inference.md 20.9 KB
Newer Older
L
LDOUBLEV 已提交
1

D
dyning 已提交
2
# 基于Python预测引擎推理
L
LDOUBLEV 已提交
3

L
licx 已提交
4
inference 模型(`fluid.io.save_inference_model`保存的模型)
5
一般是模型训练完成后保存的固化模型,多用于预测部署。训练过程中保存的模型是checkpoints模型,保存的是模型的参数,多用于恢复训练等。
littletomatodonkey's avatar
littletomatodonkey 已提交
6
与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合与实际系统集成。更详细的介绍请参考文档[分类预测框架](https://github.com/PaddlePaddle/PaddleClas/blob/master/docs/zh_CN/extension/paddle_inference.md).
L
LDOUBLEV 已提交
7 8 9

接下来首先介绍如何将训练的模型转换成inference模型,然后将依次介绍文本检测、文本识别以及两者串联基于预测引擎推理。

10 11 12

- [一、训练模型转inference模型](#训练模型转inference模型)
    - [检测模型转inference模型](#检测模型转inference模型)
L
licx 已提交
13
    - [识别模型转inference模型](#识别模型转inference模型)  
M
MissPenguin 已提交
14
    - [方向分类模型转inference模型](#方向分类模型转inference模型)  
W
WenmuZhou 已提交
15

16 17 18 19
- [二、文本检测模型推理](#文本检测模型推理)
    - [1. 超轻量中文检测模型推理](#超轻量中文检测模型推理)
    - [2. DB文本检测模型推理](#DB文本检测模型推理)
    - [3. EAST文本检测模型推理](#EAST文本检测模型推理)
L
licx 已提交
20
    - [4. SAST文本检测模型推理](#SAST文本检测模型推理)  
W
WenmuZhou 已提交
21

22 23 24 25
- [三、文本识别模型推理](#文本识别模型推理)
    - [1. 超轻量中文识别模型推理](#超轻量中文识别模型推理)
    - [2. 基于CTC损失的识别模型推理](#基于CTC损失的识别模型推理)
    - [3. 基于Attention损失的识别模型推理](#基于Attention损失的识别模型推理)
26 27 28
    - [4. 基于SRN损失的识别模型推理](#基于SRN损失的识别模型推理)
    - [5. 自定义文本识别字典的推理](#自定义文本识别字典的推理)
    - [6. 多语言模型的推理](#多语言模型的推理)
W
WenmuZhou 已提交
29 30 31 32 33

- [四、方向分类模型推理](#方向识别模型推理)
    - [1. 方向分类模型推理](#方向分类模型推理)

- [五、文本检测、方向分类和文字识别串联推理](#文本检测、方向分类和文字识别串联推理)
34 35
    - [1. 超轻量中文OCR模型推理](#超轻量中文OCR模型推理)
    - [2. 其他模型推理](#其他模型推理)
W
WenmuZhou 已提交
36 37


38
<a name="训练模型转inference模型"></a>
D
dyning 已提交
39
## 一、训练模型转inference模型
40
<a name="检测模型转inference模型"></a>
L
LDOUBLEV 已提交
41 42 43 44
### 检测模型转inference模型

下载超轻量级中文检测模型:
```
littletomatodonkey's avatar
littletomatodonkey 已提交
45
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v1.1_det_train.tar -C ./ch_lite/
L
LDOUBLEV 已提交
46 47 48
```
上述模型是以MobileNetV3为backbone训练的DB算法,将训练好的模型转换成inference模型只需要运行如下命令:
```
D
dyning 已提交
49 50 51 52 53
# -c后面设置训练算法的yml配置文件
# -o配置可选参数
# Global.checkpoints参数设置待转换的训练模型地址,不用添加文件后缀.pdmodel,.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。

littletomatodonkey's avatar
littletomatodonkey 已提交
54
python3 tools/export_model.py -c configs/det/det_mv3_db_v1.1.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v1.1_det_train/best_accuracy Global.save_inference_dir=./inference/det_db/
L
LDOUBLEV 已提交
55
```
56 57 58
转inference模型时,使用的配置文件和训练时使用的配置文件相同。另外,还需要设置配置文件中的`Global.checkpoints``Global.save_inference_dir`参数。
其中`Global.checkpoints`指向训练中保存的模型参数文件,`Global.save_inference_dir`是生成的inference模型要保存的目录。
转换成功后,在`save_inference_dir`目录下有两个文件:
L
LDOUBLEV 已提交
59
```
L
LDOUBLEV 已提交
60
inference/det_db/
L
LDOUBLEV 已提交
61 62 63 64
  └─  model     检测inference模型的program文件
  └─  params    检测inference模型的参数文件
```

