utility.py 13.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23 24
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
L
LDOUBLEV 已提交
25 26 27 28 29 30 31


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
Z
zhoujun 已提交
32
    # params for prediction engine
L
LDOUBLEV 已提交
33 34 35 36 37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

Z
zhoujun 已提交
38
    # params for text detector
L
LDOUBLEV 已提交
39 40 41
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
42 43
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
44

Z
zhoujun 已提交
45
    # DB parmas
L
LDOUBLEV 已提交
46 47
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
Z
zhoujun 已提交
48
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
L
LDOUBLEV 已提交
49

Z
zhoujun 已提交
50
    # EAST parmas
L
LDOUBLEV 已提交
51 52 53 54
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

Z
zhoujun 已提交
55
    # SAST parmas
L
licx 已提交
56 57
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
58
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
L
licx 已提交
59

Z
zhoujun 已提交
60
    # params for text recognizer
L
LDOUBLEV 已提交
61 62
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
63 64
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
Z
zhoujun 已提交
65
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
66
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
67 68 69 70
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
Z
zhoujun 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
        "--vis_font_path", type=str, default="./doc/simfang.ttf")

    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
    parser.add_argument("--cls_batch_num", type=int, default=30)
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
    parser.add_argument("--use_zero_copy_run", type=str2bool, default=False)

    parser.add_argument("--use_pdserving", type=str2bool, default=False)

L
LDOUBLEV 已提交
88 89 90
    return parser.parse_args()


W
WenmuZhou 已提交
91 92 93 94 95 96 97 98 99 100 101
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
W
WenmuZhou 已提交
102 103
    model_file_path = model_dir + "/model"
    params_file_path = model_dir + "/params"
W
WenmuZhou 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
    else:
        config.disable_gpu()
        config.set_cpu_math_library_num_threads(6)
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

    # config.enable_memory_optim()
    config.disable_glog_info()

    if args.use_zero_copy_run:
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
        config.switch_use_feed_fetch_ops(False)
    else:
        config.switch_use_feed_fetch_ops(True)

    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
    for name in input_names:
        input_tensor = predictor.get_input_tensor(name)
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


L
LDOUBLEV 已提交
144
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
145 146 147 148
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
149
    return src_im
L
LDOUBLEV 已提交
150 151


L
LDOUBLEV 已提交
152 153
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
154
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
155 156 157 158 159
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
160 161
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
162 163


W
WenmuZhou 已提交
164 165 166 167 168 169
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
             font_path="./doc/simfang.ttf"):
170 171 172
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
173
        image(Image|array): RGB image
174 175 176 177
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
178
        font_path: the path of font which is used to draw text
179 180 181
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
182 183
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
184 185 186 187
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
188
            continue
W
WenmuZhou 已提交
189
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
190
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
191
    if txts is not None:
L
LDOUBLEV 已提交
192
        img = np.array(resize_img(image, input_size=600))
193
        txt_img = text_visual(
W
WenmuZhou 已提交
194 195 196 197 198 199
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
200
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
201 202
        return img
    return image
203 204


205 206 207 208
def draw_ocr_box_txt(image, boxes, txts):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
209 210

    import random
L
LDOUBLEV 已提交
211

212 213 214
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
215
    for (box, txt) in zip(boxes, txts):
T
tink2123 已提交
216 217
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
218
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
219 220 221 222 223 224 225 226 227 228
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
229 230
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
T
tink2123 已提交
231 232
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
233 234 235
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
236 237
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
238 239 240
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
T
tink2123 已提交
241 242 243 244
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
245 246 247 248
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
249 250 251
    return np.array(img_show)


252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.

    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
277 278 279 280 281 282
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
283 284 285 286 287 288 289
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
290
        font_path: the path of font which is used to draw text
291 292 293 294 295 296 297 298 299 300
    return(array):

    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
301 302
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
303
        return blank_img, draw_txt
L
LDOUBLEV 已提交
304

305 306 307 308
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
309
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
310 311 312

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
313
    count, index = 1, 0
314 315
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
316
        if scores[idx] < threshold or math.isnan(scores[idx]):
317 318 319 320 321 322 323 324 325 326 327
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
328
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
329 330 331 332 333
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
334
            count += 1
335 336 337
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
338
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
339
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
340
        # whether add new blank img or not
L
LDOUBLEV 已提交
341
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
342 343 344
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
345
        count += 1
346 347 348 349 350 351
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
352 353


D
dyning 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


L
LDOUBLEV 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

W
WenmuZhou 已提交
390
    new_img = draw_ocr(image, boxes, txts, scores)
L
LDOUBLEV 已提交
391

M
MissPenguin 已提交
392
    cv2.imwrite(img_name, new_img)