rec_img_aug.py 23.7 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LDOUBLEV 已提交
15 16 17
import math
import cv2
import numpy as np
T
tink2123 已提交
18
import random
T
Topdu 已提交
19
import copy
T
Topdu 已提交
20
from PIL import Image
W
WenmuZhou 已提交
21
from .text_image_aug import tia_perspective, tia_stretch, tia_distort
22 23
from .abinet_aug import CVGeometry, CVDeterioration, CVColorJitter
from paddle.vision.transforms import Compose
L
LDOUBLEV 已提交
24

W
WenmuZhou 已提交
25 26

class RecAug(object):
文幕地方's avatar
add bda  
文幕地方 已提交
27
    def __init__(self,
文幕地方's avatar
文幕地方 已提交
28
                 tia_prob=0.4,
文幕地方's avatar
add bda  
文幕地方 已提交
29 30 31 32 33 34 35 36 37 38
                 crop_prob=0.4,
                 reverse_prob=0.4,
                 noise_prob=0.4,
                 jitter_prob=0.4,
                 blur_prob=0.4,
                 hsv_aug_prob=0.4,
                 **kwargs):
        self.tia_prob = tia_prob
        self.bda = BaseDataAugmentation(crop_prob, reverse_prob, noise_prob,
                                        jitter_prob, blur_prob, hsv_aug_prob)
W
WenmuZhou 已提交
39 40 41

    def __call__(self, data):
        img = data['image']
文幕地方's avatar
add bda  
文幕地方 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        h, w, _ = img.shape

        # tia
        if random.random() <= self.tia_prob:
            if h >= 20 and w >= 20:
                img = tia_distort(img, random.randint(3, 6))
                img = tia_stretch(img, random.randint(3, 6))
            img = tia_perspective(img)

        # bda
        data['image'] = img
        data = self.bda(data)
        return data


class BaseDataAugmentation(object):
    def __init__(self,
                 crop_prob=0.4,
                 reverse_prob=0.4,
                 noise_prob=0.4,
                 jitter_prob=0.4,
                 blur_prob=0.4,
                 hsv_aug_prob=0.4,
                 **kwargs):
        self.crop_prob = crop_prob
        self.reverse_prob = reverse_prob
        self.noise_prob = noise_prob
        self.jitter_prob = jitter_prob
        self.blur_prob = blur_prob
        self.hsv_aug_prob = hsv_aug_prob

    def __call__(self, data):
        img = data['image']
        h, w, _ = img.shape

        if random.random() <= self.crop_prob and h >= 20 and w >= 20:
            img = get_crop(img)

        if random.random() <= self.blur_prob:
            img = blur(img)

        if random.random() <= self.hsv_aug_prob:
            img = hsv_aug(img)

        if random.random() <= self.jitter_prob:
            img = jitter(img)

        if random.random() <= self.noise_prob:
            img = add_gasuss_noise(img)

        if random.random() <= self.reverse_prob:
            img = 255 - img

W
WenmuZhou 已提交
95 96 97 98
        data['image'] = img
        return data


99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
class ABINetRecAug(object):
    def __init__(self,
                 geometry_p=0.5,
                 deterioration_p=0.25,
                 colorjitter_p=0.25,
                 **kwargs):
        self.transforms = Compose([
            CVGeometry(
                degrees=45,
                translate=(0.0, 0.0),
                scale=(0.5, 2.),
                shear=(45, 15),
                distortion=0.5,
                p=geometry_p), CVDeterioration(
                    var=20, degrees=6, factor=4, p=deterioration_p),
            CVColorJitter(
                brightness=0.5,
                contrast=0.5,
                saturation=0.5,
                hue=0.1,
                p=colorjitter_p)
        ])

    def __call__(self, data):
        img = data['image']
        img = self.transforms(img)
        data['image'] = img
        return data


A
andyjpaddle 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
class RecConAug(object):
    def __init__(self,
                 prob=0.5,
                 image_shape=(32, 320, 3),
                 max_text_length=25,
                 ext_data_num=1,
                 **kwargs):
        self.ext_data_num = ext_data_num
        self.prob = prob
        self.max_text_length = max_text_length
        self.image_shape = image_shape
        self.max_wh_ratio = self.image_shape[1] / self.image_shape[0]

    def merge_ext_data(self, data, ext_data):
        ori_w = round(data['image'].shape[1] / data['image'].shape[0] *
                      self.image_shape[0])
        ext_w = round(ext_data['image'].shape[1] / ext_data['image'].shape[0] *
                      self.image_shape[0])
        data['image'] = cv2.resize(data['image'], (ori_w, self.image_shape[0]))
        ext_data['image'] = cv2.resize(ext_data['image'],
                                       (ext_w, self.image_shape[0]))
        data['image'] = np.concatenate(
            [data['image'], ext_data['image']], axis=1)
        data["label"] += ext_data["label"]
        return data