65
<a name="识别模型转inference模型"></a>
L
LDOUBLEV 已提交
66 67 68 69
### 识别模型转inference模型

下载超轻量中文识别模型:
```
T
Tingquan Gao 已提交
70
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v1.1_rec_train.tar -C ./ch_lite/
L
LDOUBLEV 已提交
71 72 73 74
```

识别模型转inference模型与检测的方式相同,如下:
```
D
dyning 已提交
75 76 77 78 79
# -c后面设置训练算法的yml配置文件
# -o配置可选参数
# Global.checkpoints参数设置待转换的训练模型地址,不用添加文件后缀.pdmodel,.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。

littletomatodonkey's avatar
littletomatodonkey 已提交
80
python3 tools/export_model.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v1.1_rec_train/best_accuracy \
L
LDOUBLEV 已提交
81
        Global.save_inference_dir=./inference/rec_crnn/
L
LDOUBLEV 已提交
82
```
L
LDOUBLEV 已提交
83

84
**注意:**如果您是在自己的数据集上训练的模型,并且调整了中文字符的字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
L
LDOUBLEV 已提交
85 86 87

转换成功后,在目录下有两个文件:
```
L
LDOUBLEV 已提交
88
/inference/rec_crnn/
L
LDOUBLEV 已提交
89 90 91
  └─  model     识别inference模型的program文件
  └─  params    识别inference模型的参数文件
```
L
LDOUBLEV 已提交
92

W
WenmuZhou 已提交
93 94 95 96 97
<a name="方向分类模型转inference模型"></a>
### 方向分类模型转inference模型

下载方向分类模型:
```
L
LDOUBLEV 已提交
98
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v1.1_cls_train.tar -C ./ch_lite/
W
WenmuZhou 已提交
99 100 101 102 103 104 105 106 107
```

方向分类模型转inference模型与检测的方式相同,如下:
```
# -c后面设置训练算法的yml配置文件
# -o配置可选参数
# Global.checkpoints参数设置待转换的训练模型地址,不用添加文件后缀.pdmodel,.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。

L
LDOUBLEV 已提交
108
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v1.1_cls_train/best_accuracy \
W
WenmuZhou 已提交
109 110 111 112 113 114 115 116 117 118
        Global.save_inference_dir=./inference/cls/
```

转换成功后,在目录下有两个文件:
```
/inference/cls/
  └─  model     识别inference模型的program文件
  └─  params    识别inference模型的参数文件
```

119
<a name="文本检测模型推理"></a>
D
dyning 已提交
120
## 二、文本检测模型推理
L
LDOUBLEV 已提交
121

122
文本检测模型推理,默认使用DB模型的配置参数。当不使用DB模型时,在推理时,需要通过传入相应的参数进行算法适配,细节参考下文。
D
dyning 已提交
123

124 125
<a name="超轻量中文检测模型推理"></a>
### 1. 超轻量中文检测模型推理
D
dyning 已提交
126 127

超轻量中文检测模型推理,可以执行如下命令:
L
LDOUBLEV 已提交
128 129

```
L
LDOUBLEV 已提交
130
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/"
L
LDOUBLEV 已提交
131 132
```

133
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
D
dyning 已提交
134

T
tink2123 已提交
135
![](../imgs_results/det_res_2.jpg)
L
LDOUBLEV 已提交
136

137
通过设置参数`det_max_side_len`的大小,改变检测算法中图片规范化的最大值。当图片的长宽都小于`det_max_side_len`,则使用原图预测,否则将图片等比例缩放到最大值,进行预测。该参数默认设置为`det_max_side_len=960`。 如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以执行如下命令:
L
LDOUBLEV 已提交
138 139

```
L
LDOUBLEV 已提交
140
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --det_max_side_len=1200
D
dyning 已提交
141 142
```

