infer_rec.py 5.1 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
W
WenmuZhou 已提交
20

L
LDOUBLEV 已提交
21 22
import os
import sys
littletomatodonkey's avatar
littletomatodonkey 已提交
23
import json
W
WenmuZhou 已提交
24

25
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
26
sys.path.append(__dir__)
27
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
L
LDOUBLEV 已提交
28

L
LDOUBLEV 已提交
29 30
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

W
WenmuZhou 已提交
31
import paddle
T
tink2123 已提交
32

W
WenmuZhou 已提交
33
from ppocr.data import create_operators, transform
W
WenmuZhou 已提交
34
from ppocr.modeling.architectures import build_model
W
WenmuZhou 已提交
35
from ppocr.postprocess import build_post_process
L
LDOUBLEV 已提交
36
from ppocr.utils.save_load import init_model
W
WenmuZhou 已提交
37
from ppocr.utils.utility import get_image_file_list
W
WenmuZhou 已提交
38
import tools.program as program
L
LDOUBLEV 已提交
39

D
Double_V 已提交
40
@paddle.no_grad()
L
LDOUBLEV 已提交
41
def main():
W
WenmuZhou 已提交
42 43 44 45 46 47 48 49
    global_config = config['Global']

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    if hasattr(post_process_class, 'character'):
littletomatodonkey's avatar
littletomatodonkey 已提交
50 51 52 53 54 55 56 57
        char_num = len(getattr(post_process_class, 'character'))
        if config['Architecture']["algorithm"] in ["Distillation",
                                                   ]:  # distillation model
            for key in config['Architecture']["Models"]:
                config['Architecture']["Models"][key]["Head"][
                    'out_channels'] = char_num
        else:  # base rec model
            config['Architecture']["Head"]['out_channels'] = char_num
W
WenmuZhou 已提交
58 59 60

    model = build_model(config['Architecture'])

littletomatodonkey's avatar
littletomatodonkey 已提交
61
    init_model(config, model)
W
WenmuZhou 已提交
62 63 64

    # create data ops
    transforms = []
W
WenmuZhou 已提交
65
    for op in config['Eval']['dataset']['transforms']:
W
WenmuZhou 已提交
66 67 68 69 70
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name in ['RecResizeImg']:
            op[op_name]['infer_mode'] = True
W
WenmuZhou 已提交
71
        elif op_name == 'KeepKeys':
T
tink2123 已提交
72 73 74 75 76 77 78
            if config['Architecture']['algorithm'] == "SRN":
                op[op_name]['keep_keys'] = [
                    'image', 'encoder_word_pos', 'gsrm_word_pos',
                    'gsrm_slf_attn_bias1', 'gsrm_slf_attn_bias2'
                ]
            else:
                op[op_name]['keep_keys'] = ['image']
W
WenmuZhou 已提交
79 80 81 82
        transforms.append(op)
    global_config['infer_mode'] = True
    ops = create_operators(transforms, global_config)

littletomatodonkey's avatar
littletomatodonkey 已提交
83 84 85 86 87
    save_res_path = config['Global'].get('save_res_path',
                                         "./output/rec/predicts_rec.txt")
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))

W
WenmuZhou 已提交
88
    model.eval()
littletomatodonkey's avatar
littletomatodonkey 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    with open(save_res_path, "w") as fout:
        for file in get_image_file_list(config['Global']['infer_img']):
            logger.info("infer_img: {}".format(file))
            with open(file, 'rb') as f:
                img = f.read()
                data = {'image': img}
            batch = transform(data, ops)
            if config['Architecture']['algorithm'] == "SRN":
                encoder_word_pos_list = np.expand_dims(batch[1], axis=0)
                gsrm_word_pos_list = np.expand_dims(batch[2], axis=0)
                gsrm_slf_attn_bias1_list = np.expand_dims(batch[3], axis=0)
                gsrm_slf_attn_bias2_list = np.expand_dims(batch[4], axis=0)

                others = [
                    paddle.to_tensor(encoder_word_pos_list),
                    paddle.to_tensor(gsrm_word_pos_list),
                    paddle.to_tensor(gsrm_slf_attn_bias1_list),
                    paddle.to_tensor(gsrm_slf_attn_bias2_list)
                ]

            images = np.expand_dims(batch[0], axis=0)
            images = paddle.to_tensor(images)
            if config['Architecture']['algorithm'] == "SRN":
                preds = model(images, others)
            else:
                preds = model(images)
            post_result = post_process_class(preds)
littletomatodonkey's avatar
littletomatodonkey 已提交
117 118 119 120 121 122 123
            info = None
            if isinstance(post_result, dict):
                rec_info = dict()
                for key in post_result:
                    if len(post_result[key][0]) >= 2:
                        rec_info[key] = {
                            "label": post_result[key][0][0],
124
                            "score": float(post_result[key][0][1]),
littletomatodonkey's avatar
littletomatodonkey 已提交
125 126 127 128 129 130 131 132 133
                        }
                info = json.dumps(rec_info)
            else:
                if len(post_result[0]) >= 2:
                    info = post_result[0][0] + "\t" + str(post_result[0][1])

            if info is not None:
                logger.info("\t result: {}".format(info))
                fout.write(file + "\t" + info)
W
WenmuZhou 已提交
134 135
    logger.info("success!")

L
LDOUBLEV 已提交
136 137

if __name__ == '__main__':
W
WenmuZhou 已提交
138
    config, device, logger, vdl_writer = program.preprocess()
L
LDOUBLEV 已提交
139
    main()