sr_metric.py 5.1 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
https://github.com/FudanVI/FudanOCR/blob/main/text-gestalt/utils/ssim_psnr.py
"""

from math import exp

import paddle
import paddle.nn.functional as F
import paddle.nn as nn
import string


class SSIM(nn.Layer):
    def __init__(self, window_size=11, size_average=True):
        super(SSIM, self).__init__()
        self.window_size = window_size
        self.size_average = size_average
        self.channel = 1
        self.window = self.create_window(window_size, self.channel)

    def gaussian(self, window_size, sigma):
        gauss = paddle.to_tensor([
            exp(-(x - window_size // 2)**2 / float(2 * sigma**2))
            for x in range(window_size)
        ])
        return gauss / gauss.sum()

    def create_window(self, window_size, channel):
        _1D_window = self.gaussian(window_size, 1.5).unsqueeze(1)
        _2D_window = _1D_window.mm(_1D_window.t()).unsqueeze(0).unsqueeze(0)
        window = _2D_window.expand([channel, 1, window_size, window_size])
        return window

    def _ssim(self, img1, img2, window, window_size, channel,
              size_average=True):
        mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
        mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)

        mu1_sq = mu1.pow(2)
        mu2_sq = mu2.pow(2)
        mu1_mu2 = mu1 * mu2

        sigma1_sq = F.conv2d(
            img1 * img1, window, padding=window_size // 2,
            groups=channel) - mu1_sq
        sigma2_sq = F.conv2d(
            img2 * img2, window, padding=window_size // 2,
            groups=channel) - mu2_sq
        sigma12 = F.conv2d(
            img1 * img2, window, padding=window_size // 2,
            groups=channel) - mu1_mu2

        C1 = 0.01**2
        C2 = 0.03**2

        ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
            (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))

        if size_average:
            return ssim_map.mean()
        else:
            return ssim_map.mean([1, 2, 3])

    def ssim(self, img1, img2, window_size=11, size_average=True):
        (_, channel, _, _) = img1.shape
        window = self.create_window(window_size, channel)

        return self._ssim(img1, img2, window, window_size, channel,
                          size_average)

    def forward(self, img1, img2):
        (_, channel, _, _) = img1.shape

        if channel == self.channel and self.window.dtype == img1.dtype:
            window = self.window
        else:
            window = self.create_window(self.window_size, channel)

            self.window = window
            self.channel = channel

        return self._ssim(img1, img2, window, self.window_size, channel,
                          self.size_average)


class SRMetric(object):
    def __init__(self, main_indicator='all', **kwargs):
        self.main_indicator = main_indicator
        self.eps = 1e-5
        self.psnr_result = []
        self.ssim_result = []
        self.calculate_ssim = SSIM()
        self.reset()

    def reset(self):
        self.correct_num = 0
        self.all_num = 0
        self.norm_edit_dis = 0
        self.psnr_result = []
        self.ssim_result = []

    def calculate_psnr(self, img1, img2):
        # img1 and img2 have range [0, 1]
        mse = ((img1 * 255 - img2 * 255)**2).mean()
        if mse == 0:
            return float('inf')
        return 20 * paddle.log10(255.0 / paddle.sqrt(mse))

    def _normalize_text(self, text):
        text = ''.join(
            filter(lambda x: x in (string.digits + string.ascii_letters), text))
        return text.lower()

    def __call__(self, pred_label, *args, **kwargs):
        metric = {}
        images_sr = pred_label["sr_img"]
        images_hr = pred_label["hr_img"]
        psnr = self.calculate_psnr(images_sr, images_hr)
        ssim = self.calculate_ssim(images_sr, images_hr)
        self.psnr_result.append(psnr)
        self.ssim_result.append(ssim)

    def get_metric(self):
        """
        return metrics {
                 'acc': 0,
                 'norm_edit_dis': 0,
            }
        """
        self.psnr_avg = sum(self.psnr_result) / len(self.psnr_result)
        self.psnr_avg = round(self.psnr_avg.item(), 6)
        self.ssim_avg = sum(self.ssim_result) / len(self.ssim_result)
        self.ssim_avg = round(self.ssim_avg.item(), 6)

        self.all_avg = self.psnr_avg + self.ssim_avg

        self.reset()
        return {
            'psnr_avg': self.psnr_avg,
            "ssim_avg": self.ssim_avg,
            "all": self.all_avg
        }