predict_rec.py 20.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
T
Topdu 已提交
16
from PIL import Image
17
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
18
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey 已提交
19
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

L
LDOUBLEV 已提交
23 24 25 26
import cv2
import numpy as np
import math
import time
W
WenmuZhou 已提交
27
import traceback
T
tink2123 已提交
28
import paddle
29 30

import tools.infer.utility as utility
W
WenmuZhou 已提交
31 32
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
34

W
WenmuZhou 已提交
35 36
logger = get_logger()

L
LDOUBLEV 已提交
37 38 39

class TextRecognizer(object):
    def __init__(self, args):
40
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
41
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
42
        self.rec_algorithm = args.rec_algorithm
W
WenmuZhou 已提交
43 44
        postprocess_params = {
            'name': 'CTCLabelDecode',
45
            "character_dict_path": args.rec_char_dict_path,
W
WenmuZhou 已提交
46
            "use_space_char": args.use_space_char
T
tink2123 已提交
47
        }
T
tink2123 已提交
48 49 50
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
W
WenmuZhou 已提交
51 52 53 54 55 56
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
T
tink2123 已提交
57 58 59
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
T
Topdu 已提交
60 61 62 63 64 65
        elif self.rec_algorithm == 'NRTR':
            postprocess_params = {
                'name': 'NRTRLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
T
Topdu 已提交
66 67 68 69 70 71
        elif self.rec_algorithm == "SAR":
            postprocess_params = {
                'name': 'SARLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
A
add vl  
andyjpaddle 已提交
72 73 74 75 76 77
        elif self.rec_algorithm == "VisionLAN":
            postprocess_params = {
                'name': 'VLLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
78 79 80 81 82 83 84 85 86 87 88 89
        elif self.rec_algorithm == 'ViTSTR':
            postprocess_params = {
                'name': 'ViTSTRLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == 'ABINet':
            postprocess_params = {
                'name': 'ABINetLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
W
WenmuZhou 已提交
90
        self.postprocess_op = build_post_process(postprocess_params)
L
LDOUBLEV 已提交
91
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
W
WenmuZhou 已提交
92
            utility.create_predictor(args, 'rec', logger)
T
tink2123 已提交
93
        self.benchmark = args.benchmark
T
tink2123 已提交
94
        self.use_onnx = args.use_onnx
T
tink2123 已提交
95 96 97
        if args.benchmark:
            import auto_log
            pid = os.getpid()
L
LDOUBLEV 已提交
98
            gpu_id = utility.get_infer_gpuid()
T
tink2123 已提交
99 100 101
            self.autolog = auto_log.AutoLogger(
                model_name="rec",
                model_precision=args.precision,
T
tink2123 已提交
102
                batch_size=args.rec_batch_num,
T
tink2123 已提交
103
                data_shape="dynamic",
104
                save_path=None,  #args.save_log_path,
T
tink2123 已提交
105 106 107
                inference_config=self.config,
                pids=pid,
                process_name=None,
L
LDOUBLEV 已提交
108
                gpu_ids=gpu_id if args.use_gpu else None,
T
tink2123 已提交
109 110 111
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
T
tink2123 已提交
112
                warmup=0,
113
                logger=logger)
L
LDOUBLEV 已提交
114

115
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
116
        imgC, imgH, imgW = self.rec_image_shape
117
        if self.rec_algorithm == 'NRTR' or self.rec_algorithm == 'ViTSTR':
T
Topdu 已提交
118 119 120
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # return padding_im
            image_pil = Image.fromarray(np.uint8(img))
121 122 123 124
            if self.rec_algorithm == 'ViTSTR':
                img = image_pil.resize([imgW, imgH], Image.BICUBIC)
            else:
                img = image_pil.resize([imgW, imgH], Image.ANTIALIAS)
T
Topdu 已提交
125 126 127
            img = np.array(img)
            norm_img = np.expand_dims(img, -1)
            norm_img = norm_img.transpose((2, 0, 1))
128 129 130 131 132
            if self.rec_algorithm == 'ViTSTR':
                norm_img = norm_img.astype(np.float32) / 255.
            else:
                norm_img = norm_img.astype(np.float32) / 128. - 1.
            return norm_img
T
Topdu 已提交
133