    def __call__(self, data):
        rnd_num = random.random()
        if rnd_num > self.prob:
            return data
        for idx, ext_data in enumerate(data["ext_data"]):
            if len(data["label"]) + len(ext_data[
                    "label"]) > self.max_text_length:
                break
            concat_ratio = data['image'].shape[1] / data['image'].shape[
                0] + ext_data['image'].shape[1] / ext_data['image'].shape[0]
            if concat_ratio > self.max_wh_ratio:
                break
            data = self.merge_ext_data(data, ext_data)
        data.pop("ext_data")
        return data


Z
zhoujun 已提交
172 173 174 175 176 177
class ClsResizeImg(object):
    def __init__(self, image_shape, **kwargs):
        self.image_shape = image_shape

    def __call__(self, data):
        img = data['image']
A
andyjpaddle 已提交
178
        norm_img, _ = resize_norm_img(img, self.image_shape)
Z
zhoujun 已提交
179 180 181 182
        data['image'] = norm_img
        return data


W
WenmuZhou 已提交
183 184 185 186
class RecResizeImg(object):
    def __init__(self,
                 image_shape,
                 infer_mode=False,
T
tink2123 已提交
187
                 character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
T
tink2123 已提交
188
                 padding=True,
W
WenmuZhou 已提交
189 190 191
                 **kwargs):
        self.image_shape = image_shape
        self.infer_mode = infer_mode
T
tink2123 已提交
192
        self.character_dict_path = character_dict_path
T
tink2123 已提交
193
        self.padding = padding
W
WenmuZhou 已提交
194 195 196

    def __call__(self, data):
        img = data['image']
T
tink2123 已提交
197
        if self.infer_mode and self.character_dict_path is not None:
A
andyjpaddle 已提交
198 199
            norm_img, valid_ratio = resize_norm_img_chinese(img,
                                                            self.image_shape)
W
WenmuZhou 已提交
200
        else:
A
andyjpaddle 已提交
201 202
            norm_img, valid_ratio = resize_norm_img(img, self.image_shape,
                                                    self.padding)
T
tink2123 已提交
203
        data['image'] = norm_img
A
andyjpaddle 已提交
204
        data['valid_ratio'] = valid_ratio
T
tink2123 已提交
205 206 207
        return data


A
add vl  
andyjpaddle 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221
class VLRecResizeImg(object):
    def __init__(self,
                 image_shape,
                 infer_mode=False,
                 character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
                 padding=True,
                 **kwargs):
        self.image_shape = image_shape
        self.infer_mode = infer_mode
        self.character_dict_path = character_dict_path
        self.padding = padding

    def __call__(self, data):
        img = data['image']
A
andyjpaddle 已提交
222 223 224 225 226 227 228 229 230

        imgC, imgH, imgW = self.image_shape
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_w = imgW
        resized_image = resized_image.astype('float32')
        if self.image_shape[0] == 1:
            resized_image = resized_image / 255
            norm_img = resized_image[np.newaxis, :]
A
add vl  
andyjpaddle 已提交
231
        else:
A
andyjpaddle 已提交
232 233
            norm_img = resized_image.transpose((2, 0, 1)) / 255
        valid_ratio = min(1.0, float(resized_w / imgW))
A
add vl  
andyjpaddle 已提交
234 235 236 237 238 239

        data['image'] = norm_img
        data['valid_ratio'] = valid_ratio
        return data


T
tink2123 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
class SRNRecResizeImg(object):
    def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
        self.image_shape = image_shape
        self.num_heads = num_heads
        self.max_text_length = max_text_length

    def __call__(self, data):
        img = data['image']
        norm_img = resize_norm_img_srn(img, self.image_shape)
        data['image'] = norm_img
        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)

        data['encoder_word_pos'] = encoder_word_pos
        data['gsrm_word_pos'] = gsrm_word_pos
        data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1
        data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2
        return data


A
andyjpaddle 已提交
260 261 262 263 264 265 266
class SARRecResizeImg(object):
    def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
        self.image_shape = image_shape
        self.width_downsample_ratio = width_downsample_ratio

    def __call__(self, data):
        img = data['image']
T
tink2123 已提交
267 268
        norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
            img, self.image_shape, self.width_downsample_ratio)
A
andyjpaddle 已提交
269 270 271 272 273 274 275
        data['image'] = norm_img
        data['resized_shape'] = resize_shape
        data['pad_shape'] = pad_shape
        data['valid_ratio'] = valid_ratio
        return data