D
dyning 已提交
143
如果想使用CPU进行预测,执行命令如下
D
dyning 已提交
144
```
L
LDOUBLEV 已提交
145
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
D
dyning 已提交
146 147
```

148 149
<a name="DB文本检测模型推理"></a>
### 2. DB文本检测模型推理
D
dyning 已提交
150 151 152

首先将DB文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)),可以使用如下命令进行转换:

L
LDOUBLEV 已提交
153
```
D
dyning 已提交
154 155 156 157
# -c后面设置训练算法的yml配置文件
# Global.checkpoints参数设置待转换的训练模型地址,不用添加文件后缀.pdmodel,.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。

D
dyning 已提交
158
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.checkpoints="./models/det_r50_vd_db/best_accuracy" Global.save_inference_dir="./inference/det_db"
D
dyning 已提交
159 160 161 162 163 164 165 166
```

DB文本检测模型推理,可以执行如下命令:

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
```

167
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
D
dyning 已提交
168

169
![](../imgs_results/det_res_img_10_db.jpg)
D
dyning 已提交
170

171
**注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文文本图像检测效果会比较差。
D
dyning 已提交
172

173 174
<a name="EAST文本检测模型推理"></a>
### 3. EAST文本检测模型推理
D
dyning 已提交
175 176 177 178 179 180 181 182

首先将EAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)),可以使用如下命令进行转换:

```
# -c后面设置训练算法的yml配置文件
# Global.checkpoints参数设置待转换的训练模型地址,不用添加文件后缀.pdmodel,.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。

D
dyning 已提交
183
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.checkpoints="./models/det_r50_vd_east/best_accuracy" Global.save_inference_dir="./inference/det_east"
D
dyning 已提交
184 185
```

L
licx 已提交
186
**EAST文本检测模型推理,需要设置参数`--det_algorithm="EAST"`**,可以执行如下命令:
D
dyning 已提交
187 188

```
L
LDOUBLEV 已提交
189
python3 tools/infer/predict_det.py --det_algorithm="EAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/"
D
dyning 已提交
190
```
191
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
D
dyning 已提交
192

193
![](../imgs_results/det_res_img_10_east.jpg)
D
dyning 已提交
194

195 196 197 198 199 200 201 202 203 204
**注意**:本代码库中,EAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。


<a name="SAST文本检测模型推理"></a>
### 4. SAST文本检测模型推理
#### (1). 四边形文本检测模型(ICDAR2015)  
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_icdar2015.tar)),可以使用如下命令进行转换:
```
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.checkpoints="./models/sast_r50_vd_icdar2015/best_accuracy" Global.save_inference_dir="./inference/det_sast_ic15"
```
L
licx 已提交
205
**SAST文本检测模型推理,需要设置参数`--det_algorithm="SAST"`**,可以执行如下命令:
206 207 208 209 210 211 212 213 214
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast_ic15/"
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:

![](../imgs_results/det_res_img_10_sast.jpg)

#### (2). 弯曲文本检测模型(Total-Text)  
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在Total-Text英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)),可以使用如下命令进行转换:
L
LDOUBLEV 已提交
215

216 217 218 219
```
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.checkpoints="./models/sast_r50_vd_total_text/best_accuracy" Global.save_inference_dir="./inference/det_sast_tt"
```

L
licx 已提交
220
**SAST文本检测模型推理,需要设置参数`--det_algorithm="SAST"`,同时,还需要增加参数`--det_sast_polygon=True`,**可以执行如下命令:
221 222 223 224
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
L
LDOUBLEV 已提交
225

226 227 228 229 230 231
![](../imgs_results/det_res_img623_sast.jpg)

**注意**:本代码库中,SAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。


<a name="文本识别模型推理"></a>
D
dyning 已提交
232
## 三、文本识别模型推理
L
LDOUBLEV 已提交
233

D
dyning 已提交
234
下面将介绍超轻量中文识别模型推理、基于CTC损失的识别模型推理和基于Attention损失的识别模型推理。对于中文文本识别,建议优先选择基于CTC损失的识别模型,实践中也发现基于Attention损失的效果不如基于CTC损失的识别模型。此外,如果训练时修改了文本的字典,请参考下面的自定义文本识别字典的推理。
D
dyning 已提交
235 236


237 238
<a name="超轻量中文识别模型推理"></a>
### 1. 超轻量中文识别模型推理
D
dyning 已提交
239 240 241 242

超轻量中文识别模型推理,可以执行如下命令:

