whl_en.md 18.5 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4
# paddleocr package

## Get started quickly
### install package
Z
zhoujun 已提交
5 6 7

First, you need to refer to [installation document](installation_en.md) to install paddlepaddle, and then start to install paddleocr package

W
WenmuZhou 已提交
8 9 10 11 12 13 14
install by pypi
```bash
pip install paddleocr
```

build own whl package and install
```bash
W
WenmuZhou 已提交
15
python3 setup.py bdist_wheel
W
WenmuZhou 已提交
16
pip3 install dist/paddleocr-x.x.x-py3-none-any.whl # x.x.x is the version of paddleocr
W
WenmuZhou 已提交
17 18 19
```
### 1. Use by code

W
WenmuZhou 已提交
20 21 22
* detection classification and recognition
```python
from paddleocr import PaddleOCR,draw_ocr
23
# Paddleocr supports Chinese, English, French, German, Korean and Japanese.
W
WenmuZhou 已提交
24
# You can set the parameter `lang` as `ch`, `en`, `french`, `german`, `korean`, `japan`
25
# to switch the language model in order.
W
WenmuZhou 已提交
26
ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to download and load model into memory
W
WenmuZhou 已提交
27 28 29 30 31
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
    print(line)

32

W
WenmuZhou 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

Output will be a list, each item contains bounding box, text and recognition confidence
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
......
```

Visualization of results

<div align="center">
    <img src="../imgs_results/whl/12_det_rec.jpg" width="800">
</div>

W
WenmuZhou 已提交
58 59 60
* detection and recognition
```python
from paddleocr import PaddleOCR,draw_ocr
W
WenmuZhou 已提交
61
ocr = PaddleOCR(lang='en') # need to run only once to download and load model into memory
W
WenmuZhou 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path)
for line in result:
    print(line)

# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

Output will be a list, each item contains bounding box, text and recognition confidence
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
W
WenmuZhou 已提交
83
......
W
WenmuZhou 已提交
84 85 86 87 88 89 90 91
```

Visualization of results

<div align="center">
    <img src="../imgs_results/whl/12_det_rec.jpg" width="800">
</div>

W
WenmuZhou 已提交
92 93 94
* classification and recognition
```python
from paddleocr import PaddleOCR
W
WenmuZhou 已提交
95
ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to load model into memory
W
WenmuZhou 已提交
96 97 98 99 100 101 102 103 104 105 106
img_path = 'PaddleOCR/doc/imgs_words_en/word_10.png'
result = ocr.ocr(img_path, det=False, cls=True)
for line in result:
    print(line)
```

Output will be a list, each item contains recognition text and confidence
```bash
['PAIN', 0.990372]
```

W
WenmuZhou 已提交
107 108 109
* only detection
```python
from paddleocr import PaddleOCR,draw_ocr
W
WenmuZhou 已提交
110
ocr = PaddleOCR() # need to run only once to download and load model into memory
W
WenmuZhou 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path,rec=False)
for line in result:
    print(line)

# draw result
from PIL import Image

image = Image.open(img_path).convert('RGB')
im_show = draw_ocr(image, result, txts=None, scores=None, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

Output will be a list, each item only contains bounding box
```bash
[[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
[[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
[[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
W
WenmuZhou 已提交
130
......
W
WenmuZhou 已提交
131 132 133 134 135 136 137 138 139 140 141
```

Visualization of results

<div align="center">
    <img src="../imgs_results/whl/12_det.jpg" width="800">
</div>

* only recognition
```python
from paddleocr import PaddleOCR
W
WenmuZhou 已提交
142
ocr = PaddleOCR(lang='en') # need to run only once to load model into memory
W
WenmuZhou 已提交
143
img_path = 'PaddleOCR/doc/imgs_words_en/word_10.png'
W
WenmuZhou 已提交
144
result = ocr.ocr(img_path, det=False, cls=False)
W
WenmuZhou 已提交
145 146 147 148
for line in result:
    print(line)
```

W
WenmuZhou 已提交
149
Output will be a list, each item contains recognition text and confidence
W
WenmuZhou 已提交
150 151 152 153
```bash
['PAIN', 0.990372]
```

W
WenmuZhou 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
* only classification
```python
from paddleocr import PaddleOCR
ocr = PaddleOCR(use_angle_cls=True) # need to run only once to load model into memory
img_path = 'PaddleOCR/doc/imgs_words_en/word_10.png'
result = ocr.ocr(img_path, det=False, rec=False, cls=True)
for line in result:
    print(line)
```

Output will be a list, each item contains classification result and confidence
```bash
['0', 0.99999964]
```

W
WenmuZhou 已提交
169 170 171 172 173 174 175
### Use by command line

show help information
```bash
paddleocr -h
```

W
WenmuZhou 已提交
176 177
* detection classification and recognition
```bash
Z
zhoujun 已提交
178
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --use_angle_cls true --lang en
W
WenmuZhou 已提交
179 180 181 182 183 184 185 186 187 188
```

Output will be a list, each item contains bounding box, text and recognition confidence
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
......
```

