“a3a095150e8e1f56dd03d88ac71db6ad6262611a”上不存在“tools/git@gitcode.net:s920243400/PaddleOCR.git”
eval_det_utils.py 5.8 KB
Newer Older
Y
yukavio 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import logging
import numpy as np
import paddle.fluid as fluid

__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..', '..', '..'))

__all__ = ['eval_det_run']

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)

import cv2
import json
from copy import deepcopy
from ppocr.utils.utility import create_module
from ppocr.data.reader_main import reader_main
from tools.eval_utils.eval_det_iou import DetectionIoUEvaluator


def cal_det_res(exe, config, eval_info_dict):
    global_params = config['Global']
    save_res_path = global_params['save_res_path']
    postprocess_params = deepcopy(config["PostProcess"])
    postprocess_params.update(global_params)
    postprocess = create_module(postprocess_params['function']) \
        (params=postprocess_params)
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))
    with open(save_res_path, "wb") as fout:
        tackling_num = 0
        for data in eval_info_dict['reader']():
            img_num = len(data)
            tackling_num = tackling_num + img_num
            logger.info("test tackling num:%d", tackling_num)
            img_list = []
            ratio_list = []
            img_name_list = []
            for ino in range(img_num):
                img_list.append(data[ino][0])
                ratio_list.append(data[ino][1])
                img_name_list.append(data[ino][2])
            try:
                img_list = np.concatenate(img_list, axis=0)
            except:
                err = "concatenate error usually caused by different input image shapes in evaluation or testing.\n \
                Please set \"test_batch_size_per_card\" in main yml as 1\n \
                or add \"test_image_shape: [h, w]\" in reader yml for EvalReader."

                raise Exception(err)
            outs = exe.run(eval_info_dict['program'], \
                           feed={'image': img_list}, \
                           fetch_list=eval_info_dict['fetch_varname_list'])
            outs_dict = {}
            for tno in range(len(outs)):
                fetch_name = eval_info_dict['fetch_name_list'][tno]
                fetch_value = np.array(outs[tno])
                outs_dict[fetch_name] = fetch_value
            dt_boxes_list = postprocess(outs_dict, ratio_list)
            for ino in range(img_num):
                dt_boxes = dt_boxes_list[ino]
                img_name = img_name_list[ino]
                dt_boxes_json = []
                for box in dt_boxes:
                    tmp_json = {"transcription": ""}
                    tmp_json['points'] = box.tolist()
                    dt_boxes_json.append(tmp_json)
                otstr = img_name + "\t" + json.dumps(dt_boxes_json) + "\n"
                fout.write(otstr.encode())
    return


def load_label_infor(label_file_path, do_ignore=False):
    img_name_label_dict = {}
    with open(label_file_path, "rb") as fin:
        lines = fin.readlines()
        for line in lines:
            substr = line.decode().strip("\n").split("\t")
            bbox_infor = json.loads(substr[1])
            bbox_num = len(bbox_infor)
            for bno in range(bbox_num):
                text = bbox_infor[bno]['transcription']
                ignore = False
                if text == "###" and do_ignore:
                    ignore = True
                bbox_infor[bno]['ignore'] = ignore
            img_name_label_dict[os.path.basename(substr[0])] = bbox_infor
    return img_name_label_dict


def cal_det_metrics(gt_label_path, save_res_path):
    """
    calculate the detection metrics
    Args:
        gt_label_path(string): The groundtruth detection label file path
        save_res_path(string): The saved predicted detection label path
    return:
        claculated metrics including Hmean, precision and recall
    """
    evaluator = DetectionIoUEvaluator()
    gt_label_infor = load_label_infor(gt_label_path, do_ignore=True)
    dt_label_infor = load_label_infor(save_res_path)
    results = []
    for img_name in gt_label_infor:
        gt_label = gt_label_infor[img_name]
        if img_name not in dt_label_infor:
            dt_label = []
        else:
            dt_label = dt_label_infor[img_name]
        result = evaluator.evaluate_image(gt_label, dt_label)
        results.append(result)
    methodMetrics = evaluator.combine_results(results)
    return methodMetrics


def eval_det_run(eval_args, mode='eval'):
    exe = eval_args['exe']
    config = eval_args['config']
    eval_info_dict = eval_args['eval_info_dict']
    cal_det_res(exe, config, eval_info_dict)

    save_res_path = config['Global']['save_res_path']
    if mode == "eval":
        gt_label_path = config['EvalReader']['label_file_path']
        metrics = cal_det_metrics(gt_label_path, save_res_path)
    else:
        gt_label_path = config['TestReader']['label_file_path']
        do_eval = config['TestReader']['do_eval']
        if do_eval:
            metrics = cal_det_metrics(gt_label_path, save_res_path)
        else:
            metrics = {}
    return metrics['hmean']