rec_r34_vd_tps_bilstm_att.yml 2.2 KB
Newer Older
L
LDOUBLEV 已提交
1
Global:
T
tink2123 已提交
2
  use_gpu: True
L
LDOUBLEV 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
  epoch_num: 400
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/rec/b3_rare_r34_none_gru/
  save_epoch_step: 3
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: [0, 2000]
  cal_metric_during_train: True
  pretrained_model:
  checkpoints:
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_words/ch/word_1.jpg
  # for data or label process
  character_dict_path: 
  character_type: en
  max_text_length: 25
  infer_mode: False
  use_space_char: False
L
littletomatodonkey 已提交
22
  save_res_path: ./output/rec/predicts_b3_rare_r34_none_gru.txt
L
LDOUBLEV 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66


Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    learning_rate: 0.0005
  regularizer:
    name: 'L2'
    factor: 0.00000

Architecture:
  model_type: rec
  algorithm: RARE
  Transform:
    name: TPS
    num_fiducial: 20
    loc_lr: 0.1
    model_name: large
  Backbone:
    name: ResNet  
    layers: 34
  Neck:
    name: SequenceEncoder
    encoder_type: rnn 
    hidden_size: 256 #96
  Head:
    name: AttentionHead  # AttentionHead
    hidden_size: 256 #
    l2_decay: 0.00001

Loss:
  name: AttentionLoss

PostProcess:
  name: AttnLabelDecode

Metric:
  name: RecMetric
  main_indicator: acc

Train:
  dataset:
T
tink2123 已提交
67
    name: LMDBDataSet
W
WenmuZhou 已提交
68
    data_dir: ./train_data/data_lmdb_release/training/
L
LDOUBLEV 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - AttnLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 100]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 256
    drop_last: True
    num_workers: 8

Eval:
  dataset:
T
tink2123 已提交
86
    name: LMDBDataSet
W
WenmuZhou 已提交
87
    data_dir: ./train_data/data_lmdb_release/validation/
L
LDOUBLEV 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - AttnLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 100]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 256
    num_workers: 8