276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
class PRENResizeImg(object):
    def __init__(self, image_shape, **kwargs):
        """
        Accroding to original paper's realization, it's a hard resize method here. 
        So maybe you should optimize it to fit for your task better.
        """
        self.dst_h, self.dst_w = image_shape

    def __call__(self, data):
        img = data['image']
        resized_img = cv2.resize(
            img, (self.dst_w, self.dst_h), interpolation=cv2.INTER_LINEAR)
        resized_img = resized_img.transpose((2, 0, 1)) / 255
        resized_img -= 0.5
        resized_img /= 0.5
        data['image'] = resized_img.astype(np.float32)
        return data


xuyang2233's avatar
add pr  
xuyang2233 已提交
295 296 297 298 299 300 301 302
class SPINRecResizeImg(object):
    def __init__(self,
                 image_shape,
                 interpolation=2,
                 mean=(127.5, 127.5, 127.5),
                 std=(127.5, 127.5, 127.5),
                 **kwargs):
        self.image_shape = image_shape
303

xuyang2233's avatar
add pr  
xuyang2233 已提交
304 305 306 307 308 309
        self.mean = np.array(mean, dtype=np.float32)
        self.std = np.array(std, dtype=np.float32)
        self.interpolation = interpolation

    def __call__(self, data):
        img = data['image']
xuyang2233's avatar
xuyang2233 已提交
310
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
xuyang2233's avatar
add pr  
xuyang2233 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
        # different interpolation type corresponding the OpenCV
        if self.interpolation == 0:
            interpolation = cv2.INTER_NEAREST
        elif self.interpolation == 1:
            interpolation = cv2.INTER_LINEAR
        elif self.interpolation == 2:
            interpolation = cv2.INTER_CUBIC
        elif self.interpolation == 3:
            interpolation = cv2.INTER_AREA
        else:
            raise Exception("Unsupported interpolation type !!!")
        # Deal with the image error during image loading
        if img is None:
            return None

        img = cv2.resize(img, tuple(self.image_shape), interpolation)
        img = np.array(img, np.float32)
        img = np.expand_dims(img, -1)
        img = img.transpose((2, 0, 1))
        # normalize the image
        img = img.copy().astype(np.float32)
        mean = np.float64(self.mean.reshape(1, -1))
        stdinv = 1 / np.float64(self.std.reshape(1, -1))
        img -= mean
        img *= stdinv
        data['image'] = img
        return data
338

339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
class GrayRecResizeImg(object):
    def __init__(self,
                 image_shape,
                 resize_type,
                 inter_type='Image.ANTIALIAS',
                 scale=True,
                 padding=False,
                 **kwargs):
        self.image_shape = image_shape
        self.resize_type = resize_type
        self.padding = padding
        self.inter_type = eval(inter_type)
        self.scale = scale

    def __call__(self, data):
        img = data['image']
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        image_shape = self.image_shape
        if self.padding:
            imgC, imgH, imgW = image_shape
            # todo: change to 0 and modified image shape
            h = img.shape[0]
            w = img.shape[1]
            ratio = w / float(h)
            if math.ceil(imgH * ratio) > imgW:
                resized_w = imgW
            else:
                resized_w = int(math.ceil(imgH * ratio))
            resized_image = cv2.resize(img, (resized_w, imgH))
            norm_img = np.expand_dims(resized_image, -1)
            norm_img = norm_img.transpose((2, 0, 1))
            resized_image = norm_img.astype(np.float32) / 128. - 1.
            padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
            padding_im[:, :, 0:resized_w] = resized_image
            data['image'] = padding_im
            return data
        if self.resize_type == 'PIL':
            image_pil = Image.fromarray(np.uint8(img))
            img = image_pil.resize(self.image_shape, self.inter_type)
            img = np.array(img)
        if self.resize_type == 'OpenCV':
            img = cv2.resize(img, self.image_shape)
        norm_img = np.expand_dims(img, -1)
        norm_img = norm_img.transpose((2, 0, 1))
        if self.scale:
            data['image'] = norm_img.astype(np.float32) / 128. - 1.
        else:
            data['image'] = norm_img.astype(np.float32) / 255.
        return data


class ABINetRecResizeImg(object):
    def __init__(self, image_shape, **kwargs):
        self.image_shape = image_shape

    def __call__(self, data):
        img = data['image']
        norm_img, valid_ratio = resize_norm_img_abinet(img, self.image_shape)
        data['image'] = norm_img
        data['valid_ratio'] = valid_ratio
        return data


class SVTRRecResizeImg(object):
    def __init__(self, image_shape, padding=True, **kwargs):
        self.image_shape = image_shape
        self.padding = padding

    def __call__(self, data):
        img = data['image']

        norm_img, valid_ratio = resize_norm_img(img, self.image_shape,
                                                self.padding)
        data['image'] = norm_img
        data['valid_ratio'] = valid_ratio
        return data


