db_postprocess.py 8.0 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14
"""
L
LDOUBLEV 已提交
15
This code is refered from:
L
LDOUBLEV 已提交
16 17
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
"""
L
LDOUBLEV 已提交
18 19 20 21 22 23
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
W
WenmuZhou 已提交
24
import paddle
L
LDOUBLEV 已提交
25 26 27 28 29 30 31 32 33
from shapely.geometry import Polygon
import pyclipper


class DBPostProcess(object):
    """
    The post process for Differentiable Binarization (DB).
    """

W
WenmuZhou 已提交
34 35 36 37 38
    def __init__(self,
                 thresh=0.3,
                 box_thresh=0.7,
                 max_candidates=1000,
                 unclip_ratio=2.0,
39
                 use_dilation=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
40
                 score_mode="fast",
L
LDOUBLEV 已提交
41
                 visual_output=False,
W
WenmuZhou 已提交
42 43 44 45 46
                 **kwargs):
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.max_candidates = max_candidates
        self.unclip_ratio = unclip_ratio
L
LDOUBLEV 已提交
47
        self.min_size = 3
littletomatodonkey's avatar
littletomatodonkey 已提交
48 49 50 51 52
        self.score_mode = score_mode
        assert score_mode in [
            "slow", "fast"
        ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)

W
WenmuZhou 已提交
53 54
        self.dilation_kernel = None if not use_dilation else np.array(
            [[1, 1], [1, 1]])
L
LDOUBLEV 已提交
55
        self.visual = visual_output
L
LDOUBLEV 已提交
56 57 58 59 60 61 62 63 64 65

    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (1, H, W),
                whose values are binarized as {0, 1}
        '''

        bitmap = _bitmap
        height, width = bitmap.shape

L
LDOUBLEV 已提交
66 67
        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
                                cv2.CHAIN_APPROX_SIMPLE)
T
tink2123 已提交
68 69 70 71
        if len(outs) == 3:
            img, contours, _ = outs[0], outs[1], outs[2]
        elif len(outs) == 2:
            contours, _ = outs[0], outs[1]
L
LDOUBLEV 已提交
72 73 74

        num_contours = min(len(contours), self.max_candidates)

W
WenmuZhou 已提交
75 76
        boxes = []
        scores = []
L
LDOUBLEV 已提交
77 78 79 80 81 82
        for index in range(num_contours):
            contour = contours[index]
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
littletomatodonkey's avatar
littletomatodonkey 已提交
83 84 85 86
            if self.score_mode == "fast":
                score = self.box_score_fast(pred, points.reshape(-1, 2))
            else:
                score = self.box_score_slow(pred, contour)
L
LDOUBLEV 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99
            if self.box_thresh > score:
                continue

            box = self.unclip(points).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)

            box[:, 0] = np.clip(
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
W
WenmuZhou 已提交
100 101 102
            boxes.append(box.astype(np.int16))
            scores.append(score)
        return np.array(boxes, dtype=np.int16), scores
L
LDOUBLEV 已提交
103

L
LDOUBLEV 已提交
104 105
    def unclip(self, box):
        unclip_ratio = self.unclip_ratio
L
LDOUBLEV 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [
            points[index_1], points[index_2], points[index_3], points[index_4]
        ]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
littletomatodonkey's avatar
littletomatodonkey 已提交
137 138 139
        '''
        box_score_fast: use bbox mean score as the mean score
        '''
L
LDOUBLEV 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

littletomatodonkey's avatar
littletomatodonkey 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    def box_score_slow(self, bitmap, contour):
        '''
        box_score_slow: use polyon mean score as the mean score
        '''
        h, w = bitmap.shape[:2]
        contour = contour.copy()
        contour = np.reshape(contour, (-1, 2))

        xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
        xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
        ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
        ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)

        contour[:, 0] = contour[:, 0] - xmin
        contour[:, 1] = contour[:, 1] - ymin

        cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

L
LDOUBLEV 已提交
174 175 176 177 178
    def visual_output(self, pred):
        im = np.array(pred[0] * 255).astype(np.uint8)
        cv2.imwrite("db_probability_map.png", im)
        print("The probalibity map is visualized in db_probability_map.png")

W
WenmuZhou 已提交
179 180
    def __call__(self, outs_dict, shape_list):
        pred = outs_dict['maps']
W
WenmuZhou 已提交
181 182 183
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = pred[:, 0, :, :]
L
LDOUBLEV 已提交
184
        segmentation = pred > self.thresh
L
LDOUBLEV 已提交
185 186
        if self.visual:
            self.visual_output(pred)
L
LDOUBLEV 已提交
187 188 189

        boxes_batch = []
        for batch_index in range(pred.shape[0]):
L
LDOUBLEV 已提交
190
            src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
191 192 193 194 195 196
            if self.dilation_kernel is not None:
                mask = cv2.dilate(
                    np.array(segmentation[batch_index]).astype(np.uint8),
                    self.dilation_kernel)
            else:
                mask = segmentation[batch_index]
L
LDOUBLEV 已提交
197
            boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
L
LDOUBLEV 已提交
198
                                                   src_w, src_h)
L
LDOUBLEV 已提交
199

W
WenmuZhou 已提交
200
            boxes_batch.append({'points': boxes})
L
LDOUBLEV 已提交
201
        return boxes_batch
L
fix bug  
LDOUBLEV 已提交
202 203


L
LDOUBLEV 已提交
204
class DistillationDBPostProcess(object):
L
LDOUBLEV 已提交
205 206
    def __init__(self,
                 model_name=["student"],
L
fix bug  
LDOUBLEV 已提交
207 208
                 key=None,
                 thresh=0.3,
L
LDOUBLEV 已提交
209
                 box_thresh=0.6,
L
fix bug  
LDOUBLEV 已提交
210
                 max_candidates=1000,
L
LDOUBLEV 已提交
211
                 unclip_ratio=1.5,
L
fix bug  
LDOUBLEV 已提交
212 213 214 215 216
                 use_dilation=False,
                 score_mode="fast",
                 **kwargs):
        self.model_name = model_name
        self.key = key
L
LDOUBLEV 已提交
217 218 219 220 221 222 223
        self.post_process = DBPostProcess(
            thresh=thresh,
            box_thresh=box_thresh,
            max_candidates=max_candidates,
            unclip_ratio=unclip_ratio,
            use_dilation=use_dilation,
            score_mode=score_mode)
L
fix bug  
LDOUBLEV 已提交
224

L
LDOUBLEV 已提交
225
    def __call__(self, predicts, shape_list):
L
fix bug  
LDOUBLEV 已提交
226
        results = {}
L
LDOUBLEV 已提交
227 228
        for k in self.model_name:
            results[k] = self.post_process(predicts[k], shape_list=shape_list)
L
fix bug  
LDOUBLEV 已提交
229
        return results