W
WenmuZhou 已提交
189 190
* detection and recognition
```bash
W
WenmuZhou 已提交
191
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --lang en
W
WenmuZhou 已提交
192 193 194 195 196 197 198
```

Output will be a list, each item contains bounding box, text and recognition confidence
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
W
WenmuZhou 已提交
199
......
W
WenmuZhou 已提交
200 201
```

W
WenmuZhou 已提交
202 203
* classification and recognition
```bash
Z
zhoujun 已提交
204
paddleocr --image_dir PaddleOCR/doc/imgs_words_en/word_10.png --use_angle_cls true --det false --lang en
W
WenmuZhou 已提交
205 206 207 208 209 210 211
```

Output will be a list, each item contains text and recognition confidence
```bash
['PAIN', 0.990372]
```

W
WenmuZhou 已提交
212 213 214 215 216 217 218 219 220 221
* only detection
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --rec false
```

Output will be a list, each item only contains bounding box
```bash
[[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
[[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
[[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
W
WenmuZhou 已提交
222
......
W
WenmuZhou 已提交
223 224 225 226
```

* only recognition
```bash
Z
zhoujun 已提交
227
paddleocr --image_dir PaddleOCR/doc/imgs_words_en/word_10.png --det false --lang en
W
WenmuZhou 已提交
228 229 230 231 232 233 234
```

Output will be a list, each item contains text and recognition confidence
```bash
['PAIN', 0.990372]
```

W
WenmuZhou 已提交
235 236
* only classification
```bash
Z
zhoujun 已提交
237
paddleocr --image_dir PaddleOCR/doc/imgs_words_en/word_10.png --use_angle_cls true --det false --rec false
W
WenmuZhou 已提交
238 239 240 241 242 243 244
```

Output will be a list, each item contains classification result and confidence
```bash
['0', 0.99999964]
```

W
WenmuZhou 已提交
245 246 247 248 249 250 251 252 253
## Use custom model
When the built-in model cannot meet the needs, you need to use your own trained model.
First, refer to the first section of [inference_en.md](./inference_en.md) to convert your det and rec model to inference model, and then use it as follows

### 1. Use by code

```python
from paddleocr import PaddleOCR,draw_ocr
# The path of detection and recognition model must contain model and params files
W
WenmuZhou 已提交
254
ocr = PaddleOCR(det_model_dir='{your_det_model_dir}', rec_model_dir='{your_rec_model_dir}', rec_char_dict_path='{your_rec_char_dict_path}', cls_model_dir='{your_cls_model_dir}', use_angle_cls=True)
W
WenmuZhou 已提交
255
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
W
WenmuZhou 已提交
256
result = ocr.ocr(img_path, cls=True)
W
WenmuZhou 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
for line in result:
    print(line)

# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

### Use by command line

