutorial.
L
LDOUBLEV 已提交
8

L
LDOUBLEV 已提交
9 10 11 12 13 14 15 16 17 18
# Service deployment based on PaddleServing  

This document will introduce how to use the [PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README.md) to deploy the PPOCR dynamic graph model as a pipeline online service.

Some Key Features of Paddle Serving:
- Integrate with Paddle training pipeline seamlessly, most paddle models can be deployed with one line command.
- Industrial serving features supported, such as models management, online loading, online A/B testing etc.
- Highly concurrent and efficient communication between clients and servers supported.

The introduction and tutorial of Paddle Serving service deployment framework reference [document](https://github.com/PaddlePaddle/Serving/blob/develop/README.md).
L
LDOUBLEV 已提交
19 20 21


## Contents
L
LDOUBLEV 已提交
22 23 24 25
- [Environmental preparation](#environmental-preparation)
- [Model conversion](#model-conversion)
- [Paddle Serving pipeline deployment](#paddle-serving-pipeline-deployment)
- [FAQ](#faq)
L
LDOUBLEV 已提交
26

L
LDOUBLEV 已提交
27
<a name="environmental-preparation"></a>
L
LDOUBLEV 已提交
28 29
## Environmental preparation

L
LDOUBLEV 已提交
30
PaddleOCR operating environment and Paddle Serving operating environment are needed.
L
LDOUBLEV 已提交
31

L
LDOUBLEV 已提交
32
1. Please prepare PaddleOCR operating environment reference [link](../../doc/doc_ch/installation.md).
T
tink2123 已提交
33

34
   Download the corresponding paddle whl package according to the environment, it is recommended to install version 2.2.2
L
LDOUBLEV 已提交
35

L
LDOUBLEV 已提交
36
2. The steps of PaddleServing operating environment prepare are as follows:
L
LDOUBLEV 已提交
37

L
LDOUBLEV 已提交
38

littletomatodonkey's avatar
littletomatodonkey 已提交
39
```bash
T
tink2123 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53
# Install serving which used to start the service
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
pip3 install paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
# Install paddle-serving-server for cuda10.1
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
# pip3 install paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl

# Install serving which used to start the service
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp37-none-any.whl
pip3 install paddle_serving_client-0.8.3-cp37-none-any.whl

# Install serving-app
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl
pip3 install paddle_serving_app-0.8.3-py3-none-any.whl
littletomatodonkey's avatar
littletomatodonkey 已提交
54
```
L
LDOUBLEV 已提交
55

56

T
tink2123 已提交
57
**note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md).
L
LDOUBLEV 已提交
58 59 60


<a name="model-conversion"></a>
L
LDOUBLEV 已提交
61 62 63
## Model conversion
When using PaddleServing for service deployment, you need to convert the saved inference model into a serving model that is easy to deploy.

littletomatodonkey's avatar
littletomatodonkey 已提交
64
Firstly, download the [inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/README_ch.md#pp-ocr%E7%B3%BB%E5%88%97%E6%A8%A1%E5%9E%8B%E5%88%97%E8%A1%A8%E6%9B%B4%E6%96%B0%E4%B8%AD) of PPOCR
L
LDOUBLEV 已提交
65 66
```
# Download and unzip the OCR text detection model
littletomatodonkey's avatar
littletomatodonkey 已提交
67
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar -O ch_PP-OCRv2_det_infer.tar && tar -xf ch_PP-OCRv2_det_infer.tar
L
LDOUBLEV 已提交
68
# Download and unzip the OCR text recognition model
littletomatodonkey's avatar
littletomatodonkey 已提交
69
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar -O ch_PP-OCRv2_rec_infer.tar &&  tar -xf ch_PP-OCRv2_rec_infer.tar
L
LDOUBLEV 已提交
70
```
T
add qps  
tink2123 已提交
71
Then, you can use installed paddle_serving_client tool to convert inference model to mobile model.
L
LDOUBLEV 已提交
72
```
L
LDOUBLEV 已提交
73
#  Detection model conversion
littletomatodonkey's avatar
littletomatodonkey 已提交
74
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_det_infer/ \
L
LDOUBLEV 已提交
75 76
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
littletomatodonkey's avatar
littletomatodonkey 已提交
77 78
                                         --serving_server ./ppocrv2_det_serving/ \
                                         --serving_client ./ppocrv2_det_client/
L
LDOUBLEV 已提交
79

L
LDOUBLEV 已提交
80
#  Recognition model conversion
littletomatodonkey's avatar
littletomatodonkey 已提交
81
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
L
LDOUBLEV 已提交
82 83
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
littletomatodonkey's avatar
littletomatodonkey 已提交
84 85
                                         --serving_server ./ppocrv2_rec_serving/  \
                                         --serving_client ./ppocrv2_rec_client/
L
LDOUBLEV 已提交
86 87 88

