utility.py 7.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os, sys
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import cv2
import numpy as np
L
LDOUBLEV 已提交
24 25
import json
from PIL import Image, ImageDraw, ImageFont
L
LDOUBLEV 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    #params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

    #params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_max_side_len", type=float, default=960)

    #DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
48
    parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
L
LDOUBLEV 已提交
49 50 51 52 53 54 55 56 57 58 59

    #EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

    #params for text recognizer
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
60
    parser.add_argument("--rec_batch_num", type=int, default=30)
L
LDOUBLEV 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
    return parser.parse_args()


def create_predictor(args, mode):
    if mode == "det":
        model_dir = args.det_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
    model_file_path = model_dir + "/model"
    params_file_path = model_dir + "/params"
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
    else:
        config.disable_gpu()

    config.disable_glog_info()
L
LDOUBLEV 已提交
94

L
LDOUBLEV 已提交
95
    # use zero copy
96
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
L
LDOUBLEV 已提交
97 98 99 100 101 102 103 104 105 106 107 108
    config.switch_use_feed_fetch_ops(False)
    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
    input_tensor = predictor.get_input_tensor(input_names[0])
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


L
LDOUBLEV 已提交
109
def draw_text_det_res(dt_boxes, img_path, return_img=True):
L
LDOUBLEV 已提交
110 111 112 113
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
114
    return src_im
L
LDOUBLEV 已提交
115 116


L
LDOUBLEV 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129
def resize_img(img, input_size=600):
    """
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return im


def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
L
LDOUBLEV 已提交
130 131 132 133
    from PIL import Image, ImageDraw, ImageFont

    img = image.copy()
    draw = ImageDraw.Draw(img)
L
LDOUBLEV 已提交
134 135
    if scores is None:
        scores = [1] * len(boxes)
L
LDOUBLEV 已提交
136 137 138
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
L
LDOUBLEV 已提交
139 140 141 142
        draw.line([(box[0][0], box[0][1]), (box[1][0], box[1][1])], fill='red')
        draw.line([(box[1][0], box[1][1]), (box[2][0], box[2][1])], fill='red')
        draw.line([(box[2][0], box[2][1]), (box[3][0], box[3][1])], fill='red')
        draw.line([(box[3][0], box[3][1]), (box[0][0], box[0][1])], fill='red')
L
LDOUBLEV 已提交
143 144 145 146 147 148 149 150 151 152 153 154
        draw.line(
            [(box[0][0] - 1, box[0][1] + 1), (box[1][0] - 1, box[1][1] + 1)],
            fill='red')
        draw.line(
            [(box[1][0] - 1, box[1][1] + 1), (box[2][0] - 1, box[2][1] + 1)],
            fill='red')
        draw.line(
            [(box[2][0] - 1, box[2][1] + 1), (box[3][0] - 1, box[3][1] + 1)],
            fill='red')
        draw.line(
            [(box[3][0] - 1, box[3][1] + 1), (box[0][0] - 1, box[0][1] + 1)],
            fill='red')
L
LDOUBLEV 已提交
155 156 157

    if draw_txt:
        txt_color = (0, 0, 0)
L
LDOUBLEV 已提交
158 159 160
        img = np.array(resize_img(img))
        _h = img.shape[0]
        blank_img = np.ones(shape=[_h, 600], dtype=np.int8) * 255
L
LDOUBLEV 已提交
161 162 163
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)

L
LDOUBLEV 已提交
164 165 166 167 168 169 170 171 172 173 174
        font_size = 20
        gap = 20
        title = "index           text           score"
        font = ImageFont.truetype(
            "./doc/simfang.ttf", font_size, encoding="utf-8")

        draw_txt.text((20, 0), title, txt_color, font=font)
        count = 0
        for idx, txt in enumerate(txts):
            if scores[idx] < drop_score:
                continue
L
LDOUBLEV 已提交
175
            font = ImageFont.truetype(
L
LDOUBLEV 已提交
176
                "./doc/simfang.ttf", font_size, encoding="utf-8")
177 178
            new_txt = str(count) + ':  ' + txt + '    ' + '%.3f' % (
                scores[count])
L
LDOUBLEV 已提交
179 180 181 182 183 184
            while len(new_txt) > 25:
                tmp = new_txt
                new_txt = tmp[:25]
                draw_txt.text(
                    (20, gap * (count + 1)), new_txt, txt_color, font=font)
                new_txt = tmp[25:]
L
LDOUBLEV 已提交
185 186 187
            draw_txt.text(
                (20, gap * (count + 1)), new_txt, txt_color, font=font)
            count += 1
L
LDOUBLEV 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        img = np.concatenate([np.array(img), np.array(blank_img)], axis=1)
    return img


if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

    new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)

    cv2.imwrite(img_name, new_img)