det_r50_dcn_fce_ctw.yml 3.3 KB
Newer Older
z37757's avatar
z37757 已提交
1 2 3 4 5
Global:
  use_gpu: true
  epoch_num: 1500
  log_smooth_window: 20
  print_batch_step: 20
z37757's avatar
z37757 已提交
6
  save_model_dir: ./output/det_r50_dcn_fce_ctw/
z37757's avatar
z37757 已提交
7 8 9 10
  save_epoch_step: 100
  # evaluation is run every 835 iterations
  eval_batch_step: [0, 835]
  cal_metric_during_train: False
z37757's avatar
z37757 已提交
11 12
  pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained 
  checkpoints: #output/det_r50_dcn_fce_ctw/latest
z37757's avatar
z37757 已提交
13 14 15
  save_inference_dir: 
  use_visualdl: False
  infer_img: doc/imgs_en/img_10.jpg
z37757's avatar
z37757 已提交
16
  save_res_path: ./output/det_fce/predicts_fce.txt
z37757's avatar
z37757 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


Architecture:
  model_type: det
  algorithm: FCE
  Transform:
  Backbone:
    name: ResNet
    layers: 50
    dcn_stage: [False, True, True, True]
    out_indices: [1,2,3]
  Neck:
    name: FCEFPN
    in_channels: [512, 1024, 2048]
    out_channels: 256
    has_extra_convs: False
    extra_stage: 0
  Head:
    name: FCEHead
    in_channels: 256
    scales: [8, 16, 32]
    fourier_degree: 5
Loss:
  name: FCELoss
  fourier_degree: 5
  num_sample: 50
  
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    learning_rate: 0.0001
  regularizer:
    name: 'L2'
    factor: 0

PostProcess:
  name: FCEPostProcess
  scales: [8, 16, 32]
  alpha: 1.0
  beta: 1.0
  fourier_degree: 5

Metric:
  name: DetFCEMetric
  main_indicator: hmean

Train:
  dataset:
    name: SimpleDataSet
z37757's avatar
z37757 已提交
68
    data_dir: ./train_data/ctw1500/imgs/
z37757's avatar
z37757 已提交
69
    label_file_list: 
z37757's avatar
z37757 已提交
70
      - ./train_data/ctw1500/imgs/training.txt
z37757's avatar
z37757 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
          ignore_orientation: True
      - DetLabelEncode: # Class handling label
      - ColorJitter: 
          brightness: 0.142
          saturation: 0.5
          contrast: 0.5
      - RandomScaling: 
      - RandomCropFlip:
          crop_ratio: 0.5
      - RandomCropPolyInstances:
          crop_ratio: 0.8
          min_side_ratio: 0.3
      - RandomRotatePolyInstances:
          rotate_ratio: 0.5
          max_angle: 30
          pad_with_fixed_color: False
      - SquareResizePad:
          target_size: 800
          pad_ratio: 0.6
      - IaaAugment:
          augmenter_args:
            - { 'type': Fliplr, 'args': { 'p': 0.5 } }
      - FCENetTargets:
          fourier_degree: 5
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'p3_maps', 'p4_maps', 'p5_maps'] # dataloader will return list in this order
  loader:
    shuffle: True
    drop_last: False
    batch_size_per_card: 6
    num_workers: 8

Eval:
  dataset:
    name: SimpleDataSet
z37757's avatar
z37757 已提交
116
    data_dir: ./train_data/ctw1500/imgs/
z37757's avatar
z37757 已提交
117
    label_file_list:
z37757's avatar
z37757 已提交
118
      - ./train_data/ctw1500/imgs/test.txt
z37757's avatar
z37757 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
          ignore_orientation: True
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
          # resize_long: 1280
          rescale_img: [1080, 736]
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - Pad: 
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1 # must be 1
    num_workers: 2