```
L
LDOUBLEV 已提交
243
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./inference/rec_crnn/"
D
dyning 已提交
244 245
```

246
![](../imgs_words/ch/word_4.jpg)
D
dyning 已提交
247 248 249

执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:

T
tink2123 已提交
250
Predicts of ./doc/imgs_words/ch/word_4.jpg:['实力活力', 0.89552695]
D
dyning 已提交
251 252


253 254
<a name="基于CTC损失的识别模型推理"></a>
### 2. 基于CTC损失的识别模型推理
D
dyning 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

我们以STAR-Net为例,介绍基于CTC损失的识别模型推理。 CRNN和Rosetta使用方式类似,不用设置识别算法参数rec_algorithm。

首先将STAR-Net文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,使用MJSynth和SynthText两个英文文本识别合成数据集训练
的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)),可以使用如下命令进行转换:

```
# -c后面设置训练算法的yml配置文件
# Global.checkpoints参数设置待转换的训练模型地址,不用添加文件后缀.pdmodel,.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。

python3 tools/export_model.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.checkpoints="./models/rec_r34_vd_tps_bilstm_ctc/best_accuracy" Global.save_inference_dir="./inference/starnet"
```

STAR-Net文本识别模型推理,可以执行如下命令:
L
LDOUBLEV 已提交
270 271

```
D
dyning 已提交
272
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
L
LDOUBLEV 已提交
273
```
T
tink2123 已提交
274

275 276
<a name="基于Attention损失的识别模型推理"></a>
### 3. 基于Attention损失的识别模型推理
T
tink2123 已提交
277 278 279

基于Attention损失的识别模型与ctc不同,需要额外设置识别算法参数 --rec_algorithm="RARE"

T
tink2123 已提交
280 281
RARE 文本识别模型推理,可以执行如下命令:
```
X
xiaoting 已提交
282
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rare/" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_algorithm="RARE"
T
tink2123 已提交
283 284
```

285
![](../imgs_words_en/word_336.png)
D
dyning 已提交
286 287 288

执行命令后,上面图像的识别结果如下:

D
dyning 已提交
289
Predicts of ./doc/imgs_words_en/word_336.png:['super', 0.9999555]
D
dyning 已提交
290 291

**注意**:由于上述模型是参考[DTRB](https://arxiv.org/abs/1904.01906)文本识别训练和评估流程,与超轻量级中文识别模型训练有两方面不同:
L
LDOUBLEV 已提交
292

D
dyning 已提交
293
- 训练时采用的图像分辨率不同,训练上述模型采用的图像分辨率是[3,32,100],而中文模型训练时,为了保证长文本的识别效果,训练时采用的图像分辨率是[3, 32, 320]。预测推理程序默认的的形状参数是训练中文采用的图像分辨率,即[3, 32, 320]。因此,这里推理上述英文模型时,需要通过参数rec_image_shape设置识别图像的形状。
L
LDOUBLEV 已提交
294

D
dyning 已提交
295
- 字符列表,DTRB论文中实验只是针对26个小写英文本母和10个数字进行实验,总共36个字符。所有大小字符都转成了小写字符,不在上面列表的字符都忽略,认为是空格。因此这里没有输入字符字典,而是通过如下命令生成字典.因此在推理时需要设置参数rec_char_type,指定为英文"en"。
L
LDOUBLEV 已提交
296 297