A
andyjpaddle 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
    imgC, imgH, imgW_min, imgW_max = image_shape
    h = img.shape[0]
    w = img.shape[1]
    valid_ratio = 1.0
    # make sure new_width is an integral multiple of width_divisor.
    width_divisor = int(1 / width_downsample_ratio)
    # resize
    ratio = w / float(h)
    resize_w = math.ceil(imgH * ratio)
    if resize_w % width_divisor != 0:
        resize_w = round(resize_w / width_divisor) * width_divisor
    if imgW_min is not None:
        resize_w = max(imgW_min, resize_w)
    if imgW_max is not None:
        valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
        resize_w = min(imgW_max, resize_w)
    resized_image = cv2.resize(img, (resize_w, imgH))
    resized_image = resized_image.astype('float32')
    # norm 
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    resize_shape = resized_image.shape
    padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
    padding_im[:, :, 0:resize_w] = resized_image
    pad_shape = padding_im.shape

    return padding_im, resize_shape, pad_shape, valid_ratio


T
tink2123 已提交
453
def resize_norm_img(img, image_shape, padding=True):
L
LDOUBLEV 已提交
454 455 456
    imgC, imgH, imgW = image_shape
    h = img.shape[0]
    w = img.shape[1]
T
tink2123 已提交
457 458 459
    if not padding:
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
L
LDOUBLEV 已提交
460 461
        resized_w = imgW
    else:
T
tink2123 已提交
462 463 464 465 466 467
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
468 469 470 471 472 473 474 475 476 477
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
A
andyjpaddle 已提交
478 479
    valid_ratio = min(1.0, float(resized_w / imgW))
    return padding_im, valid_ratio
L
LDOUBLEV 已提交
480 481


T
tink2123 已提交
482 483 484
def resize_norm_img_chinese(img, image_shape):
    imgC, imgH, imgW = image_shape
    # todo: change to 0 and modified image shape
T
tink2123 已提交
485
    max_wh_ratio = imgW * 1.0 / imgH
T
tink2123 已提交
486 487 488
    h, w = img.shape[0], img.shape[1]
    ratio = w * 1.0 / h
    max_wh_ratio = max(max_wh_ratio, ratio)
A
andyjpaddle 已提交
489
    imgW = int(imgH * max_wh_ratio)
T
tink2123 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    if image_shape[0] == 1:
        resized_image = resized_image / 255
        resized_image = resized_image[np.newaxis, :]
    else:
        resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
A
andyjpaddle 已提交
505 506
    valid_ratio = min(1.0, float(resized_w / imgW))
    return padding_im, valid_ratio
T
tink2123 已提交
507 508


T
tink2123 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
def resize_norm_img_srn(img, image_shape):
    imgC, imgH, imgW = image_shape

    img_black = np.zeros((imgH, imgW))
    im_hei = img.shape[0]
    im_wid = img.shape[1]

    if im_wid <= im_hei * 1:
        img_new = cv2.resize(img, (imgH * 1, imgH))
    elif im_wid <= im_hei * 2:
        img_new = cv2.resize(img, (imgH * 2, imgH))
    elif im_wid <= im_hei * 3:
        img_new = cv2.resize(img, (imgH * 3, imgH))
    else:
        img_new = cv2.resize(img, (imgW, imgH))

    img_np = np.asarray(img_new)
    img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
    img_black[:, 0:img_np.shape[1]] = img_np
    img_black = img_black[:, :, np.newaxis]

    row, col, c = img_black.shape
    c = 1

    return np.reshape(img_black, (c, row, col)).astype(np.float32)


536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
def resize_norm_img_abinet(img, image_shape):
    imgC, imgH, imgW = image_shape

    resized_image = cv2.resize(
        img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
    resized_w = imgW
    resized_image = resized_image.astype('float32')
    resized_image = resized_image / 255.

