rec_img_aug.py 21.6 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LDOUBLEV 已提交
15 16 17
import math
import cv2
import numpy as np
T
tink2123 已提交
18
import random
T
Topdu 已提交
19
import copy
T
Topdu 已提交
20
from PIL import Image
W
WenmuZhou 已提交
21
from .text_image_aug import tia_perspective, tia_stretch, tia_distort
L
LDOUBLEV 已提交
22

W
WenmuZhou 已提交
23 24

class RecAug(object):
L
littletomatodonkey 已提交
25
    def __init__(self, use_tia=True, aug_prob=0.4, **kwargs):
Z
zhoujun 已提交
26
        self.use_tia = use_tia
L
littletomatodonkey 已提交
27
        self.aug_prob = aug_prob
W
WenmuZhou 已提交
28 29 30

    def __call__(self, data):
        img = data['image']
L
littletomatodonkey 已提交
31
        img = warp(img, 10, self.use_tia, self.aug_prob)
W
WenmuZhou 已提交
32 33 34 35
        data['image'] = img
        return data


A
andyjpaddle 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
class RecConAug(object):
    def __init__(self,
                 prob=0.5,
                 image_shape=(32, 320, 3),
                 max_text_length=25,
                 ext_data_num=1,
                 **kwargs):
        self.ext_data_num = ext_data_num
        self.prob = prob
        self.max_text_length = max_text_length
        self.image_shape = image_shape
        self.max_wh_ratio = self.image_shape[1] / self.image_shape[0]

    def merge_ext_data(self, data, ext_data):
        ori_w = round(data['image'].shape[1] / data['image'].shape[0] *
                      self.image_shape[0])
        ext_w = round(ext_data['image'].shape[1] / ext_data['image'].shape[0] *
                      self.image_shape[0])
        data['image'] = cv2.resize(data['image'], (ori_w, self.image_shape[0]))
        ext_data['image'] = cv2.resize(ext_data['image'],
                                       (ext_w, self.image_shape[0]))
        data['image'] = np.concatenate(
            [data['image'], ext_data['image']], axis=1)
        data["label"] += ext_data["label"]
        return data

    def __call__(self, data):
        rnd_num = random.random()
        if rnd_num > self.prob:
            return data
        for idx, ext_data in enumerate(data["ext_data"]):
            if len(data["label"]) + len(ext_data[
                    "label"]) > self.max_text_length:
                break
            concat_ratio = data['image'].shape[1] / data['image'].shape[
                0] + ext_data['image'].shape[1] / ext_data['image'].shape[0]
            if concat_ratio > self.max_wh_ratio:
                break
            data = self.merge_ext_data(data, ext_data)
        data.pop("ext_data")
        return data


Z
zhoujun 已提交
79 80 81 82 83 84
class ClsResizeImg(object):
    def __init__(self, image_shape, **kwargs):
        self.image_shape = image_shape

    def __call__(self, data):
        img = data['image']
A
andyjpaddle 已提交
85
        norm_img, _ = resize_norm_img(img, self.image_shape)
Z
zhoujun 已提交
86 87 88 89
        data['image'] = norm_img
        return data


T
Topdu 已提交
90
class NRTRRecResizeImg(object):
T
Topdu 已提交
91
    def __init__(self, image_shape, resize_type, padding=False, **kwargs):
T
Topdu 已提交
92
        self.image_shape = image_shape
T
Topdu 已提交
93
        self.resize_type = resize_type
T
Topdu 已提交
94
        self.padding = padding
T
Topdu 已提交
95 96 97

    def __call__(self, data):
        img = data['image']
T
Topdu 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        image_shape = self.image_shape
        if self.padding:
            imgC, imgH, imgW = image_shape
            # todo: change to 0 and modified image shape
            h = img.shape[0]
            w = img.shape[1]
            ratio = w / float(h)
            if math.ceil(imgH * ratio) > imgW:
                resized_w = imgW
            else:
                resized_w = int(math.ceil(imgH * ratio))
            resized_image = cv2.resize(img, (resized_w, imgH))
            norm_img = np.expand_dims(resized_image, -1)
            norm_img = norm_img.transpose((2, 0, 1))
            resized_image = norm_img.astype(np.float32) / 128. - 1.
            padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
            padding_im[:, :, 0:resized_w] = resized_image
            data['image'] = padding_im
            return data
T
Topdu 已提交
118 119 120 121 122 123 124
        if self.resize_type == 'PIL':
            image_pil = Image.fromarray(np.uint8(img))
            img = image_pil.resize(self.image_shape, Image.ANTIALIAS)
            img = np.array(img)
        if self.resize_type == 'OpenCV':
            img = cv2.resize(img, self.image_shape)
        norm_img = np.expand_dims(img, -1)
T
Topdu 已提交
125 126 127 128
        norm_img = norm_img.transpose((2, 0, 1))
        data['image'] = norm_img.astype(np.float32) / 128. - 1.
        return data

