program.py 22.9 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27 28 29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
30 31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
33
from ppocr.utils.logging import get_logger
34
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
35
from ppocr.utils import profiler
D
dyning 已提交
36
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
37

D
dyning 已提交
38

L
LDOUBLEV 已提交
39 40 41 42 43 44 45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
46 47 48 49 50
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
51 52
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
53
        )
L
LDOUBLEV 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
82 83
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
84 85


86
def merge_config(config, opts):
L
LDOUBLEV 已提交
87 88 89 90 91 92
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
93
    for key, value in opts.items():
L
LDOUBLEV 已提交
94
        if "." not in key:
95 96
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
97
            else:
98
                config[key] = value
L
LDOUBLEV 已提交
99 100
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
101
            assert (
102
                sub_keys[0] in config
103 104
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
105 106
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
107 108 109 110 111
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
112
    return config
L
LDOUBLEV 已提交
113 114


X
xiaoting 已提交
115
def check_device(use_gpu, use_xpu=False):
L
LDOUBLEV 已提交
116 117 118 119
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
X
xiaoting 已提交
120 121 122 123
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
124 125 126
          "model on CPU"

    try:
X
xiaoting 已提交
127 128
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
129
        if use_gpu and not paddle.is_compiled_with_cuda():
X
xiaoting 已提交
130 131 132 133
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
134 135 136 137 138
            sys.exit(1)
    except Exception as e:
        pass


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass


W
WenmuZhou 已提交
158
def train(config,
D
dyning 已提交
159 160 161
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
162 163 164 165 166 167 168 169
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
170
          log_writer=None,
S
stephon 已提交
171
          scaler=None):
W
WenmuZhou 已提交
172 173
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
174
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
175 176 177 178
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
179
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
180

D
dyning 已提交
181
    global_step = 0
182 183
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
184 185 186 187
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
188 189
        if len(valid_dataloader) == 0:
            logger.info(
190 191
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
192 193
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
194
        logger.info(
195 196
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
197
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
198 199
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
200 201
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
202 203 204 205
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
206
    model_average = False
W
WenmuZhou 已提交
207 208
    model.train()

T
tink2123 已提交
209
    use_srn = config['Architecture']['algorithm'] == "SRN"
210 211 212
    extra_input_models = [
        "SRN", "NRTR", "SAR", "SEED", "SVTR", "SPIN", "VisionLAN"
    ]
A
andyjpaddle 已提交
213
    extra_input = False
A
andyjpaddle 已提交
214
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
215 216 217
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
218 219
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
220
    try:
L
fix bug  
LDOUBLEV 已提交
221
        model_type = config['Architecture']['model_type']
222
    except:
L
fix bug  
LDOUBLEV 已提交
223
        model_type = None
A
andyjpaddle 已提交
224

T
tink2123 已提交
225
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
226

227 228 229 230
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
231 232
    train_reader_cost = 0.0
    train_batch_cost = 0.0
233
    reader_start = time.time()
234
    eta_meter = AverageMeter()
235 236 237

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
238

T
tink2123 已提交
239
    for epoch in range(start_epoch, epoch_num + 1):
240 241 242 243 244
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
245
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
246
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
247
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
248
            if idx >= max_iter:
W
WenmuZhou 已提交
249 250 251
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
252
            if use_srn:
T
tink2123 已提交
253
                model_average = True
S
stephon 已提交
254 255 256 257 258
            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
A
andyjpaddle 已提交
259 260
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
S
stephon 已提交
261 262
                    else:
                        preds = model(images)
T
tink2123 已提交
263
            else:
S
stephon 已提交
264 265
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
266
                elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
267
                    preds = model(batch)
S
stephon 已提交
268 269
                else:
                    preds = model(images)
W
WenmuZhou 已提交
270 271
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
S
stephon 已提交
272 273 274 275 276 277 278 279

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
W
WenmuZhou 已提交
280
            optimizer.clear_grad()
W
WenmuZhou 已提交
281

282 283
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
文幕地方's avatar
文幕地方 已提交
284
                if model_type in ['kie']:
285
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
286 287 288
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
289
                else:
A
andyjpaddle 已提交
290 291 292 293
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
A
add vl  
andyjpaddle 已提交
294 295 296
                    elif config['Loss']['name'] in ['VLLoss']:
                        post_result = post_process_class(preds, batch[1],
                                                         batch[-1])
A
andyjpaddle 已提交
297 298
                    else:
                        post_result = post_process_class(preds, batch[1])
299 300 301 302
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

303 304 305
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
306
            global_step += 1
文幕地方's avatar
文幕地方 已提交
307
            total_samples += len(images)
W
WenmuZhou 已提交
308

D
dyning 已提交
309 310
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
311 312 313 314 315 316

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

317
            if log_writer is not None and dist.get_rank() == 0:
A
add vl  
andyjpaddle 已提交
318 319
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
320

321 322 323
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
324
                logs = train_stats.log()
L
LDOUBLEV 已提交
325

326 327 328 329 330
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
L
LDOUBLEV 已提交
331
                       'ips: {:.5f} samples/s, eta: {}'.format(
332 333 334 335 336
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
337
                logger.info(strs)
338