```
D
dyning 已提交
298 299
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
L
LDOUBLEV 已提交
300
```
301 302 303 304 305 306 307 308 309 310 311 312
<a name="基于SRN损失的识别模型推理"></a>
### 4. 基于SRN损失的识别模型推理

基于SRN损失的识别模型,需要额外设置识别算法参数 --rec_algorithm="SRN"。 同时需要保证预测shape与训练时一致,如: --rec_image_shape="1, 64, 256"

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
                                   --rec_model_dir="./inference/srn/" \
                                   --rec_image_shape="1, 64, 256" \
                                   --rec_char_type="en" \
                                   --rec_algorithm="SRN"
```
L
LDOUBLEV 已提交
313

314
<a name="自定义文本识别字典的推理"></a>
315
### 5. 自定义文本识别字典的推理
L
LDOUBLEV 已提交
316 317 318 319 320 321
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_char_dict_path="your text dict path"
```

T
tink2123 已提交
322
<a name="多语言模型的推理"></a>
323
### 6. 多语言模型的推理
T
tink2123 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337
如果您需要预测的是其他语言模型,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径, 同时为了得到正确的可视化结果,
需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/` 路径下有默认提供的小语种字体,例如韩文识别:

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/korean_dict.txt" --vis_font_path="doc/korean.ttf"
```
![](../imgs_words/korean/1.jpg)

执行命令后,上图的预测结果为:
``` text
2020-09-19 16:15:05,076-INFO: 	 index: [205 206  38  39]
2020-09-19 16:15:05,077-INFO: 	 word : 바탕으로
2020-09-19 16:15:05,077-INFO: 	 score: 0.9171358942985535
```
W
WenmuZhou 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

<a name="方向分类模型推理"></a>
## 四、方向分类模型推理

下面将介绍方向分类模型推理。

<a name="方向分类模型推理"></a>
### 1. 方向分类模型推理

方向分类模型推理,可以执行如下命令:

```
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --cls_model_dir="./inference/cls/"
```

![](../imgs_words/ch/word_4.jpg)

执行命令后,上面图像的预测结果(分类的方向和得分)会打印到屏幕上,示例如下:

Predicts of ./doc/imgs_words/ch/word_4.jpg:['0', 0.9999963]

<a name="文本检测、方向分类和文字识别串联推理"></a>
## 五、文本检测、方向分类和文字识别串联推理
361 362
<a name="超轻量中文OCR模型推理"></a>
### 1. 超轻量中文OCR模型推理
D
dyning 已提交
363

W
WenmuZhou 已提交
364
在执行预测时,需要通过参数`image_dir`指定单张图像或者图像集合的路径、参数`det_model_dir`,`cls_model_dir``rec_model_dir`分别指定检测,方向分类和识别的inference模型路径。参数`use_angle_cls`用于控制是否启用方向分类模型。可视化识别结果默认保存到 ./inference_results 文件夹里面。
D
dyning 已提交
365

L
LDOUBLEV 已提交
366
```
littletomatodonkey's avatar
littletomatodonkey 已提交
367 368 369 370 371
# 使用方向分类器
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true

# 不使用方向分类器
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false
L
LDOUBLEV 已提交
372 373
```

littletomatodonkey's avatar
littletomatodonkey 已提交
374 375 376 377




D
dyning 已提交
378 379
执行命令后,识别结果图像如下:

380
![](../imgs_results/2.jpg)
D
dyning 已提交
381

382 383
<a name="其他模型推理"></a>
### 2. 其他模型推理
D
dyning 已提交
384

385 386
如果想尝试使用其他检测算法或者识别算法,请参考上述文本检测模型推理和文本识别模型推理,更新相应配置和模型。

L
licx 已提交
387
**注意:由于检测框矫正逻辑的局限性,暂不支持使用SAST弯曲文本检测模型(即,使用参数`--det_sast_polygon=True`时)进行模型串联。**
388 389

下面给出基于EAST文本检测和STAR-Net文本识别执行命令:
L
LDOUBLEV 已提交
390 391

```
D
dyning 已提交
392
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
L
LDOUBLEV 已提交
393
```
D
dyning 已提交
394 395 396

执行命令后,识别结果图像如下:

397
![](../imgs_results/img_10.jpg)