```bash
Z
zhoujun 已提交
274
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_dir} --rec_model_dir {your_rec_model_dir} --rec_char_dict_path {your_rec_char_dict_path} --cls_model_dir {your_cls_model_dir} --use_angle_cls true
W
WenmuZhou 已提交
275 276
```

W
WenmuZhou 已提交
277 278 279 280 281 282 283 284
## Parameter Description

| Parameter                    | Description                                                                                                                                                                                                                 | Default value                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| use_gpu                 | use GPU or not                                                                                                                                                                                                          | TRUE                    |
| gpu_mem                 | GPU memory size used for initialization                                                                                                                                                                                              | 8000M                   |
| image_dir               | The images path or folder path for predicting when used by the command line                                                                                                                                                                           |                         |
| det_algorithm           | Type of detection algorithm selected                                                                                                                                                                                                   | DB                      |
W
WenmuZhou 已提交
285
| det_model_dir           | the text detection inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to `~/.paddleocr/det`; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path | None           |
W
WenmuZhou 已提交
286 287 288 289 290 291 292 293
| det_max_side_len        | The maximum size of the long side of the image. When the long side exceeds this value, the long side will be resized to this size, and the short side will be scaled proportionally                                                                                                                         | 960                     |
| det_db_thresh           | Binarization threshold value of DB output map                                                                                                                                                                                        | 0.3                     |
| det_db_box_thresh       | The threshold value of the DB output box. Boxes score lower than this value will be discarded                                                                                                                                                                         | 0.5                     |
| det_db_unclip_ratio     | The expanded ratio of DB output box                                                                                                                                                                                             | 2                       |
| det_east_score_thresh   | Binarization threshold value of EAST output map                                                                                                                                                                                       | 0.8                     |
| det_east_cover_thresh   | The threshold value of the EAST output box. Boxes score lower than this value will be discarded                                                                                                                                                                         | 0.1                     |
| det_east_nms_thresh     | The NMS threshold value of EAST model output box                                                                                                                                                                                              | 0.2                     |
| rec_algorithm           | Type of recognition algorithm selected                                                                                                                                                                                                | CRNN                    |
W
WenmuZhou 已提交
294
| rec_model_dir           | the text recognition inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to `~/.paddleocr/rec`; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path | None |
W
WenmuZhou 已提交
295 296 297
| rec_image_shape         | image shape of recognition algorithm                                                                                                                                                                                            | "3,32,320"              |
| rec_char_type           | Character type of recognition algorithm, Chinese (ch) or English (en)                                                                                                                                                                               | ch                      |
| rec_batch_num           | When performing recognition, the batchsize of forward images                                                                                                                                                                                         | 30                      |
W
WenmuZhou 已提交
298 299
| max_text_length         | The maximum text length that the recognition algorithm can recognize                                                                                                                                                                                         | 25                      |
| rec_char_dict_path      | the alphabet path which needs to be modified to your own path when `rec_model_Name` use mode 2                                                                                                                                              | ./ppocr/utils/ppocr_keys_v1.txt                        |
W
WenmuZhou 已提交
300
| use_space_char          | Whether to recognize spaces                                                                                                                                                                                                         | TRUE                    |
W
WenmuZhou 已提交
301 302 303 304 305
| use_angle_cls          | Whether to load classification model                                                                                                                                                                                                       | FALSE                    |
| cls_model_dir           | the classification inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to `~/.paddleocr/cls`; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path | None |
| cls_image_shape         | image shape of classification algorithm                                                                                                                                                                                            | "3,48,192"              |
| label_list         | label list of classification algorithm                                                                                                                                                                                            | ['0','180']           |
| cls_batch_num           | When performing classification, the batchsize of forward images                                                                                                                                                                                         | 30                      |
W
WenmuZhou 已提交
306
| enable_mkldnn           | Whether to enable mkldnn                                                                                                                                                                                                       | FALSE                   |
W
WenmuZhou 已提交
307
| use_zero_copy_run           | Whether to forward by zero_copy_run                                                                                                                                                                               | FALSE                   |
W
WenmuZhou 已提交
308
| lang                     | The support language, now only Chinese(ch)、English(en)、French(french)、German(german)、Korean(korean)、Japanese(japan) are supported                                                                                                                                                                                                  | ch                    |
W
WenmuZhou 已提交
309
| det                     | Enable detction when `ppocr.ocr` func exec                                                                                                                                                                                                   | TRUE                    |
W
WenmuZhou 已提交
310
| rec                     | Enable recognition when `ppocr.ocr` func exec                                                                                                                                                                                                   | TRUE                    |
Z
zhoujun 已提交
311
| cls                     | Enable classification when `ppocr.ocr` func exec,this parameter only exists in `code usage` mode                                                                                                                                                                                                   | FALSE                    |