134
        assert imgC == img.shape[2]
A
andyjpaddle 已提交
135
        imgW = int((imgH * max_wh_ratio))
T
tink2123 已提交
136
        if self.use_onnx:
137 138 139 140
            w = self.input_tensor.shape[3:][0]
            if w is not None and w > 0:
                imgW = w

141
        h, w = img.shape[:2]
142 143 144 145 146
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
A
andyjpaddle 已提交
147 148 149 150
        if self.rec_algorithm == 'RARE':
            if resized_w > self.rec_image_shape[2]:
                resized_w = self.rec_image_shape[2]
            imgW = self.rec_image_shape[2]
T
tink2123 已提交
151
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
152 153 154 155 156 157 158
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im
T
tink2123 已提交
159

T
Topdu 已提交
160 161 162 163 164 165 166 167 168 169
    def resize_norm_img_svtr(self, img, image_shape):

        imgC, imgH, imgW = image_shape
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        return resized_image
L
LDOUBLEV 已提交
170

A
add vl  
andyjpaddle 已提交
171 172 173 174 175 176 177 178 179
    def resize_norm_img_vl(self, img, image_shape):

        imgC, imgH, imgW = image_shape
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        return resized_image

T
tink2123 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

T
Topdu 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    def resize_norm_img_sar(self, img, image_shape,
                            width_downsample_ratio=0.25):
        imgC, imgH, imgW_min, imgW_max = image_shape
        h = img.shape[0]
        w = img.shape[1]
        valid_ratio = 1.0
        # make sure new_width is an integral multiple of width_divisor.
        width_divisor = int(1 / width_downsample_ratio)
        # resize
        ratio = w / float(h)
        resize_w = math.ceil(imgH * ratio)
        if resize_w % width_divisor != 0:
            resize_w = round(resize_w / width_divisor) * width_divisor
        if imgW_min is not None:
            resize_w = max(imgW_min, resize_w)
        if imgW_max is not None:
            valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
            resize_w = min(imgW_max, resize_w)
        resized_image = cv2.resize(img, (resize_w, imgH))
        resized_image = resized_image.astype('float32')
        # norm 
        if image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        resize_shape = resized_image.shape
        padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
        padding_im[:, :, 0:resize_w] = resized_image
        pad_shape = padding_im.shape

        return padding_im, resize_shape, pad_shape, valid_ratio

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    def resize_norm_img_svtr(self, img, image_shape):

        imgC, imgH, imgW = image_shape
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        return resized_image

    def resize_norm_img_abinet(self, img, image_shape):

        imgC, imgH, imgW = image_shape

        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image / 255.

        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        resized_image = (
            resized_image - mean[None, None, ...]) / std[None, None, ...]
        resized_image = resized_image.transpose((2, 0, 1))
        resized_image = resized_image.astype('float32')

        return resized_image

L
LDOUBLEV 已提交
316 317
    def __call__(self, img_list):
        img_num = len(img_list)
318
        # Calculate the aspect ratio of all text bars
319 320 321
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
322
        # Sorting can speed up the recognition process
323 324
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
325
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
326
        st = time.time()
T
tink2123 已提交
327 328
        if self.benchmark:
            self.autolog.times.start()
L
LDOUBLEV 已提交
329 330 331
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
A
andyjpaddle 已提交
332 333 334
            imgC, imgH, imgW = self.rec_image_shape
            max_wh_ratio = imgW / imgH
            # max_wh_ratio = 0
L
LDOUBLEV 已提交
335
            for ino in range(beg_img_no, end_img_no):
336
                h, w = img_list[indices[ino]].shape[0:2]
337 338 339
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
T
tink2123 已提交
340