Z
zhoujun 已提交
129

W
WenmuZhou 已提交
130 131 132 133
class RecResizeImg(object):
    def __init__(self,
                 image_shape,
                 infer_mode=False,
T
tink2123 已提交
134
                 character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
T
tink2123 已提交
135
                 padding=True,
W
WenmuZhou 已提交
136 137 138
                 **kwargs):
        self.image_shape = image_shape
        self.infer_mode = infer_mode
T
tink2123 已提交
139
        self.character_dict_path = character_dict_path
T
tink2123 已提交
140
        self.padding = padding
W
WenmuZhou 已提交
141 142 143

    def __call__(self, data):
        img = data['image']
T
tink2123 已提交
144
        if self.infer_mode and self.character_dict_path is not None:
A
andyjpaddle 已提交
145 146
            norm_img, valid_ratio = resize_norm_img_chinese(img,
                                                            self.image_shape)
W
WenmuZhou 已提交
147
        else:
A
andyjpaddle 已提交
148 149
            norm_img, valid_ratio = resize_norm_img(img, self.image_shape,
                                                    self.padding)
T
tink2123 已提交
150
        data['image'] = norm_img
A
andyjpaddle 已提交
151
        data['valid_ratio'] = valid_ratio
T
tink2123 已提交
152 153 154
        return data


T
tink2123 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
class SRNRecResizeImg(object):
    def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
        self.image_shape = image_shape
        self.num_heads = num_heads
        self.max_text_length = max_text_length

    def __call__(self, data):
        img = data['image']
        norm_img = resize_norm_img_srn(img, self.image_shape)
        data['image'] = norm_img
        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)

        data['encoder_word_pos'] = encoder_word_pos
        data['gsrm_word_pos'] = gsrm_word_pos
        data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1
        data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2
        return data


A
andyjpaddle 已提交
175 176 177 178 179 180 181
class SARRecResizeImg(object):
    def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
        self.image_shape = image_shape
        self.width_downsample_ratio = width_downsample_ratio

    def __call__(self, data):
        img = data['image']
T
tink2123 已提交
182 183
        norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
            img, self.image_shape, self.width_downsample_ratio)
A
andyjpaddle 已提交
184 185 186 187 188 189 190
        data['image'] = norm_img
        data['resized_shape'] = resize_shape
        data['pad_shape'] = pad_shape
        data['valid_ratio'] = valid_ratio
        return data


191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
class PRENResizeImg(object):
    def __init__(self, image_shape, **kwargs):
        """
        Accroding to original paper's realization, it's a hard resize method here. 
        So maybe you should optimize it to fit for your task better.
        """
        self.dst_h, self.dst_w = image_shape

    def __call__(self, data):
        img = data['image']
        resized_img = cv2.resize(
            img, (self.dst_w, self.dst_h), interpolation=cv2.INTER_LINEAR)
        resized_img = resized_img.transpose((2, 0, 1)) / 255
        resized_img -= 0.5
        resized_img /= 0.5
        data['image'] = resized_img.astype(np.float32)
        return data


T
Topdu 已提交
210 211
class SVTRRecResizeImg(object):
    def __init__(self,
T
Topdu 已提交
212 213 214 215 216
                 image_shape,
                 infer_mode=False,
                 character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
                 padding=True,
                 **kwargs):
T
Topdu 已提交
217 218 219 220 221 222 223 224 225 226 227 228
        self.image_shape = image_shape
        self.infer_mode = infer_mode
        self.character_dict_path = character_dict_path
        self.padding = padding

    def __call__(self, data):
        img = data['image']
        norm_img = resize_norm_img_svtr(img, self.image_shape, self.padding)
        data['image'] = norm_img
        return data