文幕地方's avatar
文幕地方 已提交
339
                total_samples = 0
340 341
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
342 343
            # eval
            if global_step > start_eval_step and \
344 345
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
346 347 348 349 350 351 352
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
353 354 355 356 357
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
358
                    model_type,
T
tink2123 已提交
359
                    extra_input=extra_input)
L
LDOUBLEV 已提交
360 361 362
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
363 364

                # logger metric
365
                if log_writer is not None:
A
add vl  
andyjpaddle 已提交
366 367
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
368

L
LDOUBLEV 已提交
369
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
370
                        main_indicator]:
L
LDOUBLEV 已提交
371
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
372 373 374 375 376 377
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
378
                        config,
W
WenmuZhou 已提交
379 380 381
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
382 383
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
384
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
385 386 387 388
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
389
                if log_writer is not None:
A
add vl  
andyjpaddle 已提交
390 391 392 393 394 395 396 397 398 399 400 401
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
402

文幕地方's avatar
文幕地方 已提交
403
            reader_start = time.time()
W
WenmuZhou 已提交
404 405 406 407 408 409
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
410
                config,
W
WenmuZhou 已提交
411 412 413
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
414 415
                epoch=epoch,
                global_step=global_step)
416

417 418
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
419

W
WenmuZhou 已提交
420 421 422 423 424 425
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
426
                config,
W
WenmuZhou 已提交
427 428 429
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
430 431
                epoch=epoch,
                global_step=global_step)
432
            if log_writer is not None:
A
add vl  
andyjpaddle 已提交
433 434
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
435

L
LDOUBLEV 已提交
436
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
437 438
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
439 440
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
441 442 443
    return


M
refine  
MissPenguin 已提交
444 445 446 447
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
448
         model_type=None,
T
tink2123 已提交
449
         extra_input=False):
W
WenmuZhou 已提交
450 451 452 453
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
454 455 456 457 458
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
459 460
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
W
WenmuZhou 已提交
461
        for idx, batch in enumerate(valid_dataloader):
462
            if idx >= max_iter:
W
WenmuZhou 已提交
463
                break
W
fix bug  
WenmuZhou 已提交
464
            images = batch[0]
W
WenmuZhou 已提交
465
            start = time.time()
T
tink2123 已提交
466
            if model_type == 'table' or extra_input:
M
refine  
MissPenguin 已提交
467
                preds = model(images, data=batch[1:])
468
            elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
469
                preds = model(batch)
X
xiaoting 已提交
470
            else:
L
LDOUBLEV 已提交
471
                preds = model(images)
472 473 474 475 476 477
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
478 479 480
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
文幕地方's avatar
文幕地方 已提交
481
            if model_type in ['kie']:
482
                eval_class(preds, batch_numpy)
文幕地方's avatar
文幕地方 已提交
483
            elif model_type in ['table', 'vqa']:
484 485
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
M
MissPenguin 已提交
486
            else:
487 488
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
489

W
fix bug  
WenmuZhou 已提交
490
            pbar.update(1)
W
WenmuZhou 已提交
491
            total_frame += len(images)
L
LDOUBLEV 已提交
492 493
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
494

W
fix bug  
WenmuZhou 已提交
495
    pbar.close()
W
WenmuZhou 已提交
496
    model.train()
L
LDOUBLEV 已提交
497 498
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
499

T
tink2123 已提交
500

B
Bin Lu 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


550
def preprocess(is_train=False):
L
licx 已提交
551
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
552
    profiler_options = FLAGS.profiler_options
L
licx 已提交
553
    config = load_config(FLAGS.config)
554
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
555
    profile_dic = {"profiler_options": FLAGS.profiler_options}
556
    config = merge_config(config, profile_dic)
L
licx 已提交
557

W
WenmuZhou 已提交
558 559 560 561 562 563 564 565 566 567
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
568
    logger = get_logger(log_file=log_file)
L
licx 已提交
569 570 571

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
X
xiaoting 已提交
572
    use_xpu = config['Global'].get('use_xpu', False)
L
licx 已提交
573

574 575 576 577 578 579
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

W
WenmuZhou 已提交
580 581
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
582
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
583
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
W
wangjingyeye 已提交
584
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
585
        'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN', 'VisionLAN'
W
WenmuZhou 已提交
586
    ]
L
licx 已提交
587

588
    if use_xpu:
X
xiaoting 已提交
589 590 591 592 593 594
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
    check_device(use_gpu, use_xpu)

W
WenmuZhou 已提交
595
    device = paddle.set_device(device)
D
dyning 已提交
596

D
dyning 已提交
597
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
598

599 600
    loggers = []

601
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
602
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
603
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
A
add vl  
andyjpaddle 已提交
604
        log_writer = VDLLogger(vdl_writer_path)
605
        loggers.append(log_writer)
A
add vl  
andyjpaddle 已提交
606 607
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
608 609 610 611 612 613 614 615
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
616
        loggers.append(log_writer)
D
dyning 已提交
617
    else:
618
        log_writer = None
D
dyning 已提交
619
    print_dict(config, logger)
620 621 622 623 624 625

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
626 627
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
628
    return config, device, logger, log_writer