    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    resized_image = (
        resized_image - mean[None, None, ...]) / std[None, None, ...]
    resized_image = resized_image.transpose((2, 0, 1))
    resized_image = resized_image.astype('float32')

    valid_ratio = min(1.0, float(resized_w / imgW))
    return resized_image, valid_ratio


T
tink2123 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
def srn_other_inputs(image_shape, num_heads, max_text_length):

    imgC, imgH, imgW = image_shape
    feature_dim = int((imgH / 8) * (imgW / 8))

    encoder_word_pos = np.array(range(0, feature_dim)).reshape(
        (feature_dim, 1)).astype('int64')
    gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
        (max_text_length, 1)).astype('int64')

    gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
    gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
        [1, max_text_length, max_text_length])
    gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
                                  [num_heads, 1, 1]) * [-1e9]

    gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
        [1, max_text_length, max_text_length])
    gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
                                  [num_heads, 1, 1]) * [-1e9]

    return [
        encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
        gsrm_slf_attn_bias2
    ]


T
tink2123 已提交
583 584 585 586 587 588 589
def flag():
    """
    flag
    """
    return 1 if random.random() > 0.5000001 else -1


文幕地方's avatar
add bda  
文幕地方 已提交
590
def hsv_aug(img):
T
tink2123 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
    """
    cvtColor
    """
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    delta = 0.001 * random.random() * flag()
    hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
    new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    return new_img


def blur(img):
    """
    blur
    """
    h, w, _ = img.shape
    if h > 10 and w > 10:
        return cv2.GaussianBlur(img, (5, 5), 1)
    else:
        return img


T
tink2123 已提交
612
def jitter(img):
T
tink2123 已提交
613
    """
T
tink2123 已提交
614
    jitter
T
tink2123 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628
    """
    w, h, _ = img.shape
    if h > 10 and w > 10:
        thres = min(w, h)
        s = int(random.random() * thres * 0.01)
        src_img = img.copy()
        for i in range(s):
            img[i:, i:, :] = src_img[:w - i, :h - i, :]
        return img
    else:
        return img


def add_gasuss_noise(image, mean=0, var=0.1):
629 630 631
    """
    Gasuss noise
    """
T
tink2123 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

    noise = np.random.normal(mean, var**0.5, image.shape)
    out = image + 0.5 * noise
    out = np.clip(out, 0, 255)
    out = np.uint8(out)
    return out


def get_crop(image):
    """
    random crop
    """
    h, w, _ = image.shape
    top_min = 1
    top_max = 8
    top_crop = int(random.randint(top_min, top_max))
648
    top_crop = min(top_crop, h - 1)
T
tink2123 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
    crop_img = image.copy()
    ratio = random.randint(0, 1)
    if ratio:
        crop_img = crop_img[top_crop:h, :, :]
    else:
        crop_img = crop_img[0:h - top_crop, :, :]
    return crop_img


def rad(x):
    """
    rad
    """
    return x * np.pi / 180


def get_warpR(config):
    """
    get_warpR
    """
    anglex, angley, anglez, fov, w, h, r = \
        config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
    if w > 69 and w < 112:
        anglex = anglex * 1.5

    z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
    # Homogeneous coordinate transformation matrix
    rx = np.array([[1, 0, 0, 0],
                   [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
                       0,
                       -np.sin(rad(anglex)),
                       np.cos(rad(anglex)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
                   [0, 1, 0, 0], [
                       -np.sin(rad(angley)),
                       0,
                       np.cos(rad(angley)),
                       0,
                   ], [0, 0, 0, 1]], np.float32)
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
                   [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
    r = rx.dot(ry).dot(rz)
    # generate 4 points
    pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
    p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
    p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
    p3 = np.array([0, h, 0, 0], np.float32) - pcenter
    p4 = np.array([w, h, 0, 0], np.float32) - pcenter
    dst1 = r.dot(p1)
    dst2 = r.dot(p2)
    dst3 = r.dot(p3)
    dst4 = r.dot(p4)
704
    list_dst = np.array([dst1, dst2, dst3, dst4])
T
tink2123 已提交
705 706 707
    org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
    dst = np.zeros((4, 2), np.float32)
    # Project onto the image plane
708 709 710
    dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
    dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]

T
tink2123 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
    warpR = cv2.getPerspectiveTransform(org, dst)

    dst1, dst2, dst3, dst4 = dst
    r1 = int(min(dst1[1], dst2[1]))
    r2 = int(max(dst3[1], dst4[1]))
    c1 = int(min(dst1[0], dst3[0]))
    c2 = int(max(dst2[0], dst4[0]))

    try:
        ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))

        dx = -c1
        dy = -r1
        T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
        ret = T1.dot(warpR)
    except:
        ratio = 1.0
        T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
        ret = T1
    return ret, (-r1, -c1), ratio, dst


def get_warpAffine(config):
    """
    get_warpAffine
    """
    anglez = config.anglez
    rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
                   [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
    return rz