A
andyjpaddle 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
    imgC, imgH, imgW_min, imgW_max = image_shape
    h = img.shape[0]
    w = img.shape[1]
    valid_ratio = 1.0
    # make sure new_width is an integral multiple of width_divisor.
    width_divisor = int(1 / width_downsample_ratio)
    # resize
    ratio = w / float(h)
    resize_w = math.ceil(imgH * ratio)
    if resize_w % width_divisor != 0:
        resize_w = round(resize_w / width_divisor) * width_divisor
    if imgW_min is not None:
        resize_w = max(imgW_min, resize_w)
    if imgW_max is not None:
        valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
        resize_w = min(imgW_max, resize_w)
    resized_image = cv2.resize(img, (resize_w, imgH))
    resized_image = resized_image.astype('float32')
    # norm 
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    resize_shape = resized_image.shape
    padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
    padding_im[:, :, 0:resize_w] = resized_image
    pad_shape = padding_im.shape

    return padding_im, resize_shape, pad_shape, valid_ratio


T
tink2123 已提交
264
def resize_norm_img(img, image_shape, padding=True):
L
LDOUBLEV 已提交
265 266 267
    imgC, imgH, imgW = image_shape
    h = img.shape[0]
    w = img.shape[1]
T
tink2123 已提交
268 269 270
    if not padding:
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
L
LDOUBLEV 已提交
271 272
        resized_w = imgW
    else:
T
tink2123 已提交
273 274 275 276 277 278
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
279 280 281 282 283 284 285 286 287 288
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
A
andyjpaddle 已提交
289 290
    valid_ratio = min(1.0, float(resized_w / imgW))
    return padding_im, valid_ratio
L
LDOUBLEV 已提交
291 292


T
tink2123 已提交
293 294 295
def resize_norm_img_chinese(img, image_shape):
    imgC, imgH, imgW = image_shape
    # todo: change to 0 and modified image shape
T
tink2123 已提交
296
    max_wh_ratio = imgW * 1.0 / imgH
T
tink2123 已提交
297 298 299
    h, w = img.shape[0], img.shape[1]
    ratio = w * 1.0 / h
    max_wh_ratio = max(max_wh_ratio, ratio)
A
andyjpaddle 已提交
300
    imgW = int(imgH * max_wh_ratio)
T
tink2123 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
A
andyjpaddle 已提交
316 317
    valid_ratio = min(1.0, float(resized_w / imgW))
    return padding_im, valid_ratio
T
tink2123 已提交
318 319


T
tink2123 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
def resize_norm_img_srn(img, image_shape):
    imgC, imgH, imgW = image_shape

    img_black = np.zeros((imgH, imgW))
    im_hei = img.shape[0]
    im_wid = img.shape[1]

    if im_wid <= im_hei * 1:
        img_new = cv2.resize(img, (imgH * 1, imgH))
    elif im_wid <= im_hei * 2:
        img_new = cv2.resize(img, (imgH * 2, imgH))
    elif im_wid <= im_hei * 3:
        img_new = cv2.resize(img, (imgH * 3, imgH))
    else:
        img_new = cv2.resize(img, (imgW, imgH))

    img_np = np.asarray(img_new)
    img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
    img_black[:, 0:img_np.shape[1]] = img_np
    img_black = img_black[:, :, np.newaxis]

    row, col, c = img_black.shape
    c = 1

    return np.reshape(img_black, (c, row, col)).astype(np.float32)


T
Topdu 已提交
347
def resize_norm_img_svtr(img, image_shape, padding=False):
T
Topdu 已提交
348 349 350 351 352
    imgC, imgH, imgW = image_shape
    h = img.shape[0]
    w = img.shape[1]
    if not padding:
        if h > 2.0 * w:
T
Topdu 已提交
353 354 355 356 357
            image = Image.fromarray(img)
            image1 = image.rotate(90, expand=True)
            image2 = image.rotate(-90, expand=True)
            img1 = np.array(image1)
            img2 = np.array(image2)
T
Topdu 已提交
358
        else:
T
Topdu 已提交
359 360 361
            img1 = copy.deepcopy(img)
            img2 = copy.deepcopy(img)