T
Topdu 已提交
341
                if self.rec_algorithm == "SAR":
T
Topdu 已提交
342 343 344 345 346 347 348
                    norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
                        img_list[indices[ino]], self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    valid_ratio = np.expand_dims(valid_ratio, axis=0)
                    valid_ratios = []
                    valid_ratios.append(valid_ratio)
                    norm_img_batch.append(norm_img)
T
Topdu 已提交
349
                elif self.rec_algorithm == "SRN":
L
LDOUBLEV 已提交
350 351
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
T
tink2123 已提交
352 353 354 355 356 357 358 359 360
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
T
Topdu 已提交
361
                elif self.rec_algorithm == "SVTR":
T
tink2123 已提交
362 363
                    norm_img = self.resize_norm_img_svtr(img_list[indices[ino]],
                                                         self.rec_image_shape)
A
add vl  
andyjpaddle 已提交
364 365 366 367 368
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                elif self.rec_algorithm == "VisionLAN":
                    norm_img = self.resize_norm_img_vl(img_list[indices[ino]],
                                                       self.rec_image_shape)
A
add vl  
andyjpaddle 已提交
369 370
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
371 372 373
                elif self.rec_algorithm == "ABINet":
                    norm_img = self.resize_norm_img_abinet(
                        img_list[indices[ino]], self.rec_image_shape)
T
Topdu 已提交
374 375 376 377 378 379 380
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
L
LDOUBLEV 已提交
381 382
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
T
tink2123 已提交
383 384
            if self.benchmark:
                self.autolog.times.stamp()
T
tink2123 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
T
tink2123 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = {"predict": outputs[2]}
                else:
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    preds = {"predict": outputs[2]}
T
Topdu 已提交
421 422 423 424 425 426
            elif self.rec_algorithm == "SAR":
                valid_ratios = np.concatenate(valid_ratios)
                inputs = [
                    norm_img_batch,
                    valid_ratios,
                ]
T
tink2123 已提交
427 428 429 430 431 432
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
T
Topdu 已提交
433
                else:
T
tink2123 已提交
434 435 436 437 438 439 440 441 442 443 444 445
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
T
Topdu 已提交
446
                    preds = outputs[0]
T
tink2123 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
            else:
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
                else:
                    self.input_tensor.copy_from_cpu(norm_img_batch)
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    if len(outputs) != 1:
                        preds = outputs
                    else:
                        preds = outputs[0]
W
WenmuZhou 已提交
467 468 469
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
T
tink2123 已提交
470 471
            if self.benchmark:
                self.autolog.times.end(stamp=True)
L
LDOUBLEV 已提交
472
        return rec_res, time.time() - st
L
LDOUBLEV 已提交
473 474


475
def main(args):
D
dyning 已提交
476
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
477 478 479
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
L
LDOUBLEV 已提交
480

T
tink2123 已提交
481 482
    logger.info(
        "In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', "
T
tink2123 已提交
483
        "if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320"
T
tink2123 已提交
484
    )
485
    # warmup 2 times
L
LDOUBLEV 已提交
486
    if args.warmup:
T
tink2123 已提交
487
        img = np.random.uniform(0, 255, [48, 320, 3]).astype(np.uint8)
488
        for i in range(2):
L
LDOUBLEV 已提交
489
            res = text_recognizer([img] * int(args.rec_batch_num))
L
LDOUBLEV 已提交
490

L
LDOUBLEV 已提交
491
    for image_file in image_file_list:
L
LDOUBLEV 已提交
492 493 494
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
495 496 497 498 499
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
L
LDOUBLEV 已提交
500 501 502 503 504 505 506 507 508 509
    try:
        rec_res, _ = text_recognizer(img_list)

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
T
tink2123 已提交
510 511
    if args.benchmark:
        text_recognizer.autolog.report()
512 513 514 515


if __name__ == "__main__":
    main(utility.parse_args())