distillation_loss.py 3.5 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn

from .rec_ctc_loss import CTCLoss
from .basic_loss import DMLLoss
20
from .basic_loss import DistanceLoss
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22 23 24 25 26


class DistillationDMLLoss(DMLLoss):
    """
    """

27
    def __init__(self, model_name_pairs=[], act=None, key=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
28
                 name="loss_dml"):
29 30
        super().__init__(act=act, name=name)
        assert isinstance(model_name_pairs, list)
littletomatodonkey's avatar
littletomatodonkey 已提交
31
        self.key = key
32
        self.model_name_pairs = model_name_pairs
littletomatodonkey's avatar
littletomatodonkey 已提交
33 34 35

    def forward(self, predicts, batch):
        loss_dict = dict()
36 37 38
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
littletomatodonkey's avatar
littletomatodonkey 已提交
39 40 41 42 43
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            if isinstance(loss, dict):
44 45 46 47 48
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
                        key]
            else:
                loss_dict["{}_{}".format(self.name, idx)] = loss
littletomatodonkey's avatar
littletomatodonkey 已提交
49 50 51 52 53 54 55 56 57 58 59 60
        return loss_dict


class DistillationCTCLoss(CTCLoss):
    def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
        super().__init__()
        self.model_name_list = model_name_list
        self.key = key
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
61
        for idx, model_name in enumerate(self.model_name_list):
littletomatodonkey's avatar
littletomatodonkey 已提交
62 63 64 65 66
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)
            if isinstance(loss, dict):
67 68 69 70 71
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, model_name,
                                                idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss
littletomatodonkey's avatar
littletomatodonkey 已提交
72
        return loss_dict
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105


class DistillationDistanceLoss(DistanceLoss):
    """
    """

    def __init__(self,
                 mode="l2",
                 model_name_pairs=[],
                 key=None,
                 name="loss_distance",
                 **kargs):
        super().__init__(mode=mode, name=name)
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
                        key]
            else:
                loss_dict["{}_{}".format(self.name, idx)] = loss
        return loss_dict