T
Topdu 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image1 = cv2.resize(
            img1, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image2 = cv2.resize(
            img2, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_w = imgW
    else:
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    resized_image1 = resized_image1.astype('float32')
    resized_image2 = resized_image2.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image1 = resized_image1.transpose((2, 0, 1)) / 255
        resized_image2 = resized_image2.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    resized_image1 -= 0.5
    resized_image1 /= 0.5
    resized_image2 -= 0.5
    resized_image2 /= 0.5
    padding_im = np.zeros((3, imgC, imgH, imgW), dtype=np.float32)
    padding_im[0, :, :, 0:resized_w] = resized_image
    padding_im[1, :, :, 0:resized_w] = resized_image1
    padding_im[2, :, :, 0:resized_w] = resized_image2
    return padding_im


T
tink2123 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
def srn_other_inputs(image_shape, num_heads, max_text_length):

    imgC, imgH, imgW = image_shape
    feature_dim = int((imgH / 8) * (imgW / 8))

    encoder_word_pos = np.array(range(0, feature_dim)).reshape(
        (feature_dim, 1)).astype('int64')
    gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
        (max_text_length, 1)).astype('int64')

    gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
    gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
        [1, max_text_length, max_text_length])
    gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
                                  [num_heads, 1, 1]) * [-1e9]

    gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
        [1, max_text_length, max_text_length])
    gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
                                  [num_heads, 1, 1]) * [-1e9]

    return [
        encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
        gsrm_slf_attn_bias2
    ]


T
tink2123 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
def flag():
    """
    flag
    """
    return 1 if random.random() > 0.5000001 else -1


def cvtColor(img):
    """
    cvtColor
    """
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    delta = 0.001 * random.random() * flag()
    hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
    new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    return new_img


def blur(img):
    """
    blur
    """
    h, w, _ = img.shape
    if h > 10 and w > 10:
        return cv2.GaussianBlur(img, (5, 5), 1)
    else:
        return img


T
tink2123 已提交
455
def jitter(img):
T
tink2123 已提交
456
    """
T
tink2123 已提交
457
    jitter
T
tink2123 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471
    """
    w, h, _ = img.shape
    if h > 10 and w > 10:
        thres = min(w, h)
        s = int(random.random() * thres * 0.01)
        src_img = img.copy()
        for i in range(s):
            img[i:, i:, :] = src_img[:w - i, :h - i, :]
        return img
    else:
        return img


def add_gasuss_noise(image, mean=0, var=0.1):
472 473 474
    """
    Gasuss noise
    """
T
tink2123 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

    noise = np.random.normal(mean, var**0.5, image.shape)
    out = image + 0.5 * noise
    out = np.clip(out, 0, 255)
    out = np.uint8(out)
    return out


def get_crop(image):
    """
    random crop
    """
    h, w, _ = image.shape
    top_min = 1
    top_max = 8
    top_crop = int(random.randint(top_min, top_max))
491
    top_crop = min(top_crop, h - 1)
T
tink2123 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505
    crop_img = image.copy()
    ratio = random.randint(0, 1)
    if ratio:
        crop_img = crop_img[top_crop:h, :, :]
    else:
        crop_img = crop_img[0:h - top_crop, :, :]
    return crop_img


class Config:
    """
    Config
    """

Z
zhoujun 已提交
506
    def __init__(self, use_tia):
T
tink2123 已提交
507 508 509 510 511 512 513 514
        self.anglex = random.random() * 30
        self.angley = random.random() * 15
        self.anglez = random.random() * 10
        self.fov = 42
        self.r = 0
        self.shearx = random.random() * 0.3
        self.sheary = random.random() * 0.05
        self.borderMode = cv2.BORDER_REPLICATE
Z
zhoujun 已提交
515
        self.use_tia = use_tia
T
tink2123 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

    def make(self, w, h, ang):
        """
        make
        """
        self.anglex = random.random() * 5 * flag()
        self.angley = random.random() * 5 * flag()
        self.anglez = -1 * random.random() * int(ang) * flag()
        self.fov = 42
        self.r = 0
        self.shearx = 0
        self.sheary = 0
        self.borderMode = cv2.BORDER_REPLICATE
        self.w = w
        self.h = h

Z
zhoujun 已提交
532 533 534
        self.perspective = self.use_tia
        self.stretch = self.use_tia
        self.distort = self.use_tia
W
WenmuZhou 已提交
535