```

T
add qps  
tink2123 已提交
89
After the detection model is converted, there will be additional folders of `ppocr_det_mobile_2.0_serving` and `ppocr_det_mobile_2.0_client` in the current folder, with the following format:
L
LDOUBLEV 已提交
90
```
littletomatodonkey's avatar
littletomatodonkey 已提交
91 92 93 94 95 96 97 98 99
|- ppocrv2_det_serving/
  |- __model__  
  |- __params__
  |- serving_server_conf.prototxt  
  |- serving_server_conf.stream.prototxt

|- ppocrv2_det_client
  |- serving_client_conf.prototxt  
  |- serving_client_conf.stream.prototxt
L
LDOUBLEV 已提交
100 101 102 103

```
The recognition model is the same.

L
LDOUBLEV 已提交
104
<a name="paddle-serving-pipeline-deployment"></a>
L
LDOUBLEV 已提交
105 106 107
## Paddle Serving pipeline deployment

1. Download the PaddleOCR code, if you have already downloaded it, you can skip this step.
L
LDOUBLEV 已提交
108 109 110 111
    ```
    git clone https://github.com/PaddlePaddle/PaddleOCR

    # Enter the working directory  
T
tink2123 已提交
112
    cd PaddleOCR/deploy/pdserving/
L
LDOUBLEV 已提交
113 114 115 116 117 118 119 120 121 122
    ```

    The pdserver directory contains the code to start the pipeline service and send prediction requests, including:
    ```
    __init__.py
    config.yml # Start the service configuration file
    ocr_reader.py # OCR model pre-processing and post-processing code implementation
    pipeline_http_client.py # Script to send pipeline prediction request
    web_service.py # Start the script of the pipeline server
    ```
L
LDOUBLEV 已提交
123 124

2. Run the following command to start the service.
L
LDOUBLEV 已提交
125 126 127 128 129 130
    ```
    # Start the service and save the running log in log.txt
    python3 web_service.py &>log.txt &
    ```
    After the service is successfully started, a log similar to the following will be printed in log.txt
    ![](./imgs/start_server.png)
L
LDOUBLEV 已提交
131 132

3. Send service request
L
LDOUBLEV 已提交
133 134 135 136 137
    ```
    python3 pipeline_http_client.py
    ```
    After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
    ![](./imgs/results.png)  
L
LDOUBLEV 已提交
138

T
add qps  
tink2123 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151
    Adjust the number of concurrency in config.yml to get the largest QPS. Generally, the number of concurrent detection and recognition is 2:1

    ```
    det:
        concurrency: 8
        ...
    rec:
        concurrency: 4
        ...
    ```

    Multiple service requests can be sent at the same time if necessary.

T
add qps  
tink2123 已提交
152 153
    The predicted performance data will be automatically written into the `PipelineServingLogs/pipeline.tracer` file.

T
add qps  
tink2123 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    Tested on 200 real pictures, and limited the detection long side to 960. The average QPS on T4 GPU can reach around 23:

    ```

    2021-05-13 03:42:36,895 ==================== TRACER ======================
    2021-05-13 03:42:36,975 Op(rec):
    2021-05-13 03:42:36,976         in[14.472382882882883 ms]
    2021-05-13 03:42:36,976         prep[9.556855855855856 ms]
    2021-05-13 03:42:36,976         midp[59.921905405405404 ms]
    2021-05-13 03:42:36,976         postp[15.345945945945946 ms]
    2021-05-13 03:42:36,976         out[1.9921216216216215 ms]
    2021-05-13 03:42:36,976         idle[0.16254943864471572]
    2021-05-13 03:42:36,976 Op(det):
    2021-05-13 03:42:36,976         in[315.4468035714286 ms]
    2021-05-13 03:42:36,976         prep[69.5980625 ms]
    2021-05-13 03:42:36,976         midp[18.989535714285715 ms]
    2021-05-13 03:42:36,976         postp[18.857803571428573 ms]
    2021-05-13 03:42:36,977         out[3.1337544642857145 ms]
    2021-05-13 03:42:36,977         idle[0.7477961159203756]
    2021-05-13 03:42:36,977 DAGExecutor:
    2021-05-13 03:42:36,977         Query count[224]
    2021-05-13 03:42:36,977         QPS[22.4 q/s]
    2021-05-13 03:42:36,977         Succ[0.9910714285714286]
    2021-05-13 03:42:36,977         Error req[169, 170]
    2021-05-13 03:42:36,977         Latency:
    2021-05-13 03:42:36,977                 ave[535.1678348214285 ms]
    2021-05-13 03:42:36,977                 .50[172.651 ms]
    2021-05-13 03:42:36,977                 .60[187.904 ms]
    2021-05-13 03:42:36,977                 .70[245.675 ms]
    2021-05-13 03:42:36,977                 .80[526.684 ms]
    2021-05-13 03:42:36,977                 .90[854.596 ms]
    2021-05-13 03:42:36,977                 .95[1722.728 ms]
    2021-05-13 03:42:36,977                 .99[3990.292 ms]
    2021-05-13 03:42:36,978 Channel (server worker num[10]):
    2021-05-13 03:42:36,978         chl0(In: ['@DAGExecutor'], Out: ['det']) size[0/0]
    2021-05-13 03:42:36,979         chl1(In: ['det'], Out: ['rec']) size[6/0]
    2021-05-13 03:42:36,979         chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
T
add qps  
tink2123 已提交
191
    ```
T
tink2123 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
## C++ Serving

1. Compile Serving

   To improve predictive performance, C++ services also provide multiple model concatenation services. Unlike Python Pipeline services, multiple model concatenation requires the pre - and post-model processing code to be written on the server side, so local recompilation is required to generate serving. Specific may refer to the official document: [how to compile Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_EN.md)

2. Run the following command to start the service.
    ```
    # Start the service and save the running log in log.txt
    python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralRecOp --port 9293 &>log.txt &
    ```
    After the service is successfully started, a log similar to the following will be printed in log.txt
    ![](./imgs/start_server.png)

3. Send service request
    ```
    python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
    ```
    After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
    ![](./imgs/results.png)  
T
add qps  
tink2123 已提交
212

B
win doc  
bjjwwang 已提交
213 214
## WINDOWS Users

R
RangeKing 已提交
215
Windows does not support Pipeline Serving, if we want to lauch paddle serving on Windows, we should use Web Service, for more infomation please refer to [Paddle Serving for Windows Users](https://github.com/PaddlePaddle/Serving/blob/develop/doc/Windows_Tutorial_EN.md)
B
win doc  
bjjwwang 已提交
216 217


B
bjjwwang 已提交
218 219 220 221 222
**WINDOWS user can only use version 0.5.0 CPU Mode**

**Prepare Stage:**

```
B
bjjwwang 已提交
223
pip3 install paddle-serving-server==0.5.0
B
bjjwwang 已提交
224 225 226
pip3 install paddle-serving-app==0.3.1
```

B
win doc  
bjjwwang 已提交
227 228 229 230
1. Start Server

```
cd win
T
Thomas Young 已提交
231 232 233
python3 ocr_web_server.py gpu(for gpu user)
or
python3 ocr_web_server.py cpu(for cpu user)
B
win doc  
bjjwwang 已提交
234 235 236 237 238 239 240
```

2. Client Send Requests

```
python3 ocr_web_client.py
```
T
add qps  
tink2123 已提交
241

L
LDOUBLEV 已提交
242
<a name="faq"></a>
L
LDOUBLEV 已提交
243
## FAQ
M
MissPenguin 已提交
244
**Q1**: No result return after sending the request.
L
LDOUBLEV 已提交
245

M
MissPenguin 已提交
246
**A1**: Do not set the proxy when starting the service and sending the request. You can close the proxy before starting the service and before sending the request. The command to close the proxy is:
L
LDOUBLEV 已提交
247 248 249 250
```
unset https_proxy
unset http_proxy
```