T
tink2123 已提交
536 537 538 539
        self.crop = True
        self.affine = False
        self.reverse = True
        self.noise = True
T
tink2123 已提交
540
        self.jitter = True
T
tink2123 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
        self.blur = True
        self.color = True


def rad(x):
    """
    rad
    """
    return x * np.pi / 180


def get_warpR(config):
    """
    get_warpR
    """
    anglex, angley, anglez, fov, w, h, r = \
        config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
    if w > 69 and w < 112:
        anglex = anglex * 1.5

    z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
    # Homogeneous coordinate transformation matrix
    rx = np.array([[1, 0, 0, 0],
                   [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
                       0,
                       -np.sin(rad(anglex)),
                       np.cos(rad(anglex)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
                   [0, 1, 0, 0], [
                       -np.sin(rad(angley)),
                       0,
                       np.cos(rad(angley)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
                   [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
    r = rx.dot(ry).dot(rz)
    # generate 4 points
    pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
    p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
    p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
    p3 = np.array([0, h, 0, 0], np.float32) - pcenter
    p4 = np.array([w, h, 0, 0], np.float32) - pcenter
    dst1 = r.dot(p1)
    dst2 = r.dot(p2)
    dst3 = r.dot(p3)
    dst4 = r.dot(p4)
591
    list_dst = np.array([dst1, dst2, dst3, dst4])
T
tink2123 已提交
592 593 594
    org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
    dst = np.zeros((4, 2), np.float32)
    # Project onto the image plane
595 596 597
    dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
    dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]

T
tink2123 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
    warpR = cv2.getPerspectiveTransform(org, dst)

    dst1, dst2, dst3, dst4 = dst
    r1 = int(min(dst1[1], dst2[1]))
    r2 = int(max(dst3[1], dst4[1]))
    c1 = int(min(dst1[0], dst3[0]))
    c2 = int(max(dst2[0], dst4[0]))

    try:
        ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))

        dx = -c1
        dy = -r1
        T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
        ret = T1.dot(warpR)
    except:
        ratio = 1.0
        T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
        ret = T1
    return ret, (-r1, -c1), ratio, dst


def get_warpAffine(config):
    """
    get_warpAffine
    """
    anglez = config.anglez
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
    return rz


L
littletomatodonkey 已提交
630
def warp(img, ang, use_tia=True, prob=0.4):
T
tink2123 已提交
631 632 633 634
    """
    warp
    """
    h, w, _ = img.shape
Z
zhoujun 已提交
635
    config = Config(use_tia=use_tia)
T
tink2123 已提交
636 637 638
    config.make(w, h, ang)
    new_img = img

W
WenmuZhou 已提交
639 640 641 642 643 644 645 646 647 648
    if config.distort:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
            new_img = tia_distort(new_img, random.randint(3, 6))

    if config.stretch:
        img_height, img_width = img.shape[0:2]
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
            new_img = tia_stretch(new_img, random.randint(3, 6))

T
tink2123 已提交
649
    if config.perspective:
W
WenmuZhou 已提交
650 651 652
        if random.random() <= prob:
            new_img = tia_perspective(new_img)

T
tink2123 已提交
653 654
    if config.crop:
        img_height, img_width = img.shape[0:2]
W
WenmuZhou 已提交
655
        if random.random() <= prob and img_height >= 20 and img_width >= 20:
T
tink2123 已提交
656
            new_img = get_crop(new_img)
W
WenmuZhou 已提交
657

T
tink2123 已提交
658
    if config.blur:
W
WenmuZhou 已提交
659
        if random.random() <= prob:
T
tink2123 已提交
660 661
            new_img = blur(new_img)
    if config.color:
W
WenmuZhou 已提交
662
        if random.random() <= prob:
T
tink2123 已提交
663
            new_img = cvtColor(new_img)
T
tink2123 已提交
664 665
    if config.jitter:
        new_img = jitter(new_img)
T
tink2123 已提交
666
    if config.noise:
W
WenmuZhou 已提交
667
        if random.random() <= prob:
T
tink2123 已提交
668 669
            new_img = add_gasuss_noise(new_img)
    if config.reverse:
W
WenmuZhou 已提交
670
        if random.random() <= prob:
T
tink2123 已提交
671 672
            new_img = 255 - new_img
    return new_img